
XJoin: Portable, parallel hash join across diverse XPU architectures
with oneAPI

Eugenio Marinelli Raja Appuswamy
EURECOM
Biot, France

firstname.lastname@eurecom.fr

ABSTRACT
Modern server hardware is increasingly heterogeneous with a diverse
mix of XPU architectures deployed across CPU, GPU, and FPGAs.
However, till date, database developers have had to rely on either
proprietary, architecture-specific solutions (like CUDA), or low-
level, cross-architecture solutions that complicate development (like
OpenCL). The lack of portable parallelism caused by the absence of
a common high-level programming framework is one of the main
reasons preventing a wider adoption of XPUs by database systems.

In this paper, we take the first steps towards solving this prob-
lem using oneAPI–a cross-industry effort for developing an open,
standards-based unified programming model that extends standard
C++ to provide portable parallelism across diverse processor archi-
tectures. In particular, we port a recently-proposed, highly-optimized,
GPU-based hash join algorithm from CUDA to Data Parallel C++
(DPC++). We then execute the hash join on multicore CPUs, in-
tegrated GPUs (Intel GEN9), and discrete GPUs (Intel DG1 and
NVIDIA GeForce) without changing a single line of kernel code to
demonstrate that DPC++ enables portable parallelism. We compare
the performance of DPC++ kernels with hand-optimized CUDA
kernels and model-based theoretical performance bounds to demon-
strate the performance–portability trade off in using DPC++.

1 INTRODUCTION
The end of Dennard scaling and the rising popularity of data ana-
lytics and machine learning have resulted in a rapid increase in the
adoption of heterogeneous parallelism. Graphics Processing Units
(GPU) and Field Programmable Gate Arrays (FPGA) have evolved
from being used as accelerators in niche application areas to being
an integral part of almost all cloud computing platforms. This has
led to a surge in interest in the design of database systems that can
exploit such XPU architectures instead of the CPU. However, a
major factor that has limited the wide-spread adoption of XPU in
database systems has been the lack of portable parallelism. Histor-
ically, general-purpose, standardized programming languages like
C++ were developed before the evolution of heterogeneous parallel
computing. Thus, there was no common software stack for program-
ming XPU, and developers had to use vendor-specific programming
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platforms and APIs. This problem was particularly acute in High-
Performance Computing (HPC), where limited compiler support for
a particular combination of architecture and programming model
forced HPC developers to maintain multiple versions of codes in
each programming model. The need for a portable programming
model that enables just one version of the source code to work across
diverse architectures led to the development of OpenCL, a cross-
industry framework initiative that provided a “C”-like language for
writing compute-intensive kernel that can be offloaded onto any
supported XPU using a runtime API.

Over the past few years, HPC applications have evolved to adopt
more general-purpose programming languages like C++ instead of C
and FORTRAN, and HPC installations expanded to adopt XPU from
more vendors. This change exposed several limitations of low-level
frameworks like OpenCL. First, the low-level nature of OpenCL was
meant to directly expose data parallelism in underlying hardware
while leaving everything else from data movement to kernel dispatch
to developers leading to boilerplate code verbosity. Second, pro-
grams written in OpenCL are not single-source in nature as kernel
code needs to be separated from host code, represented as strings
and separately managed complicating software development. These
challenges led to the development of custom HPC frameworks like
RAJA [2] and Kokkos [5] that bridge the gap by providing C++ ab-
straction layers for portable parallel execution. Thus, in turn, spurred
the development of SYCL, an open, industry-standard, single-source,
modern C++ parallel programming model from Khronos group (who
also maintain OpenCL).

Recent work has investigated the performance–portability trade
offs in using SYCL for accelerating key HPC applications [4]. In
this work, we investigate the utility of SYCL in the development
of performance-portable database engines by focusing on hash join.
First, we start from a state-of-the-art, data-parallel hash join that has
been developed in CUDA and optimized for execution on NVIDIA
GPU. We port the join to Data-Parallel C++ (DPC++)–an open-
source implementation of SYCL–using the oneAPI toolkit. We refer
to the DPC++-based hash join as XJoin in the rest of this paper.
We then execute XJoin on Intel® multicore CPU, integrated Intel®

GEN9 GPU, Intel® Iris® Xe Max DG1 discrete GPU, and NVIDIA
RTX 2080 Ti discrete GPU, without changing the data-parallel kernel
code to demonstrate cross-architecture, cross-vendor portability of
DPC++. Using models that provide theoretical upper bounds for
CPU performance, and using the state-of-the-art, hand-optimized
CUDA join, we investigate the performance of XJoin to understand
the effectiveness of DPC++ in parallelizing on CPU and GPU. We
make the XJoin source code publicly available1 to encourage further
work on performance-portable database engines.

1https://github.com/Eug9/XJoin
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2 DESIGN
Our goal in this work is to take the first steps towards investigating
the utility of DPC++ in developing performance-portable database
engines. In order to do so, we focus on the hash join operator as it
has been extensively studied in the database literature, with many
different hash join algorithms proposed for both CPU and GPU [3,
12]. In this work, we build on a recent, state-of-the-art hash join
from the Crystal library that has been optimized for data-parallel
execution on GPU [13]. In this section, we first provide an overview
of the Crystal GPU join. Then, we detail how we ported it from
CUDA to DPC++.

2.1 Crystal GPU Join
The novelty of Crystal lies in its tile-based implementation strategy.
The idea behind tiling comes from the observation that threads in a
GPU are grouped into thread blocks (in CUDA terminology) such
that threads within a thread block can communicate through shared
memory and synchronize through barriers. The set of data elements
that can be collectively processed by a thread block is referred to as
a tile. The basic compute unit in Crystal is a tile, which is a sub slice
of the input data. This approach makes it possible to write kernels in
terms of block-wide functions that take work with a set of tiles as
units of input and output. Each function uses vector instructions for
memory accesses, and registers for storing values.

Using block-wide functions, Crystal implements a no partitioning
join, which uses a non-partitioned global hash table. The join oper-
ator comprises two kernels, a build kernel and a probe kernel. The
build kernel populates the hash table with the tuples of the smaller,
build relation. Crystal implements a linear probing strategy due to
its simplicity, with the hash table being implemented as a simple
array of slots with each slot containing a key and a payload without
any pointers. The probe kernel uses the other relation to search for
matches in parallel. Each thread block loads a tile from the probe
table, and each thread computes the local sum for a subset of tile
elements that meet the predicate condition. Then, all local values
are aggregated in a hierarchical fashion, first for all threads within a
block, and then across all thread blocks.

2.2 DPC++ conversion
In order to port the Crystal join from CUDA to DPC++, we start with
tooling support from oneAPI2. oneAPI is a cross-industry effort for
developing an open, standards-based unified programming model
to simply software development across diverse accelerator archi-
tectures. In addition to providing an open-source implementation
of SYCL with DPC++, Intel® oneAPI also provides performance-
portable, hardware-accelerated libraries to enable API-based pro-
gramming for various popular application domains, and tools to
assist in developing and profiling DPC++ applications. In this work
we focus on DPC++ Compatibility Tool that aims to convert CUDA
code to DPC++ at syntax level, recognizing the main CUDA con-
structs and converting them to their DPC++ equivalent. We use this
tool to convert the Crystal hash join implementation together with
necessary block-wide functions [13] from CUDA to DPC++. Our

2www.oneapi.com

goal in using the compatibility tool is to understand and document is-
sues in converting various aspects like data movement, kernel param-
eterization, atomics and synchronization from CUDA into DPC++,
in order to assist in future migration of current CUDA-based GPU
database engines [8–11]

Using the Compatibility Tool involves the use of the command
dpct that takes a .cu file as input and produces its DPC++ counter-
part, with dp.ct extension. Thus, we apply the command to all .cu
file of the project. At the source level, the overall translation is quite
accurate. dpct automatically adds necessary boilerplate such as
headers and compiler directives required for enabling DPC++ com-
pilation. Similarly, dpct preserves and converts templatized functions
that correspond to block primitives and join kernels of the Crystal
library for most part, with some minor syntactic modifications. At
the programming model level, dpct replaces CUDA kernel launches
with an nd_range parallel_for kernel. Further, CUDA data manage-
ment calls that move data from host to device memory, or assign
specific values to device allocated memory regions, are replaced
with appropriate DPC++ calls ( memcpy and memset functions of the
DPC++ queue class).

Despite its utility, dpct does not convert everything automatically
and correctly. The first issue concerns kernel dimensions. CUDA
programming model requires kernel dimensions to be specified in
terms of number of threads in a thread block, and the number of
thread blocks per grid. Moreover, both thread blocks and grids can
be multidimensional. Similarly, DPC++ uses the notion of work-item
and work-group. Thus, a CUDA thread block roughly corresponds
to a DPC++ work-group, and a CUDA thread gets mapped to a
work-item in DPC++. DPC++ also provides an nd_item object to
enable index lookup in a nd_range kernel. It represents the index of
each work-item. The compatibility tool converts the two CUDA join
kernels - build and probe - in two DPC++ nd_range parallel_for
kernels, and automatically adds the id_item as parameters of all
functions called in the kernel code. However, despite the fact that
the original code implements a 1D kernel, dpct converts it into 3-
dimensional kernel. As consequence, all accesses to the threads
indexes (local-id, global-id, group-id) within the kernel code were
wrong and needed to be rewritten.

Second, synchronization primitives and low-level constructs were
not ported correctly. For example, in the original code, threads in the
probe-kernel have to compute the sum of the product for all entries
that match the query predicate. This involves a certain number of
local sum computations performed by each thread that are first aggre-
gated at the tile level by all threads within a thread block, and then
aggregated across all thread blocks. This involves the use of memory
barriers, atomics, and synchronisation at various kernel execution
stages. More precisely, all threads in a warp compute aggregate
their value using a low level primitive (shuffle_down) that allows
inter-thread communication without any cost. The value computed
by each warp is saved in local memory. A tree-reduction pattern is
used to compute the aggregate sum per thread block. Finally, after all
thread blocks compute their local sum, the global sum is computed
using atomic instructions in the global memory.

While dpct is able to convert the memory barrier and the atomic
variables from CUDA to DPC++, it was not able to replace the warp-
level functions which are a central piece of the Crystal tile-based
probe kernel. Thus, we had to reimplement the logic. DPC++ already
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provides a set of functions that implement the main data-parallel
patterns at the work-group level. Thus, we map the concept of a
tile from Crystal to a work-group in DPC++ and use the reduce()
function of the work_group class to perform tile-level reduction
directly without having to implement warp-level shuffles and block-
level tree reduction manually.

The third problematic aspect of dpct is with respect to library calls.
For instance, the original CUDA implementation uses extensively
CUB library functions, for various tasks. dpct does not to port CUB
function calls automatically. As work around, we manually replace
these with calls to DPC++ functions that are semantically equivalent.

Finally, in some cases, even when the DPC++ conversion is se-
mantically correct, it might be suboptimal in terms of performance.
An example is the call to the memory barrier function. dpct converts
it automatically into a memory fence in both global memory and
local memory which are very expensive. However, in this specific
case, a memory fence in the local memory of each work-group was
sufficient. Thus, we optimized the code generated by dpct.

3 EVALUATION
In this section, we will present the experimental results. First, we
will investigate the ability of DPC++ to effectively parallelize XJoin
on multicore CPUs. Then, we will investigate the cross-architecture
portability of DPC++ by presenting a comparison of XJoin run-
ning on Intel® CPU, GEN9 iGPU and the recently-released Intel®

dGPU. Finally, we will investigate the cross-vendor portability of
DPC++ by comparing cross-compiled XJoin with the native CUDA
implementation of Crystal join using an NVIDIA dGPU.

3.1 Experimental Setup
3.1.1 Hardware Setup. We evaluate the DPC++ implementation on
two servers from Intel® DevCloud. The first one is equipped with an
Intel® GEN9 iGPU and a 6-core Intel(R) Xeon(R) E-2176G CPU
clocked at 3.70GHz; the second one with a Intel® Iris Xe Max DG1
dGPU. For the tests where we compare Crystal’s native CUDA hash
join with cross-compiled (DPC++ to CUDA) XJoin, we use a local
server equipped with an NVIDIA GeForce RTX 2080 Ti dGPU.

3.2 Scalability on CPU
In this section we present the results obtained by executing XJoin on
a 6-core CPU. We study the hash join by focusing on the following
microbenchmark query and configurations that are also used in the
original Crystal publication and other prior literature [1].
SELECT SUM (A.v * B.v) FROM A, B WHERE A.k = B.k

Tables A and B consist of two 4-byte integer columns k, v. The two
tables are joined on key k. The size of the probe table fixed at 256
million tuples, totaling 2GB of raw data. We use a hash table with
50% fill rate and vary the size of the build table such that it produces
a hash table in the range 8KB-512MB.

Figure1a shows the actual execution time of the probe kernel on
CPU for various build table sizes. We only report the execution time
for the probing phase of the join similar to prior work in Crystal [13]
to save space, as the probe table is much larger than the build table,
and the build kernel takes a fraction of time of the probe. In addition,
in order to understand how well XJoin performs on the CPU, we also
show the lower bounded execution time obtained from a theoretical

model that was also used in Crystal evaluation [13]. The theoretical
approach only considers the probe phase and models the runtime
such that the kernel is bounded by the device memory bandwidth
and/or by the cache bandwidth depending on whether the hash table
fits into one of caches available or not.

Note that the model provides a theoretical lower bound achievable
with the CPU as it assumes the program can exploit the maximum
memory bandwidth. In practice, the probe phase involves many
random memory accesses. As a result, observed memory bandwidth
is often much lower than peak bandwidth. Looking at Figure1a, we
see that the execution time increases twice, once after 256KB when
the hash table size does not fit in the L2 cache, and once after 12MB
when the hash table exceeds the size of the L3 cache. We also see
that in all cases, XJoin performance is within 2× of the theoretical
model. This shows that the DPC++ runtime is able to effectively
parallelize the data-parallel kernels, which were originally designed
for the GPU, to also exploit multicore CPU.

Right-sizing the kernel by specifying the right work-group size
plays a key role in achieving this CPU performance. In order to
understand the sensitivity of performance with respect to kernel
sizing, we test different values for the work-group size. Figure 2a
shows the performance of XJoin on the CPU as we vary the work-
group size from 64 to 2048. We fixed the probe table size at 256M
tuples and the hash table size at 4KB for this experiment. This result
clearly shows that similar to GPU kernels, the optimal choice of
work-group size on the CPU plays an important role in performance.
The results shown in Figure 1a are based on a work-group size of
1024 as it provides best performance.

3.3 XPU scalability
In this section we will show performances of the DPC++ join im-
plementation running on Intel® DG1 dGPU and GEN9 iGPU, and
compare these results with the previous CPU experiment. Simi-
lar to the CPU case, work-group sizing plays an important role in
GPU cases also. However, the maximum number of possible work-
groups varies across devices. For both GPUs, we vary the number
of work-items in each work-group from 64 up to their limit. We
fix the probe table size at 256M tuples and the hash table size at
4KB. Figures 2b, 2c show the execution time of the probe kernel
in various settings on GEN9 iGPU and DG1 respectively. As we
get the best performance with 128 work-items per group for both
GEN9 and DG1, we use those for sizing kernels. Using optimal
work-group sizes, we compare the performance of different archi-
tectures by varying the size of hash table while keeping the probe
table size fixed at 256M tuples. Figure 1b shows execution time of
probe kernel on dGPU and iGPU. As expected, the execution time
increases when the hash table size does not fit in the cache. For the
iGPU, these increases happen after 512KB (L2) and 2MB (L3). For
DG1, performance drop is observed after 64KB (local) and 20MB
(LLC). Figure 1b also shows the execution time obtained from the
theoretical model. XJoin lags the theoretical results by up 5× under
DG1. Comparing Figures 1b,1a, we also see that the DG1 dGPU
outperforms both GEN9 iGPU and the 6-core CPU. DG1 has 96
execution units compared to 24 in GEN9 iGPU. DG1’s onboard
global memory has a bandwidth of 62 GBps compared to the host
DRAM’s bandwidth of 35 GBps. As the probe table is fixed at 2GB,
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Figure 1: Execution time of XJoin probe kernel in various settings.
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Figure 2: Fine-tuning kernel dimension parameter.

it fits completely in the global memory of DG1 leading to better
performance than CPU/iGPU, and a bigger deviation of the theoreti-
cal model from the observed execution time. It is important to note
here that aside from the change in kernel dimensioning, and choice
of backend device, there was no change to the core kernel source
code. Thus, these results clearly demonstrate the cross-architecture
portability of DPC++.

3.4 Cross-platform execution
We will now demonstrate the cross-platform portability of DPC++
by comparing the performance of XJoin with respect to the origi-
nal Crystal hash join using NVIDIA GPU. In order to run XJoin
on NVIDIA GPU, we used CodePlay’s SYCL-for-CUDA exten-
sion3 that allows compiling applications written in DPC++ to run on
NVIDIA dGPUs. In terms of code, the main change required is the
recompilation of XJoin with a modified Clang++–LLVM compila-
tion infrastructure that supports a CUDA backend.

As before, Figure 2d shows the sensitivity of XJoin to work-group
size on the NVIDIA GPU. Figure 1c shows the execution time of the
probe kernel using the empirically-estimated optimal work-group
size of 256. Comparing Figures 1c, 1b, we see that XJoin on NVIDIA
GPU outperforms the DG1 by up to 5.4× when the hashtable does
not fit in last-level cache. This is expected given that the global mem-
ory on the NVIDIA GPU has a bandwidth of 616 GBps compared to
the 62GBps of DG1. Figure 1c also shows the execution time of the
original, hand-tuned, CUDA-based Crystal hash join. Note that both
joins have an inflection point in performance beyond 8MB, as the
size of the L2 cache in the GPU is 5.5MB. Comparing XJoin and
Crystal join, we see that the cross-compiled, DPC++-based XJoin is
always slower than its CUDA-based counterpart. The worst case dif-
ference between the two is at 4MB, when the hashtable fits in the L2
cache, where XJoin is 4.7× slower than Crystal join. However, be-
yond 8MB, the probe table accesses are served from global memory,
3https://github.com/codeplaysoftware/sycl-for-cuda

and the difference between the two drops to 1.29×. These results
show that cross-compiled implementation is less efficient than the
native implementation and there is room for further improvement.
However, considering the fact that the DPC++ implementation has
the advantage of being executable on Intel® GPU and multicore
CPU with no change in kernel code except for kernel dimensioning,
we believe that trading off performance to achieve portability is one
worth a serious consideration.

4 CONCLUSION AND FUTURE WORK
Developing applications that are performance-portable has been a
major challenge in the HPC world, and we believe that lack of per-
formance portability is one of the main reasons hindering a much
broader adoption of XPU by data management systems. Our work
shows that single-source, cross-architecture programming models
like DPC++ are a step in the right direction as they will enable key
data-parallel kernels to be written using standard C++ and coexist
with other components. Our work opens up several other lines of
future research. On the XPU front, an immediate avenue of future
work is evaluating XJoin on FPGA and comparing it with a state-
of-the-art FPGA-based join implementation [7]. On the runtime
front, more work is required to understand the gap in performance
between DPC++ and other optimized, proprietary platforms like
CUDA. On the database architecture front, an interesting avenue of
future work is to implement vectorized primitives as data-parallel
kernels in DPC++, with appropriately parameterized vector size, to
enable performance-portable query execution not just on CPU but
also on other XPU. Such an approach can be combined with tradi-
tional volcano exchange [6] to achieve intra-query heterogeneous
parallelism, as a CPU-based exchange operator can coordinate the
execution of different DPC++ primitives, and hence different parts
of a pipeline, across different XPU.
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