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Abstract
The COVID-19 pandemic has led to the saturation of public
health services worldwide. In this scenario, the early diagnosis
of SARS-Cov-2 infections can help to stop or slow the spread of
the virus and to manage the demand upon health services. This
is especially important when resources are also being stretched
by heightened demand linked to other seasonal diseases, such
as the flu. In this context, the organisers of the DiCOVA 2021
challenge have collected a database with the aim of diagnosing
COVID-19 through the use of coughing audio samples. This
work presents the details of the automatic system for COVID-19
detection from cough recordings presented by team PANACEA.
This team consists of researchers from two European academic
institutions and one company: EURECOM (France), University
of Granada (Spain), and Biometric Vox S.L. (Spain). We de-
veloped several systems based on established signal processing
and machine learning methods. Our best system employs a Tea-
ger energy operator cepstral coefficients (TECCs) based front-
end and Light gradient boosting machine (LightGBM) back-
end. The AUC obtained by this system on the test set is 76.31%
which corresponds to a 10% improvement over the official base-
line.
Index Terms: COVID-19, respiratory sounds, machine learn-
ing, disease diagnosis, healthcare

1. Introduction
A year ago the COVID-19 pandemic caused a significant health
crisis. COVID-19 is provoked by the infection with the se-
vere acute respiratory syndrome virus strain SARS-CoV-2. Ac-
cording to the World Health Organization (WHO), the most
common symptoms of COVID-19 are fever, dry cough and
shortness of breath. The WHO mission report in China [1]
has described the symptoms of this disease from more than
55,000 laboratory-confirmed cases. These symptoms include:
fever (87.9%), dry cough (67.7%), fatigue (38.1%), sputum
production (33.4%), shortness of breath (18.6%), sore throat
(13.9%), headache (13.6%), myalgia or arthralgia (14.8%),
chills (11.4%), nausea or vomiting (5.0%), nasal congestion
(4.8%), diarrhea (3.7%), hemoptysis (0.9%), and conjunctival
congestion (0.8%). Among these symptoms, there is a signifi-
cant percentage of alterations related to the respiratory system
as a consequence of the infections caused by the coronavirus,
which can lead to severe pneumonia [2].

These symptoms lead us to venture the hypothesis that it

would be in principle possible to detect COVID-19 through a
person’s altered respiratory patterns. Thus, a recent literature
review on radiological data in patients with COVID-19 [3] con-
cluded that these patients present abnormalities in chest radio-
graphic images that are characteristic of this disease. It is there-
fore conceivable that the distinctive alterations produced by the
coronavirus in the lungs will also be reflected in the respiratory
patterns of patients.

The above hypothesis is the starting point of the DiCOVA
2021 challenge [4], which aims at developing automatic meth-
ods for diagnosing COVID-19 through the use of sound audio
samples. The challenge provides a dataset with cough record-
ings collected from COVID-19 positive and negative individu-
als for a two-class classification task. These recordings were
collected via crowdsourcing from multiple countries, through a
website application. The challenge features two tracks: Track-1
focuses on diagnosing COVID-19 using cough sounds, while
Track-2 focused on a collection of breath, sustained vowel
phonation, and number counting speech recordings.

In this paper, we describe our system for automatic COVID-
19 detection presented to Track-1 of the DiCOVA 2021 chal-
lenge. Our system uses a perceptually-motivated front-end,
parametrizing the cough recordings as sequences of Teager en-
ergy operator cepstral coefficients (TECCs) [5], along with a
state-of-the-art gradient boosting classifier, namely a Light gra-
dient boosting machine (LightGBM) [6].

The remainder of this paper is organized as follows. Sec-
tion 2 describes the datasets used during the development of
our system, including the Track-1 DiCOVA challenge dataset.
In Section 3 the technical details of our system for COVID-19
detection are shown. Experimental setup and results are pre-
sented in Section 4 and Section 5, respectively. Finally, the main
conclusions of this work and future research lines are drawn in
Section 6.

2. Data Resources
In this section, we briefly describe the databases used in
our experiments: the DiCOVA Challenge dataset and the
COUGHVID corpus.

2.1. DiCOVA dataset

The DiCOVA Challenge [4] features two tracks: Track-1 is
focused on cough sound recordings while Track-2 considers



Table 1: Statistics of DiCOVA 2021 Challenge Database

Subset # COVID-19
Negative Positive Total

Training 772 50 822
Validation 193 25 218

Test - - 233

cough, breath, sustained phonation, and continuous speech
sound recordings. In both cases, the data is derived from Project
Coswara [7], a crowd-sourced dataset of sound recordings from
COVID-19 positive and non-COVID-19 individuals collected
using a web-application.

The training/validation set for the Track-1 provided by the
organizers contains 1040 audio files stored in .FLAC format at
44.1 kHz sampling rate. Each audio file corresponds to a unique
subject. This set comprises a total of 1.36h of cough audio
recordings from 75 COVID-19-positive subjects and 965 non-
COVID-19 subjects. Some metadata of the subjects is provided
in a CSV file, like COVID-19 status (p/n), gender (m/f) and
nationality (Indian/other). Validation can be performed using
5-fold cross validation using training and validation lists, for
each of the 5 folds, that are also provided by organisers. The
test set consists of 233 audio files with the same format as the
training/validation set but with unknown COVID-19 status. The
statistics of the database is reported in Table 1.

The Track-2 dataset provided for the challenge is com-
posed of three kinds of sound recordings from each individual:
breathing, sustained phonation (vowel-e) and speech (1-20 digit
counting). The dataset contains 1199 audio files for each kind
of sound (80 positives and 1119 negatives). A CSV file with
metadata and lists for 5 training/validation folds, as in Track-1,
are provided.

2.2. COUGHVID corpus

The COUGHVID corpus is a crowdsourced and publicly-
available dataset with over 20,000 cough recordings represent-
ing a wide range of subject ages, genders, geographic locations,
and COVID-19 statuses. Experienced pulmonologists have la-
belled more than 2,000 recordings to determine which samples
are likely to originate from COVID-19 patients. More informa-
tion about this dataset can be found at [8, 9].

3. System Description
Considering the relatively small size of the DiCOVA dataset
and, in particular, the limited number of positive samples,
we started by exploring transfer learning approaches in order
to leverage pre-existing models trained on large datasets, al-
though for a different task. In particular, we used neural net-
works trained for speaker recognition. These networks are usu-
ally used to compute utterance-level embeddings known in the
speaker recognition literature as x-vectors [10]. We explored
two different approaches to transfer learning: a) extracting ut-
terance embeddings from the neural network and using them to
train a binary classifier, and b) fine tuning the neural network
for the task at hand. Although this seems to be a promising
approach, it was unsuccessful on the DiCOVA dataset. For this
reason, we focused on a perceptually-motivated front-end based
on TECC features and different ensemble methods as back-end
classifiers.

In the following subsections, we present the technical de-
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Figure 1: Block diagram of the PANACEA system for COVID-19
detection from cough recordings.

tails of our submission to the DiCOVA 2021 challenge. A block
diagram of the system is shown in Fig. 1.

3.1. Pre-processing

As shown in Fig. 1, a Long Short-Term Memory (LSTM) neu-
ral network [11] was built to deal with a binary classification
problem: identifying whether an audio track contains cough or
not. LSTMs were chosen because they are particularly suited
to the processing of sequential data like speech or video, and
they proved to work as expected. The model was built on Mat-
lab and, in practice, we trained a simple LSTM network with
one hidden layer and 100 hidden units. To train and evalu-
ate the LSTM model, we retrieved some external cough au-
dio files from the COUGHVID dataset [8, 9] parameterised as
20-dimensional Mel-frequency cepstral coefficients (MFCCs).
The system was able to reach 87% accuracy on the selected
COUGHVID validation data. Having observed that this model
was performing with acceptable precision, we exploited it to
‘clean’ the DiCOVA dataset, that is, deleting parts of the au-
dios where no useful information was contained, thus extracting
from each recording only the part related to cough sounds. Each
audio was indeed split into small chunks of roughly one sec-
ond: each chunk was then passed to the model, which outputs
whether cough is present or not inside the specific part of the
audio. Having done so, only chunks where cough was detected
were kept and re-joined together to have a cleaned version of
the original audio file.

3.2. Front-end

The Teager energy operator (TEO) tracks running estimate of
instantaneous energy fluctuations of a narrowband speech signal
[12, 13, 14] as follows:

Ψd{xi[n]} = x2
i [n]−xi[n−1]xi[n+1] ≈ ai[n]2Ωi[n]2, (1)

where xi[n] is discrete-time, bandpass filtered signal for ith

subband filter, Ψd{·} represents TEO, ai[n] is its corresponding



Figure 2: Comparison of spectral energy densities of traditional
STFT spectrogram and Teager energy-based spectral features
for COVID-19 negative and positive audio signals.

instantaneous amplitude and Ωi[n] is instantaneous frequency.
The TEO works on narrowband signal and hence, bandpass fil-
tering is necessary to apply on the input speech signal to com-
pute ‘N’ number of subband filtered signals. Here, the input
speech signal is first passed through a Gabor filterbank to ob-
tain ‘N’ subband filtered signals [5, 15]. We used Mel-spaced
Gabor filterbank to have compressed bandwidth in the lower
frequency region and wide bandwidth in the higher frequency
regions. The narrowband filtered signals are obtained at cen-
ter frequency, which are Mel-spaced between fmin=10 Hz, and
fmax=8000 Hz. These subband filtered signals are given to the
TEO block to estimate the Teager energy profile of each sub-
band filtered signals. These Teager energy profiles are further
passed to the frame-blocking along with averaging of the speech
segment using a window length of 25 ms and shift of 10 ms fol-
lowed by logarithm operation. To obtain a low-dimensional rep-
resentation that has compact energy, a Discrete Cosine Trans-
form (DCT) is applied along with Cepstral Mean Normaliza-
tion (CMN) (also known as Cepstral Mean Subtraction (CMS))
to reduce the channel mismatch/distortion conditions [16]. Fi-
nally, the retained few DCT coefficients, i.e., Teager Energy
Cepstral Coefficients (TECC) are appended along with their ∆
and ∆∆ coefficients [17].

The spectral energy density obtained from 40 Mel-scaled
Gabor filterbank for COVID-19 positive and negative signals is
shown in Figure 2. We compared the spectral energy densities
with the traditional short-time Fourier transform (STFT) spec-
trogram. The Teager energy-based spectral features preserves
the formant frequencies compared to the traditional spectro-
gram (highlighted by blue and red dotted circles). The formant
frequencies also provide valuable information related to the role
of the vocal tract in the generation of an acoustic signal. It is ob-
served from Figure 2, the harmonic structure for the COVID-19
negative signal shows 4 different formant frequency bands that
is not present for the COVID-19 positive signal.

Figure 3 shows two waterfall plots for (a) COVID-19 pos-
itive and (b) COVID-19 negative audio signals computed from
the TEO-based spectral features. This 3-dimensional picto-
rial representation shows the spectral spread and its magni-
tude range along the frequency values. It can be seen that the
COVID-19 positive audio signal has higher spectral energy (in-
dicating more red color spectral spread). This comparative anal-

Figure 3: Waterfall plots for (a) COVID-19 positive and (b)
COVID-19 negative audio signal.

ysis indicates that for the detection of COVID-19 the higher for-
mants and frequency values are more useful.

3.3. Back-end

State-of-the-art ensemble methods were used for the task of pre-
dicting the COVID-19 status of the speaker from the TECC fea-
tures extracted from the cough recordings. In particular, during
training, a light gradient boosting machine (LightGBM) clas-
sifier [6], which is a gradient boosting algorithm employing
tree-based classifiers for classification, was trained to predict
the COVID-19 status for each of the acoustic feature vectors in
the training dataset. During evaluation, the COVID-19 score for
each speaker was computed by averaging the scores computed
by the classifier for each of the feature vectors extracted from
the cough recording for that particular speaker.

4. Experimental Setup
Dataset: We employed the DiCOVA 2021 Challenge database,
as discussed in Section 2.
Baseline system: The Challenge provides a baseline system for
Task-1 based on 39-dimensional Mel-frequency cepstral coeffi-
cients (MFCCs) with ∆ and ∆∆ coefficients. Three back-end
classifiers are used, namely, Logistic regression (LR), Multi-
layer perceptron (MLP) and Random Forest (RF). As in our
back-end model, frame-level probability scores are computed
using the trained model. Finally, all the frame scores are av-
eraged to obtain a single COVID-19 probability score for the
cough recording.
Evaluation metrics: Classification performance evaluation is
measured using traditional detection metrics, namely, true pos-
itive rate (TPR) and false positive rate (FPR) over a range of
decision thresholds. From these metrics, the probability scores
for each audio file are used to compute the receiver operating
characteristic (ROC) curve, and the area under the curve (AUC)
metric to quantify the model performance.
Implementation details: TECC feature vectors were extracted
using 40 Mel-spaced Gabor filterbank with fmin=10 Hz, and
fmax=8000 Hz. For each subband filtered signals, we obtain
40-D static features augmented with their ∆ and ∆∆ coeffi-
cients resulting in 120-D feature vector. Cepstral Mean Nor-
malization (CMN) was applied to enhance robustness against
channel mismatches. The LightGBM model was trained with



Table 2: Preliminary results on DiCOVA validation and test
sets.

System
Description

Pre-
Processing

Avg. Val.
AUC

Test
AUC Test Sens. Test Spec.

BL: MFCC No 68.54 69.85 80.49 53.65
S1:TECC No 67.28 72.53 80.49 56.77

TECC Yes 69.00 62.36 80.49 43.75
BL+S1 score fusion No 67.53 73.75 80.49 54.69

Table 3: Final results on DiCOVA validation and test sets with
the LightGBM classifier.

Feature set Avg. Val.
AUC

Test
AUC Test Sens. Test Spec.

39 MFCCs + ∆ + ∆∆ + CMN 74.59 62.96 80.49 45.83
40 TECCs + ∆ + ∆∆ + CMN 69.80 76.31 80.49 53.65

100 trees in the forest. Furthermore, Bayesian optimization was
used, in particular the tree of Parzen estimators (TPE) algorithm
described in [18], to optimize the hyper-parameters of the Light-
GBM model. This procedure was applied using a 4-fold strati-
fied cross-validation scheme, leading to improved results.

5. Experimental Results
5.1. Preliminary results

We evaluated the effect of using different acoustic features on
classification performance using the RF classifier. The perfor-
mance metrics for these preliminary experiments are shown in
Table 2. We compared our TECC features with the MFCC fea-
tures in the DiCOVA baseline system (BL). On validation set,
TECCs did not gave better performance, resulting an AUC of
67.28%, however, on test set the AUC was 72.53% whereas the
AUC of the MFCC baseline was 69.85%. Furthermore, we per-
formed experiments using the pre-processed data as discussed
in Section 3.1. As shown in Table 2, although the validation
results obtained with the pre-processed data were better, this
procedure, unfortunately, resulted in a significantly lower per-
formance on the test set. To improve the AUC further, we used
a score-level fusion of the MFCC- and TECC- based systems,
which increased the performance up to 73.75% AUC on test set.

Figure 4 shows the ROC curve obtained for TECC-based
system with RF classifier with no pre-processing. The ROCs
corresponds to the average value of all the five validation folds
defined in the DiCOVA challenge. The individual AUC for
each fold of validation (V-1 to V-5) are in the range of 65-70%
that shows that TECC features gave almost equal performance
across all the folds. On the other hand, the MFCC features
shows huge variation in AUC for 5 folds which is not a good
case for the real-time data.

5.2. Final results

Our best performing system submitted to the DiCOVA 2021
challenge uses a LightGBM back-end, as explained in Sec-
tion 3.3. Table 3 shows the results obtained when training this
classifier with different feature sets. As can be seen, while
MFCCs outperforms TECCs features on the validation set, the
latter feature set obtains significantly better results on the test
set. In particular, our final system submitted to the DiCOVA
2021 obtained an AUC of 76.31 % on the test set, which places
our team on the 15th position of the official ranking.
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Figure 4: Average ROC computed for TECC features on the
training/validation dataset using the RF classifier (shade indi-
cates standard error in ROC over the 5 validation folds).

6. Conclusion
We have presented the systems developed by team PANACEA
for the DiCOVA 2021 challenge. These systems explore dif-
ferent features, back-end classifiers and transfer learning meth-
ods. Our best system, using TECC features and a LigthGBM
classifier as back-end, obtains an AUC of 76.31% on the test
set, which represents a significant improvement over the base-
line. Although there is still a lot of room for improvement, we
do believe that these are promising results that support the idea
that there are alterations in the respiratory patterns, caused by
COVID-19 infection, that can be detected from cough or speech
samples. Automatic analysis of such samples, that can be pro-
vided by the patient from their own home safely and noninva-
sively, could indeed be a powerful tool for screening and detec-
tion of COVID-19.

The small number of positive samples and the crowd-
sourced nature of the data used for the challenge should raise,
however, some concerns about the ability of these findings and
classifiers to generalize to new, different data. Since good gen-
eralization is an essential ability for these systems to be use-
ful for any real-world scenario, our future work will focus on
assessing generalization by working with both larger, more di-
verse datasets, for system training, and more curated data, with
labels linked to gold-standard PCR result, for system evalua-
tion.
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