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Abstract

The surge of misinformation poses a serious problem for fact-checkers. Several initiatives for manual
fact-checking have stepped up to combat this ordeal. However, computational methods are needed to
make the verification faster and keep up with the increasing abundance of false information. Machine
Learning (ML) approaches have been proposed as a tool to ease the work of manual fact-checking.
Specifically, the act of checking textual claims by using relational datasets has recently gained a lot of
traction. However, despite the abundance of proposed solutions, there has not been any formal definition
of the problem, nor a comparison across the different assumptions and results. In this work, we make
a first attempt at solving these ambiguities. First, we formalize the problem by providing a general
definition that is applicable to all systems and that is agnostic to their assumptions. Second, we define
general dimensions to characterize different prominent systems in terms of assumptions and features.
Finally, we report experimental results over three scenarios with corpora of real-world textual claims.

1 Introduction

Large scale spreading of incorrect information on the internet is a real threat that poses severe societal prob-
lems [30]. As no barriers exist for publishing information, it is possible for anyone to diffuse false or biased
claims and reach large audiences with ease [6]. This raises the important issue of how to tame the spread of
false information, as this has affected public votes1 and has misinformed people about coronavirus remedies2

and spread3. Accordingly, there has been a great demand for fact-checkers to efficiently verify such news.
Indeed, with the easy accessibility of large social networks and the advent of generating text using recent

advances in Natural Language Processing (NLP) [12, 32], the surge of false news has overpowered the capabil-
ities of manual fact-checking. Malicious users in social networks are still allowed to profit from misinformation
and the affected networks have just started to take effective actions [1]. At the beginning of the COVID-19
pandemic, the spread of false coronavirus news has urged the World Health Organization to spotlight this issue,
labeling it as an infodemic [2]. One approach to deal with this enormous volume of information is computational
fact-checking [34], where parts of or the entire verification pipeline is automated, usually including some ML
algorithms [25]. One influential system is ClaimBuster [14], which is an end-to-end fact-checking solution that
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1https://www.ucf.edu/news/how-fake-news-affects-u-s-elections/
2https://fullfact.org/health/honey-ginger-pepper-WHO/
3https://fullfact.org/health/indian-variants-sequencing/
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Player Minutes Played Field Goals Field Goal Attempts Assists Points(3)

Courtney Lee 39:08 9 14 3 22
Marc Gasol 35:23 6(2) 12(2) 6 18

Zach Randolph 29:26 4 9 0 10
Mike Conley 29:13 9 14 11(1) 24(4)

Tony Allen 23:10 4 6 1 9
Quincy Pondexter 26:43 2 8 0 7

Beno Udrih 18:47 3 6 3 6
Jon Leuer 16:13 1 4 0 2

Kosta Koufos 12:37 0 2 1 0
Vince Carter 9:20 2 5 0 4

Table 1: Statistics of a basketball game.

relies on NLP and supervised algorithms to identify and check factual and false information. Since then, there
has been a stream of fact-checking systems.

Some systems verify a certain input by utilizing structured data stored in knowledge graphs [16, 5] or re-
lational tables (or just relations) [18, 19], while others rely on unstructured resources such as Wikipedia arti-
cles [27, 36]. Other systems have the ability to verify multiple claims occurring within the same input text, such
as an entire document [19, 15]. A recent approach also discards all evidence retrieval methods and relies on
the implicit knowledge stored in large pre-trained language models (PLM) [20]. Nevertheless, the plethora of
different methods calls for a thorough study of their differences with an exploration of the salient aspects related
to the design of the systems and how they relate to the fact-checking process. Such study aims to (i) provide
readers with a set of dimensions to model this kind of systems, (ii) inspect prominent systems by testing them
on various datasets.

We are interested in claims that can be verified by using existing relational tables. Storing data in tables is
the go-to format for many applications as it offers declarative querying, scalability, and several other features.
For example, reliable statistics for coronavirus are published on a daily basis as relations 4. The use of such
tables supports the verification process and can help in relieving the work done by human fact-checkers. In-
deed, manually verifying textual reports, which summarize the most important statistics, is time-consuming and
requires automation [25, 3].

In this article, we start with formulating the problem of the computational verification of textual claims by
using relational data (Section 2). We discuss four recent systems and highlight their main differences in terms
of six generic dimensions (Section 3). We then experimentally compare the systems on several annotated claim
corpora (Section 4). Finally, we conclude with some open challenges and future directions for research in this
topic (Section 5).

2 Problem Statement

We introduce our problem and related terminology. We assume a scenario where we have a natural language text
containing one or more claims to be verified with some relational table(s). Such table(s) are either given as an
input or predicted by a system. The following example contains (hypothetical) claims about a basketball game.
Table 15 contains the information needed to verify such claims. Table values that are used to verify a claim are
marked with the same superscript.

4https://github.com/CSSEGISandData/COVID-19
5Obtained from https://www.basketball-reference.com/boxscores/201411050PHO.html
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Example 1. “Mike Conley had 11(1) assists. The field goal percentage for Marc Gasol is 50%(2). The team
scored 100(3) points in total. Mike Conely scored the most(4) points.”

The first claim can be verified with a simple look-up in the table over the Assists attribute. The second
claim can be verified by computing the ratio of the Field Goals to the Field Goal Attempts of a certain player;
thus, two cell values are needed for verification. The third (false) claim can be checked with an aggregation
(summation) over the Points column. The fourth claim involves finding the player with the maximum number
of Points. Other claims might need the involvement of two or more tables.

Definition 1. Fact-checking is the process of checking that all facts in a piece of text are correct.

Fact-checking is usually composed of three phases: (i) finding check-worthy claims, (ii) finding the best
available evidence for the claim at hand, and (iii) validating or correcting the record by evaluating the claim in
light of the evidence [25]. Claims can be provided in a structured form, such as the subject-predicate-object
triples in a knowledge graph [5], or in plain text [31], such as the sentences in Example 1. In this article, we
assume that the first step (i) has already been executed, and every sentence contains at least one claim.

Definition 2. A textual claim is any subset of a natural language input that is to be verified against trustworthy
reference sources.

Data in such reference sources can be structured or non-structured. Non-structured data include textual
documents while structured data include knowledge graphs, such as DBpedia [21], and relational tables. In
this work, we are interested in relational tables as reference data. Specifically, we focus on tables that contain
numerical data and on which numerical and Boolean operations can be computed.

Definition 3. A statistical claim is any textual claim that can be verified over a trustworthy database by per-
forming a mathematical expression on the database cell values.

The claims in Example 1 are all statistical claims, while a claim such as “Players who commit too many
fouls are not allowed to play anymore.” is not.

Definition 4. An explicit claim is a statistical claim mentioning a number that can be verified by comparing it
against the result of a function that takes as parameters some cell values in the input relation.

The first three claims in Example 1 are explicit claims. We assume that symbols LOOKUP, SUM, and
DIVISION are defined. LOOKUP performs a look-up in a table given a primary key value and an attribute
label. SUM performs a summation over the values of an attribute. DIVISION performs the division of two
cell values. The first claim is a simple look-up over the table that could be modeled as LOOKUP(’Mike
Conley’,’Assists’)==11. The second claim requires computing a ratio of Field Goals to Field Goal At-
tempts for player Marc Gasol. This can be formulated as DIVISION(a,b)==0.5where a=LOOKUP(’Marc
Gasol’,’Field Goals’) and b=LOOKUP(’Marc Gasol’,’Field Goal Attempts’). The third
claim could be modeled as SUM(’Points’)==100.

Definition 5. An implicit claim is a statistical claim that does not mention a number and can be verified by a
Boolean function that takes as parameters cell values in the input relation.

The last claim in Example 1 is an implicit claim. Assuming MAX has also been defined, it could be mod-
eled as MAX(Points)=LOOKUP(’Mike Conely’,’Points’). As we will discuss in the next section,
implicit claims are harder to verify and usually require some form of supervised learning, such as the learning
of neural representations [19] or the synthesis of a program from the input [8].

Definition 6. Given a text T containing a statistical claim c and a database D, the goal of Statistical-Claim
Fact-Checking is to verify c with the information in D. Formally, the objective is to find a function f(T, c,D)
that successfully maps to one of two labels (True or False).
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This definition is generic enough to model existing fact-checking systems and other systems that can be
adapted for this task6. It is independent of the different assumptions that apply for the different approaches.
For example, multiple systems assume that the input text T contains a single claim [8], thus dropping the need
for having the claim c as an input. Also, the database D is often simplified to one relational table given as
input [15, 8], while other systems utilize multiple tables [19, 18]. Finally, the definitions above do not cover a
notion of explainability of the provided result. Indeed, some systems do not provide any result explanation since
the verification process relies on black-box methods, such as deep neural networks [8].

3 Systems

In this section, we study four systems that satisfy Definition 6. We analyze TABLE-BERT [8], TAPAS [15],
AGGCHECKER [18], and SCRUTINIZER [19]. In Section 3.1, we describe how each system works and its
assumptions. In Section 3.2, we introduce six dimensions to characterize such fact-checking systems.

3.1 Overview of Systems

We introduce the systems, starting from the ones that rely on end-to-end NLP methods, and describe those that
use query generation next.

TABLE-BERT [8] models fact-checking of a statistical claim as a Natural Language Inference (NLI) prob-
lem [22]. NLI is the task of determining whether a natural language hypothesis h can be inferred from a natural
language premise p. In TABLE-BERT, a given table T is linearized and fed to the model alongside the natural
language hypothesis p. The model consists of a pre-trained BERT model [12] that outputs a sequence-level
representation of the input. This representation is then fed into a multi-layer perceptron, which predicts the
entailment probability. If the output probability is greater than 0.5, then the hypothesis p is entailed by table T.

This system assumes a table as input, i.e., that the reference data is available and already identified. TABLE-
BERT comes with a corpus of tables and claims (annotated as true/false) that can be used for fine-tuning. This
makes it usable on unseen tables, but our experimental results show that further fine-tuning for the domain at
hand is needed to obtain good results. Moreover, TABLE-BERT can be fine-tuned with more examples that
contain formulas unseen in the provided corpus. However, the original paper recognizes that the complexity of
the formulas that the system can learn is limited and does not support composition of functions [8].

TAPAS [15] can be used to tackle the claim verification as a question-answering problem over an input
table [4, 23, 33]. The model takes as input (1) a natural language question Q to be answered over (2) the
input table T. Building on the success of pre-training models on textual data, TAPAS extends this procedure to
structured data, by training a BERT [12] model on a large number of natural language questions and Wikipedia
tables. This process enables the model to learn correlations between structured and unstructured data. After
training, the encoder provides a representation of the input. The output is twofold: the model predicts (1)
which cell values of the input table are used for answering the question and (2) what aggregation operation is
performed on such values to produce an answer for the input question.

As with TABLE-BERT [8], TAPAS assumes that the reference table is available, and is linearized in the
input. Generating questions from the claim could be done using lexical-based methods as pioneered in Claim-
Buster [13], or neural-based methods [35, 7]. While TAPAS has the benefit of being general, i.e., “plug and play”
on new domains, it has the limitation that extending it to new formulas or tables requires the full re-training from
scratch. Moreover, it is not demonstrated that it could learn complex formulas.

6While the definition considers a binary label for the output, it can be extended to multiple labels such as “partially true” or “not
enough evidence”.
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AGGCHECKER [18] takes a relational dataset and a text document as input. It translates the natural language
claims in the document into SQL queries that are executed to verify the claims. More specifically, each claim is
mapped to a probability distribution over SQL queries. SQL queries are formed by combining query fragments
using an iterative expectation-maximization procedure [11]. AGGCHECKER works out of the box on unseen
relations and does not assume that training data is available for a new database. The system supports aggregation
functions and could be extended to support more. Extending the system is not trivially done by just feeding more
binary examples. It needs an update to the information retrieval engine to incorporate new query fragments, and
an update to the probabilistic model to account for new SQL query candidates. A module to account for multi-
variable formulas is also needed. Similar to TAPAS, the modification needed for this system to account for
unseen functions goes beyond examples.

The system benefits from the fact that claims in the same context are often semantically correlated by learn-
ing a document-specific prior distribution over queries. As in practice accurate claims are more likely than
inaccurate claims, the system increases the likelihood of the query which has a match between the query result
and the claim. As multiple candidate queries are to be executed, an execution engine that merges execution of
similar queries is used for efficiency.

SCRUTINIZER defines fact-checking as a mixed-initiative verification problem [19]. The approach combines
feedback from human workers with automated verification coming from ML classifiers. We neglect the human-
in-the-loop part in this article and focus solely on the automatic verification. The system is based on four
classifiers that take a statistical claim as input and predict (i) the relation(s) to be used, (ii) the primary key
value(s), (iii) the attribute label(s), and (iv) the formula applied on the cells identified by the former three. In
contract with other systems, the table is not given as input, but is predicted, and the cell selection is based on the
predicted primary key values and attribute labels for such a table. This leaves out the need for inputting the table
to the model, but limits the current system only to the table schemas seen during training. After cell selection is
done, it can apply the predicted formula and verify the input claim.

SCRUTINIZER can learn any query, including complex formulas, from the training data. However, the price
to pay for this generality is that it trains the classifiers, therefore labels for these must be provided, and it does
not suffice to have the true/false label for the claim as in TABLE-BERT.

Aside from AGGCHECKER, all the systems use transformer-based language models [12] to encode lan-
guage knowledge, but only TAPAS requires the expensive pre-training of such models. AGGCHECKER relies
on a probabilistic model to map natural language claims to a probability distribution over queries. Others solu-
tions rely on synthesizing a logical program [8], recurrent-based language models [26], reinforcement-learning
approaches [37], and graph neural-networks [24].

Type Dimension AGGCHECKER TAPAS TABLE-BERT SCRUTINIZER

Input

Implicit Claims X X X
Schema-Independence X X X–

Multi-variable Formulas X– X– X
Multi-tables X– X

Output
Interpretability X X– X

Alternative Interpretations X X

Table 2: Dimensions that characterize the systems (X–denotes partial support).

3.2 System Dimensions

We believe that, given the increasing number of fact-checking systems, it is important to start characterizing
them with clear dimensions to enable a more rigorous comparison. We first describe four main dimensions that
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characterize the input across the different proposals. Then, we discuss two dimensions that characterize the
output. A summary of the dimensions and how systems support them is reported in Table 2.

3.2.1 Input Dimensions

Explicit claims are handled by all fact-checking systems, as they are much easier to deal with. However, the
support for Implicit Claims requires a deeper understanding of the semantics behind the given sentence. One
approach to dealing with this problem is feature-based entity linking where all entities are detected in the input
statement and a set of pre-defined trigger-words are used to build programs representing the semantics of the
statement [8]. However, such approaches are very sensitive to the error-prone entity linking process. Another
approach is to learn such implicit claims in a supervised manner. SCRUTINIZER learns from the classifiers’
labels [19]. TAPAS also learns correlations between the text and the table during the pre-training process.

Another dimension is Schema-Independence. AGGCHECKER, TABLE-BERT and TAPAS can consume
potentially any table with any unseen schema, while SCRUTINIZER is limited to tables whose row index val-
ues and attribute labels have been trained on. For SCRUTINIZER, adding new tables requires fine-tuning the
classifiers. The operation is not expensive in terms of execution time, because its classifiers are based on a fine-
tuning procedure, rather than having to pre-train again from scratch; however, it requires specific annotations
that go beyond the true/false binary label. This dimension highlights that SCRUTINIZER is domain-specific and
thus has to learn the related tables for the task at hand, while AGGCHECKER and TAPAS try to be agnostic of
the table schema, and can handle any table as input. For TABLE-BERT, while it can be used on any unseen
schema, our experiments show that it should be trained on the examples at hand in order to obtain good accuracy
performance.

In practice, computations involving values of a database go beyond simple look up and aggregation func-
tions such as those reported in Example 1. The function for the verification of a claim can require complex
Multi-variable Formulas. For example, the Compound Annual Growth Rate7 is a formula needed to verify
a claim in our experiments. SCRUTINIZER handles complex formulas on the condition that they are observed
in its classifier-specific training data, and resorts to a brute-force approach to assign predicted values to vari-
ables. AGGCHECKER can be extended to handle complex aggregation functions. TAPAS handles aggregate
queries with simple functions where the cell values have been selected by the model. It is not clear if and how
TAPAS could support functions with more than one variable, and it would require training again the model from
scratch such that new functions are learned. Finally, TABLE-BERT has no explicit notion of formulas, as it is a
black-box model fine-tuned end-to-end on a binary classification task. According to the original paper and our
experiments, TABLE-BERT struggles to learn how to handle formulas with multiple variables.

TABLE-BERT and TAPAS assume that the right table to verify the input claim is also given as input. In
practice, many tables can be available and the most likely one for the task at hand is identified by SCRUTINIZER

and AGGCHECKER (Multi-Tables). Moreover, in some cases more than one table is needed to verify a claim
and only SCRUTINIZER supports verification that requires the combination of values from multiple tables. This
dimension highlights one of the limits of the methods that rely on the linearized data fed to the transformers, as
it is hard to feed multiple tables without hitting the limit on the size of the input.

3.2.2 Output Dimensions

Interpretability is a key dimension supported by methods that output the query used to verify the claim. How-
ever, systems using a black-box model to verify claims, such as TABLE-BERT, lack interpretability as an expla-
nation of the prediction is not provided. There do exist methods attempting to explain black-box models which

7It describes the net gain or loss of an investment over a certain period of time (https://en.wikipedia.org/wiki/
Compound annual growth rate).
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include explanations by simplification [29]. However, there is no consistent method to define how faithful are the
explanations to the model prediction [17]. TAPAS is not fully interpretable since it provides only cell values and,
in some cases, the aggregation operation. AGGCHECKER and SCRUTINIZER expose the declarative query used
to verify the associated claim. Systems that predict query fragments and combine them, rather than producing
an answer in one shot, are easier to interpret [10].

Claims expressed in natural language can be incomplete or ambiguous in many ways. Some systems support
Alternative Interpretations to clarify how the output changes depending on the details of the verification.
Consider a simple claim “Mike scored 30 points”, and a table with two players whose first name is “Mike”.
The claim is true for one player, but false for the other. AGGCHECKER resolves such ambiguities by evaluating
multiple queries and soliciting feedback from users. SCRUTINIZER learns ambiguities conditioned that they are
represented in the training data. TAPAS and TABLE-BERT do not include any clear means to resolve this kind
of ambiguities, as they default to one interpretation in the current architectures.

4 Experimental Evaluation

We evaluated the four systems above by using three datasets with real textual claims manually annotated with
the correct checking label. We concatenate the claim to the sentence in case the sentence has multiple claims;
otherwise, we only input the sentence. For every system, we report its coverage of the claims, the accuracy of
the verification process, and the execution times.

SCRUTINIZER Labels TABLE-BERT Label
Sentence Claim Table Attribute Label Primary Key Value Formula Verdict
There were 800 total
deaths in China in May
2021.

800 total deaths total deaths May 2021 China a False

Table 3: Labeled data for SCRUTINIZER and TABLE-BERT.

4.1 Datasets

Our experiments are based on three use cases: Coronavirus scenario (C19), International Energy Agency (IEA)
scenario, and Basketball Data scenario (BBL). Every example contains the textual claim, the relational table
to verify it, and the outcome expressed as a binary label True/False. For SCRUTINIZER, the training examples
contain also the labels for the four classifiers. For a fair comparison, we fed the associated relation as input to all
systems. Given the limitations on the input size in TAPAS, we limit the input for this system to at most a sample
of 11 tuples, including the one needed to verify the claim. Without this ad-hoc operation, the system fails with
the entire relation as input. An example of our labeled data is shown in Table 3.

For C19, we generated the training data from the relations (3M examples [19]) and used real claims for the
testing. We denote the synthetic corpus as C19train. For testing the system with unseen claims, we analyzed the
log of more than 30K claims tested by users on a website8. We found that more than 60% of the claims in such
corpus are statistical and, among those, we have the datasets to verify 70%. From these claims, we randomly
selected 55 claims and manually annotated them (C19test).

For IEA, we obtained a document of 661 pages, containing 7901 sentences, and the corresponding corpus of
manually checked claims, with check annotations for every claim from three domain experts. The annotations
cover 2053 numerical claims, out of which we identified 1539 having a formula that occurs at least five times in
the corpus. We denote the resulting dataset as IEAtrain. After processing the claims, we identify 1791 relations,

8https://coronacheck.eurecom.fr
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830 row indexes, 87 columns, and 413 formulas. Around 50% of the values for all properties appear at most
10 times in the corpus, with the top 5% most frequent formulas appearing at least 8 times. For the test data
(IEAtest), we randomly selected 20 claims from the most common operations (look up and sum).

For BBL, we use the data in a recent publication [28]9. We use the 1523 real annotated claims provided in the
repository for the testing step and generate ourselves the training data from the tables as in the C19 scenario. We
generate an initial dataset of 32.3K samples, where 90% is used for training classifiers and 10% for validation.
We use 132 tables for this scenario. The dataset used for bootstrapping is denoted by BBLtrain and the test
dataset as BBLtest. Our datasets (BBLtest and C19test) are publicly available10.

Table 4: Ratio of supported training claims.

AGGCHECKER TAPAS TABLE-BERT SCRUTINIZER

C19train 21.49% 21.49% 37.82% 100%

IEAtrain 33.06% 17.02% 27.28% 74.96%

BBLtrain 53.00 % 56.17% 56.17% 56.17%

As discussed in Section 2, the tested systems have limitations on the input data and on the space of supported
formulas. These limitations are reflected in the percentage of training claims that every system can handle, as
reported in Table 4. For example, complex formulas are present in our datasets, with more than 22% of the
claims in IEAtrain with three or more variables.

4.2 Experimental Results

For TABLE-BERT, we fine-tuned the binary classifier on top of the PLM with the training data after augmenting
the data to ensure a balance between classes. For TAPAS, we tried to automatically translate the claims to
questions as pioneered by ClaimBuster [13]. However, the precision was not satisfactory, e.g., we could not
obtain any questions for 7 out of the 20 IEA test claims. To overcome this issue, we manually translated claims
into questions for IEAtest and C19test, and relied on a pattern-based script to generate questions for BBLtest. For
TAPAS and AGGCHECKER, we did not run any training. For SCRUTINIZER, we provided the examples with the
labels for the 4 classifiers, and examples with binary labels for TABLE-BERT. For SCRUTINIZER, we do not
rely on the user feedback in this experiment.

Table 5: Verification accuracy on the test datasets.

AGGCHECKER TAPAS TABLE-BERT SCRUTINIZER

C19test 0.44 0.64 0.76 0.80

IEAtest 0.50 0.07 0.58 0.65

BBLtest 0.13 0.41 0.17 0.51

Table 5 reports the accuracy results of the experiments with all systems on the test claims. IEAtrain is heavily
skewed as, for instance, there are formulas such as lookups and summations that are commonly used, unlike
formulas comprising multiple variables which are scarce (formulas having ten or more variables form 4.32%
of the training data). The formulas in IEAtest are different, as they contain functions supported by all systems

9https://github.com/ehudreiter/accuracySharedTask; sentences and claims in this corpus are similar to the ones
reported in Example 1.

10https://zenodo.org/record/5128604\#.YPrSgXUzZuU
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Table 6: Execution time of the test datasets (seconds).

AGGCHECKER TAPAS TABLE-BERT SCRUTINIZER

C19test 280.41 991.52 23.09 0.03

IEAtest 321.53 943.25 18.11 0.68

BBLtest 3472.44 12709.45 40.20 236.64

(lookups and summations in this case). For BBLtest, low results are explained by the fact that all systems have
low coverage of the claims in the data and some claims require verification that spans across multiple tables. For
C19test, the systems do slightly better as the test data comprises lookups and the attribute label and primary key
value are usually explicitly stated in the sentence. We observe that the systems perform with mixed results, and
none of them can get high accuracy in all cases. We can observe that in most cases the use of training data can
lead to the best performance. This is evident for TABLE-BERT, which performs well in two datasets by making
use of the true/false labels, and in SCRUTINIZER, which exploits the rich annotations for its classifiers and leads
in all scenarios. However, for C19test, SCRUTINIZER fails for claims which require formulas that it has not
seen in the training data. For running BBLtest with TAPAS and TABLE-BERT, we replaced abbreviations in the
schemas of the table by their proper wording (for example, “PTS” was replaced by “Points”). This has improved
the TAPAS accuracy from 0.19 to 0.41 and TABLE-BERT accuracy from 0.09 to 0.17. This is expected as such
models, which have been trained on text and table together, correlate better a table schema containing “Points”
with the input text compared to the acronym “PTS”.

For the execution times, we distinguish the training and the testing. Classifier-training time is needed for
SCRUTINIZER and TABLE-BERT; however, this is typically negligible (on the studied datasets) with the usage
of GPUs. AGGCHECKER and TABLE-BERT, on the other hand, have zero setup time. We report the execution
times for all test data in Table 6. TAPAS is the slowest as the model is jointly computing the relevant cells
and performing an operation on them, compared to TABLE-BERT that requires a negligible amount of time to
perform binary classification. SCRUTINIZER consumes negligible time in classifier predictions, but the brute-
force query generation process could potentially take considerable amount of time when multiple combinations
are available. AGGCHECKER, although having to perform evaluations of a large number of queries, successfully
merges the execution of similar queries to increase efficiency. In summary, all systems are usable in reasonable
time in our experience in an entry-level infrastructure with a low-end GPU.

5 Conclusions

We focused our study on the problem of fact-checking a statistical claim with relational tables as reference data
and considered four prominent systems. We make a first step towards categorizing fact-checking systems with
generic dimensions. We have also experimentally evaluated the four systems on three use cases and gathered
many observations on their coverage, their qualitative performance and their execution times.

Our results and the proposed categorization can act as a blueprint when designing a system, as different
applications have different requirements. For example, text coming from the basketball data scenario is unlikely
ambiguous, so it is safe to neglect ambiguity resolution. However, text related to coronavirus is oftentimes
ambiguous and resolution of the ambiguities is a must. Data-driven approaches excel with the provision that
sufficient training data is accessible; however, this condition is not always easily met, as manual annotation
is costly, especially in scenarios such as IEA where experienced labor is needed. Experiments highlight that
training data generated from the tables is a valid solution, but it requires manual work. This aspect is especially
important for SCRUTINIZER, which has the highest accuracy, but it is the system that requires most labeling
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efforts. We also remark that some systems worked only after pre-processing the input, by rewriting the claim as
a question or by limiting and refining the tabular data. We can state that there is no one system that clearly fits
for all scenarios. Choosing or designing a system has to be done keeping in mind the scenario(s) at hand.

Finally, we discuss a promising research direction that we identified during the experimental campaign.
Given that the systems are getting better at detecting a false claim, is there any hope that they learn how to
repair a false claim with the correct information?

Consider a basketball data scenario with claim “Vince Carter scored 22 points in 39 minutes.” Having a look
at Table 1, we see that the player scored 4 points in 9 minutes. A fact-checking system would mark the claims
as false. However, we see in the table that another player (Courtney Lee) is the actual fit for the sentence. The
sentence is still false, but if we aim at repairing it, the result will be very different. In one case we would change
the values and in one case we would repair the claim with a different entity — which one is the correct fix?
Looking at this example, someone may argue that the mistake is in the entity, following the principle that it is
more likely to have one error rather than two in the same sentence. This is in line with several data cleaning
systems for relational data, which repair tuples according to a minimality principle [9]. This aspect of fact-
checking is not considered in the design of the current systems, nor is available as a by-product of their results.
We believe this is an interesting open problem that can benefit from the experience on cleaning structured data
to introduce the concept of “repairing” natural language sentences.
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