
KG Explorer: a Customisable Exploration Tool for
Knowledge Graphs

Thibault Ehrhart, Pasquale Lisena, and Raphaël Troncy

EURECOM, Sophia Antipolis, France
{ehrhart,lisena,troncy}@eurecom.fr

Abstract. The growing adoption of Knowledge Graphs demands new applica-
tions which enable users to search and browse structured data in a suitable way
depending on the domain. In this paper, we introduce KG Explorer, a web-based
exploratory search engine for RDF-based Knowledge Graphs. The software can
be configured in order to adapt to different information domains, customising
both the UI components and the queries made for retrieving the information. It
also includes features such as full-text search, facet-based advanced search, and
the possibility to create lists of favourites items modelled in the knowledge graph.

Keywords: knowledge graphs, data exploration, data access, search interface

1 Introduction

Knowledge Graphs (KG) are more and more adopted for representing the informa-
tion: today we can find several graphs, small and large, which may represent encyclopedic-
general or domain-specific information. Their still growing popularity is due to an in-
teresting set of characteristics, such as explicit semantic, interlinking with external re-
sources, and a great expressiveness coming from Semantic Web technologies. KGs of-
fer structured data that empower semantic search and QA systems among many other
possible applications.

More recently, we see the interest in creating beautiful visualisation of KG-powered
search results. An example is the use of Knowledge Panels on Search Engines, which
are currently moving from simply displaying key-value tuples to integrate images and
text for presenting the information nicely (Fig. 1).

Knoweldge Graphs can be stored in dedicated triple store. Those, generally offer –
next to the essential SPARQL endpoint – a browsing user interface (UI), which allows
an end-user to see the loaded data on a web page. For example, the facet browser of
Virtuoso1 shows all incoming and outgoing predicates for a given resource with the
respective values2. When the value represents a picture, the image is retrieved and dis-
played in the page. All entity nodes and edges are clickable, so that the user can navigate

Copyright © 2021 for this paper by its authors. Use permitted under Creative Commons Li-
cense Attribution 4.0 International (CC BY 4.0).

1 http://vos.openlinksw.com/
2 Example from DBpedia: https://bit.ly/3z5nPLG

http://vos.openlinksw.com/
https://bit.ly/3z5nPLG

Fig. 1. The Knowledge Panel for the search keyword “Goat” in Google (left) and Bing (right).
Screenshot taken on 19/03/2021

through the graph in a follow-your-nose approach. Other common features are plain text
search (/fct on Virtuoso), query helper (YASGUI3), dereferencing service for linked
data URI, or rich visualisation of results (like in Wikidata4).

However, these systems fall short when it is necessary to go beyond the simple
visualisation of text and images and:

– embrace different media objects, such as video, audio, 3D graphics;
– propose new navigation paradigms, such as related items or recommendations for

the next element;
– improve the search and exploration experience based on the domain peculiarities,

filtering the results based on time ranges, geographic areas, or values form hierar-
chical thesauri. Moreover, the connection of the searched object and the value to
filter can consist of a single direct property, a property path, or even a more complex
query.

To provide a generic solution to these limitations, we introduce KG Explorer, a
fully-customisable web application which serves as exploratory search engine [16] for
Knowledge Graphs. KG Explorer offers alternative ways to browse a graph, to search
and to follow links, to discover new information by exploiting the semantic proximity
of entities. Respect to other works in literature, KG Explorer gives the possibility to
configure the application components, that can be included or excluded and customised
in the functionality or in the visualisation. In addition, a save in the list feature is in-
cluded, bringing to information discovery applications a pattern coming from shopping
exploratory search engine.

3 https://triply.cc/docs/yasgui-api
4 See for example https://www.wikidata.org/wiki/Q2934

https://triply.cc/docs/yasgui-api
https://www.wikidata.org/wiki/Q2934

This paper is organised as follows. After discussing some related work in Section 2,
we detail some shared needs for the application in Section 3. The functionalities and
architecture of KG Explorer are described respectively in Section 4 and 5. We present
a preliminary evaluation in Section 6 and some conclusion in Section 7.

2 Related Work

An extensive survey of facet search has been published in [21]. This work has the merit
of defining the basic concepts for the exploratory approach, namely the extension (the
displayed results), the intension (the satisfied query) and the transition markers, click-
able elements for triggering a transition (a new query). In addition, the work points out
the possible kind of configuration of the tool, from the absence of any configuration
requirement to the exact content to be displayed (view-based configuration).

Faceted Wikipedia Search [7] is a facet search tool based on DBpedia. The transition
markers are sorted and displayed based on their frequency with respect to the number
of results, in order to help the user in refining her/his query in successive iterations.
Other provided features are free text search and range selection for datatype values.
A similar interaction is implemented in GraFa [15], which refines the facet list after
selecting the text keyword to search or the desired entity type. The involved schemas
are indexed in order to have quick response, applying in addition a materialisation for
the query returning the bigger number of results. These solutions are, however, based on
statistics computed on properties, and do not take into account the domain specificity.
In fact, the chosen facets are not always relevant nor useful for the search experience.
The Metaphacts ecosystem5 includes an extension for building customisable apps on
top of Linked Data.

FERASAT [9] shows the results obtained through combination of facet values in
different visualisation components (maps, charts, etc.), in order to make evident the
surprising results. This application targets a public of data experts but it would be quite
complex for a broader audience. LDVizWiz [1] provides aggregate visualisations for
entities of specific types in a KG, such as events which can be displayed on maps,
timelines and tables. Loupe [14] displays the ontology classes and properties frequently
used in tabular format, allowing the user to see how they are normally combined in the
triples. These works show exclusively aggregate results, without enabling any customi-
sation depending on the investigated domain.

In Overture [11], the visualisation of entity data is extended with custom compo-
nents, showing a timeline of relevant events and the most similar entities from on a
knowledge-based recommender system. In the WarSampo portal [10] (about Finnish
history in World War II), different tabs allows to switch between a tabular visualisation
of data, a timeline and a map, and a photo gallery6. The resource page of Genesis [5]
includes entity textual data, images and videos, as well as a selection of similar and
related entities with their own depictions. These examples are ad-hoc developed tools,
hard to adapt to new domains.

5 https://metaphacts.com/
6 Example: https://www.sotasampo.fi/en/persons/person_61

https://metaphacts.com/
https://www.sotasampo.fi/en/persons/person_61

The Fresnel vocabulary [17] has been proposed for closing the gap between data
and presentation, enabling to define content subsets and formats matched with CSS
classes. Similarly, custom views are used for driving the visualisation in [2,20,4]. How-
ever, these approaches do not propose solutions to data search. Works like PepeSearch
revealed good search capabilities, but the results are only shown in tabular form [22].
Other works combines exploratory search with facets [13,23]; however, these works do
not focus on customising the user interface.

3 Different Scenarios But Shared Needs

Different users may take advantage from data inside specialised Knowledge Graphs,
each one with their own needs and goals. We identified the following shared needs:

– to understand what is in the dataset, and in particular the main resource types
(classes) and how they are connected to each other;

– to search for specific resource which satisfy some domain-relevant criteria;
– to obtain detailed information about a particular resource, including multimedia

data and smart aggregations using timelines, maps and plots.

These need are highly impacted by the kind of user, which can fall in one of the
following scenarios:

– domain experts have great interest in the subject, are used to the domain vocabulary
and know what they search with precision. They need advanced search capabilities,
allowing them to filter the results by several dimensions. The information needs to
be complete.

– the wide public is rather moved by the curiosity of discovering something new,
sometimes having only general or null knowledge about the domain. They need to
easily browse the data collection and possibly reach relevant information already
after the first click. Some strategies are needed to make them continue the explo-
ration, for example follow-your-nose approaches or the recommendation of similar
or related items. The engagement is crucial for their experience.

– external stakeholders need to know which relevant information is possible to find
in the data and how to easily access it.

We argue that an exploratory search engine [16] enables to fulfil the described needs
while being flexible enough to targeting the different personas. In addition, the appli-
cation should have a proper user interface (UI), which reflects the domain specificity
and the institution identity. In the same time, this can improve the final user engage-
ment. Further desired elements are the selection of the language for KGs including
multi-lingual contents and an authentication method for data that are not public.

4 KG Explorer Functionalities

Having defined the final goals, we are going to detail in this section the features im-
plemented in KG Explorer: a facet-based advanced search engine, dedicated edito-
rial pages for controlled vocabularies represented in SKOS and generally used in the

knowledge graph, a customised detailed page for the main entities represented in the
knowledge graph, the possibility for users to log in and to create personalised lists
of favourites or saved items. The software can be configured to adapt to different
information domains, changing not only its aspect but also the queries for retriev-
ing the data to display. KG Explorer is open source under Apache License 2.0 at
https://github.com/D2KLab/explorer. In order to explain the software ca-
pabilities, we will refer to three in-use applications of KG Explorer. These examples
use data coming from different domains (cultural heritage, television and news), each
of them with proper customisation. The links to the applications and the source code
are collected in Table 1.

ontologies #entities links
ADASilk - domain: silk heritage
CIDOC-CRM
CRMsci

675,112
Source code: https://git.io/adasilk
Application: https://ada.silknow.org/

MeMAD Explorer - domain: TV and Radio programmes

EBUcore 1,079,969
Source code: https://git.io/memad-explorer
Application: https://explorer.memad.eu/

ASRAEL Search Engine - domain: news and events
OpenAnnotation
rNews
schema.org

968,602
Source code: http://bit.ly/asrael-se
Application: http://asrael.eurecom.fr/search-engine

Table 1. In-use instances of KG Explorer (including ASRAEL Search Engine which is a fork of
the main tool).

4.1 A standardised experience

KG Explorer offers a user experience based on four different kinds of pages. The land-
ing page contains a search box which allows the user to perform a free text search
on entities modeled in the Knowledge Graph. When the user enters a search term, the
exploratory search engine executes a SPARQL query with a REGEX filter in order to
select all items that have a label or a title that partially matches the search terms. The
search query algorithm can also be changed in the configuration file to cover all datatype
properties of the graph. The results are shown in an auto-complete box.

The browse page (Fig. 2) contains a faceted search engine which allows users to
perform an advanced search for the main entities of the Knowledge Graph. The sidebar
on the left side contains facets (or filters). Each facet generates an extra condition to the
main SPARQL query used for searching.

In addition to a textual search box, the exploratory search engine provides shortcuts
to so-called vocabulary pages, which show all terms belonging to a particular thesaurus
– e.g. a ConceptScheme in the SKOS namespace. These vocabularies are defined in the
configuration file, and are usually materialised as concepts in the KG. Clicking on a
vocabulary term will bring the user to a pre-filtered browse page, in order to see the
related items in the graph.

https://github.com/D2KLab/explorer
https://git.io/adasilk
https://ada.silknow.org/
https://git.io/memad-explorer
https://explorer.memad.eu/
http://bit.ly/asrael-se
http://asrael.eurecom.fr/search-engine

Fig. 2. The browse page in ADASilk.

Finally, the detail page shows all the information related to a single entity. There
are currently 3 layouts available for detail pages: collection (grid-based list of items),
gallery (carousel of images), and video (media player). Custom pages can be added
by creating new JavaScript files in the pages/ directory, and exporting the class as a
React component. Each page is automatically included in the build and associated with
a route based on its file name. New layouts can also be added to the project, by creating
a new file in the pages/details/ directory, and referring to its name in the view
property in the configuration file. This is being used for developing the video player
view in the MeMAD Explorer, handling also authentication to the media server.

4.2 User profiles

KG Explorer includes an authentication system which allows users to create an account,
log in and have access to additional features. The OAuth authentication method is used
for creating a new profile and for any successive login, relying on signing-in via Google,
Facebook, and Twitter. Once logged in, users have the possibility to create named lists
for storing searched items. A “save” button is present on each detail page, allowing to
add the current page to an existing list or to create a new one. Lists can be retrieved
in the profile page of the user, from where they can also be made public and shared
with anyone using a permalink. Moreover, from the profile page it is possible to link or
unlink additional OAuth accounts, as well as manage the existing lists or even delete
the user profile.

4.3 Generic tool, custom configuration

Each domain and KG has its own characteristic. KG explorer is capable of working
on top of any RDF-based Knowledge Graph, by configuring an instance of it using a

JavaScript file (config.js). The configuration allows to define a wide set of options,
such as the chosen SPARQL endpoint, the supported language for internationalisation,
and some layout-related settings – i.e. which images to use, which components to show
or hide, etc.

Of particular interest is the possibility of defining the pages that compose the appli-
cation, through the route field of the configuration file. The example in Listing 17

shows the available options, which include the choice between browse or vocabu-
lary page, the page URI, the applied JSON query for listing the results (following the
SPARQL Transformer syntax, as described in Section 5).

In browse pages, the filters property can contain a list of available fields for
the advanced search, detailing also which changes are applied to the query when fil-
ters are applied. The list of available values can be loaded with a query (defined or
made globally available as vocabulary). The main query condition is defined with the
baseWhere property, with the minimal amount of triples required in order to improve
performances. Once the list of results has been fetched, a second query is made to get
the details of each result. This query is defined within the query property. The labels for
the internationalisation are collected in specific JSON files to include in the project
directory.

The front-end also supports custom styles which can be defined in a theme.js
file. This allows to further customise the appearance of the user interface. It is possi-
ble to choose the global font set and a custom colour palette. Moreover, specific com-
ponents can also be customised, by using the name of component and defining CSS
rules following the styled-components syntax. Finally, adding custom pages and view
(Section 4.1) enable the developer to include new visualisation components. Examples
are maps and 3D visualisation in ADASilk.

5 Architecture

Fig. 3 shows an overview of the architecture and the technologies used in KG Ex-
plorer. KG Explorer is developed in a containerised approach, implemented within
the Docker framework8: thanks to the use of independent and self-sufficient containers,
Docker enables the deployment of this architecture on any machine, automatically in-
stalling and running the required software. This approach also allows to easily extend
and deploy new instances of the application from the base image, including custom
configuration and assets, as has been done in the instances in Table 1.

The web application is composed of several web technologies. The front-end is
produced using React9. It uses encapsulated components that manage their own state to
help maximise code re-usability. Next.js10 is used for server-side rendering and page-
based routing. It relies on a file-based structure for routing, where each page has its
own file, stored in the src/pages directory. Special routes are dedicated to serve

7 The code is extracted from the ADASilk configuration and is fully available at https://
github.com/silknow/adasilk/blob/main/config/routes/object.js

8 https://www.docker.com/
9 https://reactjs.org/

10 https://nextjs.org/

https://github.com/silknow/adasilk/blob/main/config/routes/object.js
https://github.com/silknow/adasilk/blob/main/config/routes/object.js
https://www.docker.com/
https://reactjs.org/
https://nextjs.org/

{
objects: {

view: 'browse', // type of view ('browse' or 'vocabulary')
showInNavbar: true,
rdfType: 'http://erlangen-crm.org/current/E22_Man-Made_Object',
uriBase: 'http://data.silknow.org/object',
details: { view: 'gallery' },
filters: [{ // set of filters to appear in the advanced search

id: 'material', // material filter
isMulti: true, // 1 or more values can be selected
isSortable: true,
vocabulary: 'material', // values taken from a vocabulary
whereFunc: () => [// added to the base query when filtering
'?production ecrm:P126_employed ?material',
`OPTIONAL {

?broaderMat (skos:member|skos:narrower)* ?material }`
],
filterFunc: (values) => { // add to base query when filtering
return [values.map((val) =>
`?material = <${val}> || ?broaderMaterial = <${val}>`)

.join(' || ')];}
}],
baseWhere: [

'GRAPH ?g { ?id a ecrm:E22_Man-Made_Object }',
'?production ecrm:P108_has_produced ?id',

],
query: { // base query

'@graph': [{
'@type': 'http://erlangen-crm.org/.../E22_Man-Made_Object',
'@id': '?id',
'@graph': '?g',
label: '$rdfs:label',
identifier: '$dc:identifier',
description: '$ecrm:P3_has_note',

}],
$where: ['GRAPH ?g { ?id a ecrm:E22_Man-Made_Object }']

}
}

}

Listing 1: Partial definition of the ‘Objects’ route in ADASilk, with the optional filter
by material

Fig. 3. Architecture of KG Explorer

APIs, used on the server-side for handling authentication, fetching profile data, and
searching. The library styled-components11 is used for styling components using scoped
CSS. Other used frameworks are i18next12 for the internationalisation and next-auth13

for OAuth authentication.

KG Explorer makes requests to a Knowledge Graph through its exposed SPARQL
endpoint. In order to easily include and manipulate queries in JavaScript, those are writ-
ten in the JSON query syntax proposed by SPARQL Transformer [12]. The SPARQL
Transformer library makes it easy to define queries using JavaScript objects (called
JSON queries) which can be edited and merged to create the final query. For instance,
each filter from the faceted search appends its own conditions to the base query, as
seen in Section 4.3. Looking again at Listing 1, when a filter is applied, the base query
is modified applying new WHERE and FILTER expressions, respectively defined in
whereFunc and filterFunc. The use of JSON queries makes it possible to simply
append this expression in the $where and $filter properties of SPARQL Trans-
former, and avoids a much more complex manipulation of text which the use of plain
SPARQL queries would require. SPARQL Transformer also rewrites the output of
SPARQL queries in a more suitable format for web development. In particular, SPARQL
results composed of bindings between variables and solutions are transformed into self-
contained JSON objects, including all the information about the entities, getting rid of
some verbosity of the standard notation. Queries results are processed and cached into
a Redis database14 in order to improve performances. The results are stored as a JSON
string, and the original query is used as the key for retrieving the cached result. User
profiles and lists are saved in a MongoDB database15.

11 https://styled-components.com/
12 https://www.i18next.com/
13 https://next-auth.js.org/
14 https://redis.io/
15 https://www.mongodb.com/

https://styled-components.com/
https://www.i18next.com/
https://next-auth.js.org/
https://redis.io/
https://www.mongodb.com/

6 Preliminary Evaluation

Preliminary evaluations of KG Explorer were conducted as part of the SILKNOW
project [18]. The application has been used by 216 users, reflecting different audience,
domain and technical skills (Table 2). The users were asked to perform some search ac-
tivities and to comment on the results reflecting both the intrinsic quality of the knowl-
edge graph which is hard to isolate and the ability of searching for specific items and of
browsing and discovering new items.

Domain English French Spanish Italian Total

Cultural Heritage 0 0 14 14 28
Education related to social science 1 0 6 4 10

Information and communication technology 1 17 42 67 126
Textile or creative industry 0 1 1 1 3

Tourism 0 1 0 2 3
Media 0 2 2 3 7
Other 0 2 15 22 39

216

Table 2. Target audience used during the evaluation of ADASilk.

During the evaluation, each user session has been recorded, after consent, for suc-
cessive analysis. To do this, the rrweb16 library is implemented into the UI in order to
record and then replay each interaction with the interface. The recorded sessions are
saved as JSON objects in a database. At the end of the evaluation, the sessions were
exported as MP4 videos using rrvideo.17 We report below the most common issues and
what users perceive as anomalous behaviour.

From the analysis of all the tests conducted through ADASilk, a commonly encoun-
tered issue is related to the text search functionality. While offering free text search
was found to be an essential feature, it also raises some expectations that the search
query will be somehow interpreted. Users are familiar with Google which interprets
and disambiguates search queries while offering personalized answers. In contrast, KG
Explorer offers either a naive text search that aims to match resources for which the
search terms can be encountered in a datatype property value or a concept search which
can lookup and auto-complete concepts from controlled vocabularies typically used in
facets. Often, users have entered simple search strings expecting that their translations
in other languages will bring the same result set.

The relevance of the search results was also pointed out as an issue during the eval-
uation, in particular, by domain experts. The sole SPARQL query language offers only
the possibility of returning a set of exact solutions to a query without natural ways of
ranking the resources within this set nor with the possibility to consider partially related
resources. The numerous methods enabling to build knowledge graph embeddings are
16 https://github.com/rrweb-io/rrweb
17 https://github.com/rrweb-io/rrvideo

https://github.com/rrweb-io/rrweb
https://github.com/rrweb-io/rrvideo

promising to bring this notion of relevance, e.g., in measuring the distance between
each document. We observe that some triple stores, such as GraphDB18, have started to
provide native support for semantic similarity searches.

After a software improvement in order to overcome the observed limitations, a sec-
ond evaluation has been done using the System Usability Score (SUS) questionnaire
[3]. The participants has been composed of 125 people representative of the previously
defined stakeholders. The participant were speaking English, Spanish or Italian, were
mostly of higher education (75%) and in the age range 21-30 (59%)19. Even with pos-
sibility of improvement – the system obtained a SUS score of 67.03 – over 70% of the
participants declared the intention to use it [6].

7 Conclusion and Future Work

KG Explorer provides a domain-specific user experience for exploring the information
contained in a Knowledge Graph. The software can be easily customised and adapted
in the UI and in the content, defining the queries for retrieving the data, the facets
to be used, and the relevant vocabularies. KG Explorer is already used in real-world
applications, in particular as wide-public entry-point for Knowledge Graphs of research
projects. In this context, a user evaluation is currently being carried out where the goal is
to measure the usability of the application in the fulfilment of common tasks, identified
by domain experts. The outcome of this evaluation will be used for further improving
the application.

Future developments will also involve new functionalities such as having custom
facet selectors for datatypes, for example ranges for numbers and dates. Finally, we
would like to exploit the vocabularies in order to provide a smart text search field, going
beyond the exact match on text: this can be implemented by recognising terms defined
in vocabularies and attaching them to the most appropriate property in the generated
query, in a query interpretation behaviour. In this field, previous research has proved
the suitability of embedding techniques for representing a query, in order to get more
relevant results [8,24]. This text search may be also be further combined with structured
search.

Acknowledgements

This work has been partially supported by the European Union’s Horizon 2020 re-
search and innovation program within the SILKNOW (grant agreement No. 769504)
and MeMAD (grant agreement No. 780069) projects, and by the French National Re-
search Agency (ANR) within the ASRAEL project (grant number ANR-15-CE23-0018).

References

1. Atemezing, G.A., Troncy, R.: Towards a Linked-Data Based Visualization Wizard. In: 5th

International Conference on Consuming Linked Data (COLD). Riva del Garda, Italy (2014)

18 https://graphdb.ontotext.com/
19 More detail about distribution of participants is available in [19]

https://graphdb.ontotext.com/

2. Berners-Lee, T., Chen, Y., Chilton, L., Connolly, D., Dhanaraj, R., Hollenbach, J., Lerer, A.,
Sheets, D.: Tabulator: Exploring and Analyzing linked data on the Semantic Web. In: 3rd

International Semantic Web User Interaction Workshop (SWUI) (2006)
3. Brooke, J.: SUS: a retrospective. Journal of usability studies 8(2), 29–40 (2013)
4. Chauvat, N., Amarger, F., Wouters, L.: Un navigateur pour le Web des données liées. In: 30es

Journées Francophones d’Ingénierie des Connaissances, IC 2019. pp. 167–182. Toulouse,
France (2019)

5. Ermilov, T., Moussallem, D., Usbeck, R., Ngonga Ngomo, A.C.: GENESIS: A Generic RDF
Data Access Interface. In: International Conference on Web Intelligence (WI). pp. 125––131
(2017)

6. Gaitán, M., León, A.: SILKNOW System Evaluation. project deliverable D7.6, H2020 SIL-
KNOW (2021)

7. Hahn, R., Bizer, C., Sahnwaldt, C., Herta, C., Robinson, S., Bürgle, M., Düwiger, H., Scheel,
U.: Faceted Wikipedia Search. In: 13th Conference on Business Information Systems (BIS)
(2010)

8. Hamilton, W.L., Bajaj, P., Zitnik, M., Jurafsky, D., Leskovec, J.: Embedding Logical Queries
on Knowledge Graphs. In: 32nd International Conference on Neural Information Processing
Systems (NIPS). pp. 2030––2041 (2018)

9. Khalili, A., van den Besselaar, P., de Graaf, K.A.: FERASAT: A Serendipity-Fostering
Faceted Browser for Linked Data. In: 17th International Semantic Web Conference (ISWC).
pp. 351–366 (2018)

10. Koho, M., Ikkala, E., Leskinen, P., Tamper, M., Tuominen, J., Hyvönen, E.: WarSampo
knowledge graph: Finland in the Second World War as Linked Open Data. Semantic Web
Journal pp. 1–14 (2020)

11. Lisena, P., Achichi, M., Fernandez, E., Todorov, K., Troncy, R.: Exploring Linked Clas-
sical Music Catalogs with OVERTURE. In: 15th International Semantic Web Conference
(ISWC), Posters & Demos Track. Kobe, Japan (2016)

12. Lisena, P., Meroño-Peñuela, A., Kuhn, T., Troncy, R.: Easy Web API Development with
SPARQL Transformer. In: 18th International Semantic Web Conference (ISWC). pp. 454–
470. Auckland, New Zealand (2019)

13. Marie, N., Gandon, F., Ribière, M., Rodio, F.: Discovery Hub: On-the-Fly Linked Data Ex-
ploratory Search. In: Proceedings of the 9th International Conference on Semantic Sys-
tems. p. 17–24. I-SEMANTICS ’13, Association for Computing Machinery, New York,
NY, USA (2013). https://doi.org/10.1145/2506182.2506185, https://doi.org/10.
1145/2506182.2506185

14. Mihindukulasooriya, N., Poveda-Villalón, M., Garcı́a-Castro, R., Gómez-Pérez, A.: Loupe
- An Online Tool for Inspecting Datasets in the Linked Data Cloud. In: 14th International
Semantic Web Conference (Posters & Demos) (2015)

15. Moreno-Vega, J., Hogan, A.: Grafa: Scalable faceted browsing for rdf graphs. In: 17th Inter-
national Semantic Web Conference (ISWC). pp. 301–317 (2018)

16. Palagi, E., Gandon, F., Giboin, A., Troncy, R.: A Survey of Definitions and Models of Ex-
ploratory Search. In: ACM Workshop on Exploratory Search and Interactive Data Analytics
(ESIDA). Limassol, Cyprus (2017)

17. Pietriga, E., Bizer, C., Karger, D., Lee, R.: Fresnel: A Browser-Independent Presentation
Vocabulary for RDF. In: 5th International Semantic Web Conference (ISWC). pp. 158–171
(2006)

18. Seidita, V., Lo Cicero, G., Vitella, M.: Testing Report in a Real Scenario. project deliver-
able D7.2, H2020 SILKNOW (2021)

19. Seidita, V., Lo Cicero, G., Vitella, M., Mladenic, D., Gaitán, M., Troncy, R., Portales, C.: Us-
ability evaluation by online users of the system. project deliverable D7.3, H2020 SILKNOW
(2021)

https://doi.org/10.1145/2506182.2506185
https://doi.org/10.1145/2506182.2506185
https://doi.org/10.1145/2506182.2506185

20. Tummarello, G., Cyganiak, R., Catasta, M., Danielczyk, S., Delbru, R., Decker, S.: Sig.ma:
Live views on the Web of Data. Journal of Web Semantics 8(4), 355–364 (2010)

21. Tzitzikas, Y., Manolis, N., Papadakos, P.: Faceted Exploration of RDF/S Datasets: A Survey.
Journal of Intelligent Information Systems 48(2), 329—-364 (2017)

22. Vega-Gorgojo, G., Giese, M., Heggestøyl, S., Soylu, A., Waaler, A.: Pepe-
search: Semantic data for the masses. PLOS ONE 11(3), 1–12 (03 2016).
https://doi.org/10.1371/journal.pone.0151573, https://doi.org/10.1371/
journal.pone.0151573

23. Waitelonis, J., Sack, H.: Towards exploratory video search using linked data. Multime-
dia Tools and Applications 59(2), 645–672 (Jul 2012). https://doi.org/10.1007/s11042-011-
0733-1, https://doi.org/10.1007/s11042-011-0733-1

24. Xiong, C., Power, R., Callan, J.: Explicit Semantic Ranking for Academic Search via Knowl-
edge Graph Embedding. In: 26th International Conference on World Wide Web (WWW). pp.
1271—-1279. Perth, Australia (2017)

https://doi.org/10.1371/journal.pone.0151573
https://doi.org/10.1371/journal.pone.0151573
https://doi.org/10.1371/journal.pone.0151573
https://doi.org/10.1007/s11042-011-0733-1
https://doi.org/10.1007/s11042-011-0733-1
https://doi.org/10.1007/s11042-011-0733-1

	KG Explorer: a Customisable Exploration Tool for Knowledge Graphs

