
On using Deep Reinforcement Learning for
Multi-Domain SFC placement

Nassima Toumi1, Miloud Bagaa2, Adlen Ksentini1
1 EURECOM, Sophia-Antipolis, France

2 CSC-IT Center for Science Ltd., Espoo, Finland
Email: {nassima.toumi, adlen.ksentini}@eurecom.fr, miloud.bagaa@csc.fi

Abstract—Service Function Chaining (SFC) has emerged as a
promising technology for 5G and beyond. It leverages Network
Function Virtualization (NFV) and Software Defined Networking
(SDN) and allows the decomposition of a given service into a
set of blocks that successively process data. The SFC placement
issue has been extensively studied in the literature, and different
solutions have been proposed using mathematical models and
heuristics. More recently, Reinforcement Learning (RL) has
emerged as a tool for decision-making that allows agents to
elaborate policies based on the environment’s feedback. In this
paper, we study the benefits of using Deep Reinforcement Learn-
ing methods for the multi-domain SFC placement problem. We
propose a Deep Deterministic Policy Gradient (DDPG) approach,
where Linear Physical Programming is employed to generate
rewards that reflect the solution’s quality in terms of cost and
latency. Through our experiments, we are able to demonstrate
the efficiency of our approach with results that satisfy the SLA
requirements.

I. INTRODUCTION

Service Function Chaining (SFC) refers to the process of
steering traffic through a set of functions in an ordered manner
to deliver an end-to-end service [1]. Multiple works in the
literature have studied SFC under different aspects: placement
and chaining, scheduling and orchestration, and life-cycle
management. However, most of these works don’t account for
the multi-domain scenario, which is when the components of
a Service are required to be deployed on different domains [2],
then chained together to compose an SFC that spans multiple
domains. For security reasons, the domains are reluctant to
disclose details on their infrastructure [3], which makes the
optimal placement of multi-domain SFCs more difficult due
to incomplete information on the global network topology.
On the other hand, Machine Learning (ML) has gained pop-
ularity as a result of recent improvements in computational
capabilities. Indeed, with the help of sufficient data, models
can be trained to solve multiple problems efficiently. ML can
be applied to the operations and management of networks in
several ways: traffic prediction, classification and routing, and
also congestion control, resource management, and fault man-
agement [4]. One particular field of ML, called Reinforcement
Learning (RL), has gained a lot of attention in recent years as
a tool for automated decision-making [5]. With Reinforcement
Learning, the agent relies on the rewards from past experience
and the environment’s feedback to build a decision policy
that would be continuously improved at run-time and that can
adapt to changes in the environment. Compared to the classic

optimization algorithms, a Reinforcement Learning model that
has been sufficiently trained can provide solutions in near real-
time, regardless of the size of the problem.

In this paper, we apply RL for multi-domain SFC placement.
We propose a model that constructs SFC placement policies
based on the environment’s feedback while taking into account
the limited visibility of the local infrastructure. Notice that
in this contribution, a single domain is defined as a network
infrastructure that is autonomous in terms of orchestration
policies; consequently, independent divisions of the same ad-
ministrative entity can also be considered as separate domains.
The main contributions of this paper are two-fold: First,
we propose a multi-domain SFC placement framework that
includes a Deep Reinforcement Learning agent. Second, we
train that agent to perform the multi-domain SFC placement
on Partially Observable states using rewards that express the
quality of the obtained placements using Linear Physical
Programming. The remainder of this paper is organized as
follows. We first provide a brief background on the existing
contributions to the topic in section II. Then we introduce
our proposed multi-domain framework and its components in
section III. Next, we detail our model’s states, actions, and
rewards in section IV. Afterward, we describe our evaluation
testbed and discuss the obtained results in section V before
concluding the paper in section VI.

II. BACKGROUND

The multi-domain setting takes place when the SFC is split
between multiple administrative domains. As a result, the
SFC request is partitioned into multiple sub-chains that are
deployed on each selected domain, which causes additional
complexity. Indeed, in the multi-domain context, the different
domain operators don’t disclose the complete information on
their infrastructure, making the SFC placement process more
difficult due to insufficient information [3].
The multi-domain SFC placement issue has been tackled by
a number of works, where two main approaches have been
employed: a distributed one, where the domains exchange
messages following a pre-determined protocol until the con-
vergence to an optimal value [6], and a hierarchical approach,
where a logically centralized entity is entrusted by the domains
to partial information on their infrastructure and performs a
preliminary placement and partitioning of the SFC request
such as in [7]. Multiple mathematical models and algorithms

have been used to optimize the placement, such as Integer
Linear Programming, different heuristics, Game Theory, or
Physical Programming [3], [8]. Although these proposals
provide near-optimal placement solutions, the processing time
increases along with the size of the problem and might reach
values that wouldn’t be acceptable in real-time deployments.
To cope with this issue, recent works have turned to use
emerging methods such as Reinforcement Learning, which
presents the advantage of providing solutions in near real-time
once the model has been sufficiently trained. This method also
doesn’t require large amounts of data for training, as the agent
constructs and adjusts its decision policy using rewards and
penalties from the environment. Reinforcement Learning has
been employed for dynamic adaptive SFC placement, as well
as traffic prediction, and proactive resource allocation [9]–[12].

The work in [13] proposed a solution for Network Slice
Deployment on multiple substrate networks based on a Deep
Reinforcement Learning (DRL) model, but supposed that the
agent had access to complete information on the domains’
infrastructure. Similarly, Swapna et al. [14] provide a solution
for Slice resource orchestration on multiple domains based
on DRL, but it also ignores the limited visibility aspect.
The authors in [15] detail a privacy-preserving solution for
Virtual Network Embedding (VNE) on multiple domains using
DRL, with an information disclosure scheme that guarantees
the privacy of each domain’s sensitive details. However, the
proposed formulation doesn’t optimize latency, which is a crit-
ical requirement for many of the 5G use cases. Furthermore,
VNE is different from SFC placement as the latter considers
the order between the VNFs, which can affect the end-to-
end latency. In [16], The authors employ DRL for VNFFG
embedding on multiple non-cooperative domains, where the
domains compete for the VNFFG requests and update their
pricing policies accordingly, while the client trains its own
model using the observed QoS metrics of the deployed SFCs
using an actor-critic policy gradient algorithm. However, the
model is only tested with a small network setup of 3 domains
and with a limited VNFFG length.

In this contribution, we propose a DRL-based model along
with a cross-domain framework for the placement of multi-
domain SFCs while jointly optimizing cost and latency.

III. PROPOSED ARCHITECTURE

In this section, we depict our proposed architectural frame-
work with its components and detail the learning mechanism
of the agent and its different interactions. Figure 1 illustrates
our proposed architecture, which is composed of the orchestra-
tors of each respective domain, the centralized Multi-Domain
Orchestrator (MDO), and the Multi-Domain Interface (MDI).
In a multi-domain setting, SFC placement is performed in two
phases: First, by the MDO based on the abstracted view of the
network, where each VNF is assigned to a domain, and the
inter-domain links are selected. Then, based on that placement,
the SFC is partitioned into a set of sub-chains that are placed
by each selected domain orchestrator with a full view of the
underlying network, and linked to the rest of the SFC through

the inter-domain network to ensure the end-to-end service.
In the following, we describe the main components of our
proposed architecture and their interactions.

A. Multi-Domain Orchestrator

In our architecture, the MDO uses a DRL agent to perform
its placement. The agent’s goal is to determine the policy that
maximizes the rewards perceived from the environment (i.e.,
the optimal policy π∗) by creating associations between actions
and states through multiple rounds of trial and error, using the
environment’s feedback. On the MDO level, we train our agent
using Deep Deterministic Policy Gradient (DDPG) [17], which
is an off-policy actor-critic method, where the actor-network
computes deterministic actions according to the current policy,
and the critic network computes the Q-values. The model is
trained using separate target policy actor and critic networks
that remain fixed during the actor and critic network for more
stable learning. As shown in Figure 1, the agent performs 3
separate processes: The decision steps in blue (1 − 6), the
policy networks update steps in red (7 − 17), and the target
policy network update steps in green (18− 19).

The agent takes as input the observation and the rewards
from the environment. That input is sent to the actor-network
so that an action is determined according to the current policy
in step 3; then, an exploration noise is generated and added
to obtain the action that will be taken by the agent in step
6. The noise is added to enable the exploration. Afterward,
the reward and next state are collected from the MDI and
sent to the replay buffer and critic network in steps 8 and 9.
In parallel, each action, state, next state, and reward is saved
into a replay buffer until a certain limit called batch size is
reached. Once that limit has been attained, the policy update
process steps are triggered: a sample from the replay buffer is
randomly chosen to select independent combinations, which
avoids correlation effects. This sample is used to update the
actor and critic networks of the agent (steps 14 to 17) by
computing the Mean Squared Error (MSE) between the critic
values and the target critic values of the predicted next states.
Finally, once the actor and critic network have been updated,
a similar soft update is applied to the target actor and critic
networks in steps 18 and 19.

B. Multi-Domain Interface

The MDI collects the information that each domain is
disposed to disclose and constructs an abstracted view on
the global topology, which will be used to create the state
fed to the agent. Typically, the domains disclose the amount
of resources that are made available, the unit price, and the
inter-domain vertices [18]. In this contribution, we assume that
the SFCs are placed VNF by VNF. For each VNF placement
action, the MDI returns a partial reward and the updated
state; then, once the agent has determined the placement
of the whole SFC, the Interface module performs the SFC
partitioning accordingly and sends the sub-chains to the se-
lected domains. Afterward, it collects the deployment cost and
latency of the locally placed sub-SFCs from the domains. It

Fig. 1: Multi-domain SFC Embedding Framework

uses them to compute the total reward for the SFC placement
and update the environment’s state accordingly.

C. Local Domain Orchestrators

Upon receiving their allocated sub-SFCs, the domain or-
chestrators perform a local placement on a full view of their
topology, using their own algorithms, then return the real cost
and latency values to the Multi-Domain Interface. Note that
the local orchestrator’s placement efficiency has an impact on
the placement that is performed by the MDO. Indeed, the
domains with the least performing algorithms will result in
sub-SFCs that are more costly and/or generate more latency,
which would lead the agent to adjust its policy to avoid these
domains and increase its rewards.

IV. SYSTEM MODEL

In this section, we describe the environment’s states, actions
and rewards, and we formulate the constraints and objectives
of the problem as an ILP.

A. States

As explained earlier, due to the lack of information on the
Infrastructure Provider’s topologies, the MDO disposes of an
incomplete view on the state of the network, which means
that the environment is Partially Observable for the MDO.
The state for each time-step is expressed using information
about the VNF currently being placed. Each VNF i from the
set of VNFs Vi of an SFC i is characterized by its set of
authorized domains Mi,j on which the VNF can be placed,
and its resource requirements ∇r,i,j for each resource type

r from the set R. The states also include the placement of
the previous VNFs of the SFC, and specific characteristics
of the SFC such as the required amount of bandwidth Wi,
the maximal latency φ+i and Ci,paid the amount that has been
paid by the client to deploy that SFC. Finally, we provide
information on the state of the multi-domain topology. The
state is composed of the amounts of available resources on
each domain n for each resource r and their average unit
price denoted by Rr,n, and ζr,n respectively, and the amounts
of available bandwidth, the unit price, and latency for each
inter-domain link l from the set L, denoted by Rω,l, ζl and
φl respectively. However, if a domain isn’t included in the set
of authorized domains for a VNF, its resource values are set
to 0 during the VNF’s placement time-step.

B. Actions

To perform SFC embedding, the placement of each VNF
should be determined. For the sake of simplicity, we assume
in our proposal that the shortest paths between the domains
for each topology have been pre-computed, which means that
the agent only selects the domains where the VNFs have been
placed. Therefore, for a VNF j, the number of actions would
correspond to the number of its allowed domains |Mi,j |, and
the associated decision variable of our model is the boolean
Xni,j which takes the value 1 if the VNF j of SFC i has been
mapped to the domain n, and 0 otherwise. To be successfully
placed, each SFC i should satisfy the following constraints:

1) Mapping Constraints: Each VNF i can only be placed
on one domain from its set of allowed domains, further, two

successive VNFs can be mapped to two domains n and m only
if there is an available physical path between those domains,
which is expressed using the boolean ρn,m:∑

n∈Mi,j

Xni,j = 1, ∀j ∈ Vi (1)

∀j ∈ Vi,∀n ∈Mi,j ,∀m ∈Mi,j+1:

Xni,j · Xmi,j+1 ≤ ρn,m, (2)

2) Capacity Constraints: To place a VNF j on a certain
domain n, the latter must dispose of sufficient amounts of all
of the resource types r (CPU, RAM, disk space...) to host it.
Therefore, for an SFC placement to succeed, the following
constraint must be satisfied:∑
j∈Vi
∇r,i,j · Xni,j ≤ Rr,n, ∀n ∈Mi,j+1,∀r ∈ < (3)

Similarly, for each pair of VNFs j and j + 1, each link l
that is part of the path between their selected domains must
dispose of sufficient remaining bandwidth capacity. Denoting
by the boolean τn,ml whether a link is part of the physical path
between domains n and m, the constraint can be expressed as
follows: ∀l ∈ L :∑

j∈Vi

∑
n∈Mj

∑
m∈Mj+1

Wi · Xni,j · Xmi,j+1 · τ
n,m
l ≤ Rω,l (4)

3) Latency Constraint: The end-to-end latency for an SFC
i cannot exceed the limit for its selected SLA, to meet the
QoS expectations of the client.

φi ≤ φ+i (5)

To compute the end-to-end latency φi, we must first compute
the total inter-domain link latency φWi :

φWi =
∑
j∈Vi

∑
l∈L

∑
n∈Mi,j

∑
m∈Mi,j+1

φl · Xni,j · Xmi,j+1 · τ
n,m
l (6)

And also add φLi the sum of latencies φi, s that would result
from the local placement of each sub-SFC s from the set Si
of sub-chains for an SFC i on their selected domains.

φLi =
∑
s∈Si

φi, s (7)

Note that the values φi, s are collected by the MDI from each
local domain orchestrator once each sub-SFC has been placed.

4) Cost Constraint: The total deployment cost, which is
composed of the computational and link cost denoted by Ccomp
and Clink should remain below a certain amount to guarantee
a profit percentage of at least γ for the SFC provider:

Clink + Ccomp ≤ (1− γ) · Ci,paid (8)

Where Ccomp and Clink are computed as follows:

Ccomp =
∑
n∈Nd

∑
r∈<

∑
j∈Vi

ζr,n · ∇r,i,j · Xni,j (9)

Clink =
∑
j∈Vi

∑
l∈L

∑
n∈Mj

∑
m∈Mj+1

ζl · Wi · Xni,j · Xmi,j+1 · τ
n,m
l +

∑
s∈Si

ζi, s

(10)
Note that when computing the total link cost, we include the
sum of link costs ζi, s from deploying the sub-SFCs on the
local domains, which is also collected by the MDI.

Fig. 2: Linear Physical Programming Class Function

C. Rewards

The goal of this model is to perform multi-domain SFC
placement while minimizing deployment cost Ci, the end-
to-end latency φi, and the request rejection rate. Therefore,
the rewards for placing an SFC depend on how close the
cost and end-to-end latency values are to the optimal ones
for the SFC’s SLA. To evaluate the quality of the solution,
we use Linear Physical Programming [3], which is a Multi-
Objective Optimization method that evaluates each objective
using preference ranges and outputs a normalized value that
reflects the solution’s compliance with the preferences of the
Decision Maker. For each objective o, we specify k classes of
preference (e.g., Highly Undesirable, Undesirable, Acceptable,
Desirable, Highly Desirable) where the ranges for each class
depend on the SLA of the SFC. Using the range boundary
values, for objectives that need to be minimized, the piece-
wise linear class functions ḡo are formulated as follows:

ḡo =

{
ḡo,k−1 + ˜̄gk

(
go−go,k−1

λk
o

)
If go ∈ [go,k−1, go,k], 2 ≤ k ≤ 5

0 If go < go,1
(11)

As illustrated in Figure 2, go,k represent the upper x-axis
limit for the preference range k and objective o, and ḡk and
˜̄gk represent the y-axis upper limit and amplitude for the
preference range k, note that these last values are the same
across objectives, which is equivalent to normalization. The
interval limits on the y-axis are computed as follows:

ḡ1 = 0, ḡ2 = ˜̄g2 is a small positive number (e.g 0.1)
(12)

˜̄gk = β(nsc − 1)˜̄gk−1; (3 ≤ k ≤ 5);nsc > 1;β > 1 (13)

Where β is a convexity parameter that can be determined by
solving the following inequality system [19] :{

β > 1
β >

gi,k
gi,k−1(nsc−1) ; (3 ≤ k ≤ 5)

The reward function for an SFC is a fixed placement reward
minus a penalty which is inversely proportional to the quality
of the solution, expressed as the sum of the class functions
for each objective. Indeed, if the objectives reach the optimal

value, their class function value would be 0, but when cost
and latency increase, their class function and thus their related
penalty also increases. Therefore, the final reward function that
the agent aims to maximize can be formulated as follows:

reward = Ai · (RS − ḡC − ḡφ)− (1−Ai) · PF (14)

With RS being the reward obtained for successfully placing
the SFC, PF the penalty for failing to place that SFC, and Ai
the boolean that expresses whether the SFC has been placed.

V. EVALUATION

In the following, we depict the evaluation testbed and set-
tings for our proposed solution. Our solution is implemented
on a physical machine with 4 Core i7-5500U 2.40GHz CPU
Cores and 8GB of memory, hosting an Ubuntu 18.04 x64 Op-
erating System. The simulation environment is implemented
using Python. To learn the optimal policy π∗, we use PyTorch
to implement fully-connected Deep Neural Networks (DNN)
for the actor, critic, and target actor and critic with hidden
layers of 400 and 300 nodes applying the Hyperbolic Tangent
(tanh) activation function in the output layer and the Rectified
Linear Unit (ReLU) activation function in the two hidden
layers. We have also used layer normalization between the
hidden layers to enable smoother gradients, faster training, and
better generalization accuracy. We apply a discount factor γ
of 0.99, and the learning rates of the actor and critic networks
are set to 10−5 and 10−3, respectively. Furthermore, the target
network update coefficient τ is set at 0.001 with a batch size
of 64. The neural network parameters are updated using the
ADAM optimizer [20], and the Ornstein-Uhlenbeck process is
employed to generate the exploration noise. As for the local
placement algorithms by the domains, we implement a Genetic
algorithm in Python that refines its solutions using solution
generation, mutation, and crossover.

A. Model Training

To train our model, we run 5000 independent episodes. For
each episode, we randomly generate multi-domain topologies
of 8 domains using the networkx library, where each local do-
main topology has a 3-level Fat-Tree structure with 16 servers.
We also generate SFC requests of 4-10 VNFs, where each
VNF is characterized by a type (small, medium, large) that
defines the amounts of required resources for each resource
type. Each request specifies the number of users, the allowed
domain sets, and the SLA that the SFC must satisfy. Table I
illustrates the cost and latency preference values for each SLA,
as defined in [3], based on the 5G service types, where the
SLA classes 0 and 1 correspond to the low latency use cases
with different bandwidth requirements, the SLA classes of 2-
5 represent the classic internet usage scenario with different
service levels, while the last SLA 5 corresponds to the best
effort service level. We denote by - the Unacceptable SLA
class, by H-U the Highly Undesirable SLA class, by U the
Undesirable class, by T the Tolerable class and by D and
H-D the Desirable and Highly Desirable classes respectively.
For each episode, 10 successive SFCs must be placed with

SLA Class - H-U U T D H-D
Latency (ms)

0 Strict latency requirement : < 150, high bandwidth required
1 Strict latency requirement : < 150, low bandwidth required
2 > 175 165-175 155-165 145-155 135-145 < 135
3 > 210 190-210 180-190 ms 170-180 170-150 < 150
4 > 315 285-315 270-285 255-270 225-255 < 225
5 No latency requirement

Relative Deployment Cost (%)
All SLAs >95 85-95 70-85 60-70 50-60 <50

TABLE I: Preference Ranges by SLA for each objective

Fig. 3: DDPG Model Training Reward

a maximum reward of 10 for each successfully placed SFC
minus SLA-related penalties, summed with the partial rewards
of placing each VNF. If one SFC placement fails, the episode
is terminated, the resources of the topology are freed, and
the agent receives a penalty of -100. Figure 3 illustrates the
rewards and running average of 100 episodes for our solution
during the learning phase of the agent. It can be observed that
the rewards quickly converge to higher values, with occasional
placement failures that can be imputed to the exploration
actions that are performed by the agent. Further, early SFC
placement failures have a higher impact on the reward. Indeed,
the first failure in an episode leads to its termination, thus
preventing the following SFCs of the episode from being
placed and reducing the total reward.

B. Model Evaluation

Once our model has been trained, it is evaluated using
two key metrics. First, we observe the acceptance rate of the
requests to assess the model’s ability to capture the problem’s
constraints. The second evaluation metric is related to the
quality of the obtained solution, where the cost and latency
of each accepted request are compared to the optimal values
of its SLA. For this part of the experiment, we generate 5000
new episodes and switch the agent to the full exploitation
mode. Figure 4 shows the results of the model’s evaluation.
The first sub-figure in blue represents the running average of
the individual SFC request rejection rate. It can be seen that
the rejection rates oscillate between 0 and 3% and stabilize

Fig. 4: DDPG Model Evaluation Results

under 2%, note that due to the fact that the rejection of one
SFC in the episode leads to its termination, it increases the
rejection rate per episode by 74% of successful episodes while
in total, more than 97% of the processed SFC requests have
been placed successfully. Afterward, we observe the SFCs that
have been successfully placed and assess their latency and
cost according to the selected SLA. The second and third sub-
figures in red and purple display the 100 episodes running
average difference between the obtained latency and cost for
each episode, and their optimal values, respectively. Since our
objective is to minimize cost and latency, a positive difference
would mean that the obtained results are below (thus better
than) the optimal. The obtained results show that the latency
values are on average around 80 − 90% below the optimal
value for that SFC, and the cost values are on average 2−5%
above the optimal value of 50% of the SFC’s revenue but
remain largely below the maximum 95% value. Therefore, it
can be concluded that our proposal’s SFC placements achieve
latency values that reach the optimal value for their SLAs
while maximizing the profit margin of the SFC providers.

VI. CONCLUSION

In this paper, we devised a model based on Reinforcement
Learning to optimize the placement of multi-domain SFCs,
while satisfying a set of service-related requirements. We
proposed a multi-layered architecture, and modeled our system
to capture the environment’s states and transitions. Then, we
trained a DDPG agent to perform the multi-domain placement,
using Physical Programming to generate rewards that reflect
the quality of the chosen actions. Our evaluation results
demonstrated the efficiency of our proposal with SFC request
rejection rates of under 2%, and cost and latency values that
are close to optimal. For future works, we plan to extend this
proposal to support post-deployment SFC orchestration.

ACKNOWLEDGMENT

This work has been partially supported by the European
Union’s H2020 MonB5G (grant no. 871780) project.

REFERENCES

[1] T. Taleb, A. Ksentini, M. Chen, and R. Jäntti, “Coping with emerging
mobile social media applications through dynamic service function
chaining,” IEEE Trans. Wirel. Commun., vol. 15, no. 4, pp. 2859–2871,
2016.

[2] B. Nour, A. Ksentini, N. Herbaut, P. A. Frangoudis, and H. Moungla,
“A blockchain-based network slice broker for 5g services,” IEEE Net-
working Letters, vol. 1, no. 3, 2019.

[3] N. Toumi, O. Bernier, D.-E. Meddour, and A. Ksentini, “On using
physical programming for multi-domain sfc placement with limited
visibility,” IEEE Transactions on Cloud Computing, pp. 1–1, 2020.

[4] R. Boutaba et al., “A comprehensive survey on machine learning for
networking: Evolution, applications and research opportunities,” Journal
of Internet Services and Applications, vol. 9, 05 2018.

[5] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y. Liang,
and D. I. Kim, “Applications of deep reinforcement learning in com-
munications and networking: A survey,” IEEE Communications Surveys
Tutorials, vol. 21, no. 4, pp. 3133–3174, 2019.

[6] Q. Zhang, X. Wang, I. Kim, P. Palacharla, and T. Ikeuchi, “Service func-
tion chaining in multi-domain networks,” in 2016 Opt. Fiber Commun.
Conf. (OFC), March 2016, pp. 1–3.

[7] G. Sun, Y. Li, D. Liao, and V. Chang, “Service function chain orchestra-
tion across multiple domains: A full mesh aggregation approach,” IEEE
Transactions on Network and Service Management, vol. 15, no. 3, pp.
1175–1191, Sep. 2018.

[8] S. Yang, F. Li, S. Trajanovski, R. Yahyapour, and X. Fu, “Recent
advances of resource allocation in network function virtualization,” IEEE
Trans. Parallel Distrib. Syst., vol. 32, no. 2, pp. 295–314, 2021.

[9] N. Jalodia, S. Henna, and A. Davy, “Deep reinforcement learning for
topology-aware vnf resource prediction in nfv environments,” in 2019
IEEE Conference on Network Function Virtualization and Software
Defined Networks (NFV-SDN), 2019, pp. 1–5.

[10] Y. Xiao, Q. Zhang, F. Liu, J. Wang, M. Zhao, Z. Zhang, and J. Zhang,
“Nfvdeep: Adaptive online service function chain deployment with
deep reinforcement learning,” in 2019 IEEE/ACM 27th International
Symposium on Quality of Service (IWQoS), 2019, pp. 1–10.

[11] H. A. Shah and L. Zhao, “Multi-agent deep reinforcement learning based
virtual resource allocation through network function virtualization in
internet of things,” IEEE Internet of Things Journal, pp. 1–1, 2020.

[12] S. Troia, R. Alvizu, and G. Maier, “Reinforcement learning for service
function chain reconfiguration in nfv-sdn metro-core optical networks,”
IEEE Access, vol. 7, pp. 167 944–167 957, 2019.

[13] G. Kibalya, J. Serrat, J. Gorricho, R. Pasquini, H. Yao, and P. Zhang,
“A reinforcement learning based approach for 5g network slicing across
multiple domains,” in 2019 15th International Conference on Network
and Service Management (CNSM), 2019, pp. 1–5.

[14] A. I. Swapna et al., “Policy controlled multi-domain cloud-network slice
orchestration strategy based on reinforcement learning,” in 2020 IEEE
Conference on Network Function Virtualization and Software Defined
Networks (NFV-SDN), 2020, pp. 167–173.

[15] D. Andreoletti, T. Velichkova, G. Verticale, M. Tornatore, and S. Gior-
dano, “A privacy-preserving reinforcement learning algorithm for multi-
domain virtual network embedding,” IEEE Transactions on Network and
Service Management, vol. 17, no. 4, pp. 2291–2304, 2020.

[16] P. T. A. Quang, A. Bradai, K. D. Singh, and Y. Hadjadj-Aoul, “Multi-
domain non-cooperative vnf-fg embedding: A deep reinforcement learn-
ing approach,” in IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), 2019, pp. 886–891.

[17] T. P. Lillicrap et al., “Continuous control with deep reinforcement
learning,” in 4th International Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings, Y. Bengio and Y. LeCun, Eds., 2016.

[18] M. Shen, K. Xu, K. Yang, and H. H. Chen, “Towards efficient virtual
network embedding across multiple network domains,” in 2014 IEEE
22nd Int. Symp. of Quality of Serv. (IWQoS), May 2014, pp. 61–70.

[19] X. Ma and B. Dong, “Linear physical programming-based approach for
web service selection,” in 2008 International Conference on Informa-
tion Management, Innovation Management and Industrial Engineering,
vol. 2, 2008, pp. 398–401.

[20] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, Y. Bengio and Y. LeCun, Eds., 2015.

