
Coded Caching under Asynchronous Demands
Eleftherios Lampiris, Hamdi Joudeh, Giuseppe Caire, Petros Elia

Abstract— The work focuses on optimizing coded caching un-
der asynchronous demands. We consider a single-stream setting
where users are allowed to request content at arbitrary time-
slots. Aiming to minimize the total system delay required to
serve all users, i.e. from the moment of the first request to the
delivery of the last bit of requested information, we design a
pair of placement and delivery algorithms and show that the
achievable performance is within a multiplicative factor of 2 from
the optimal, under the assumption of uncoded placement, and
within a multiplicative factor of 4.02 in the general placement
case. Interesting characteristics of our algorithms are that i) a
placement phase agnostic to the users’ arrival times is adequate
to provide a near-optimal delay, and ii) the proposed delivery
algorithm requires low complexity and, at the same time, requires
no non-causal information. Further, we show that systems are
able to withstand some degree of asynchronicity without an
increase in the delay compared to an equivalent synchronous
setting. Finally, we highlight an interesting connection between
coded caching under asynchronous demands and coded caching
in wireless environments under uneven channel strengths.

I. INTRODUCTION

The seminal work of Maddah-Ali and Niesen [1] explored
the fundamental performance of the single-link, bottleneck
setting where a server is connected to K cache-aided users.
The server has access to a library of N files and each user is
able to store the equivalent of M files, i.e. a fraction γ , M

N
of the library, while each user synchronously requests a single
file from the library.

The placement and delivery algorithms constructed in [1]
allowed, even if users requested different files, for each trans-
mission to serve Kγ + 1 users simultaneously. The delivery
time achieved by the algorithm of [1], normalized with respect
to file-size and link-rate, takes the form

TMAN =
K(1− γ)
1 +Kγ

. (1)

As proved in [2] (see also [3]) the performance in (1) is
exactly optimal under uncoded placement, while it is within
a multiplicative factor of 2.01 from the optimal, for general
placement schemes [4]. The factor 1 +Kγ, appearing at the
denominator of (1), is referred to as the multicast gain, as it

E. Lampiris and G. Caire are with the Electrical Engineering and Computer
Science Department, Technical University of Berlin, 10587, Germany, email:
{lampiris, caire}@tu-berlin.de.
H. Joudeh is with the Department of Electrical Engineering, Eindhoven
University of Technology, The Netherlands, email: h.joudeh@tue.nl.
P. Elia is with the Communication Systems Department at EURECOM, Sophia
Antipolis, 06410, France, email: elia@eurecom.fr.
The work is supported by the European Research Council under the EU
Horizon 2020 research and innovation program / ERC grant agreement no.
725929. (ERC project DUALITY) and by the European Research Council
under the EU Horizon 2020 research and innovation program / ERC grant
789190 - CARENET.

reveals the number of users that receive a useful part of their
requested file from a given message.

The initial framework of coded caching has been later
adapted to various settings including wireless broadcast chan-
nels [5]–[8], multi-antenna channels [9]–[11], and distributed
networks [12], [13], as well as incorporating different practical
requirements such as user privacy [14]–[16], heterogeneous
cache-sizes [17]–[20], decentralized coded caching [21], and
revealing the synergy between caching and PHY layer [22]–
[24], and the requirement for astronomical file sizes [25]–[27],
to name a few1.

A. Serving asynchronous requests

A key assumption in all the above works is that users
demand content at the same time. In reality, though, content
requests could begin and end at arbitrary times, causing delays
in cache-aided systems. Coded caching capitalizes on the fact
that many users ask for content simultaneously, and satisfies
these demands through multicast messages that serve many
users simultaneously. This desirable characteristic, though,
is susceptible to asynchronous requests simply because, a
multicast message may conceivably need to be transmitted
multiple times so as to convey information to all its intended
users, who may not be synchronously active. A consequence
of such repetition is the reduction of the multicast gains.

While there are some basic measures one can take to
alleviate this problem, such measures tend to be incomplete,
heuristic, and at the same time introduce a variety of other
drawbacks. A first such measure would be to wait until all K
users have placed their requests. The obvious drawback is that
the overall system delay increases, while users who arrive first
end up being penalized by latecomers.

A second basic measure would be to divide each file into
multiple smaller files. For example, one can imagine a movie
being divided into multiple one-minute segments. The delivery
algorithm of [1] would be applied for the requests of the first
users that appear in the system, communicating to those users
the first one-minute of their movie. After this transmission
has been completed, the system would apply the algorithm
of [1] in the first set of users plus the new set of users. The
first set of users would receive the second one-minute segment
of their movie, while the second set of users would receive
the first one-minute segment. This solution would retain the
coded caching gains, but requires to further subpacketize the
files, thus further exacerbating the problem of finite file size
and the related performance loss with respect to the ideal case
of very large files.

1We note that the above is not a comprehensive bibliography of coded
caching, something that would be beyond the scope of this paper.

B. State of art

Designing placement and delivery algorithms that can
jointly facilitate asynchronous demands is a problem that has
attracted attention, with multiple works seeking to design
algorithms which can counter the aforementioned loss in
coding gains [28]–[31].

The work in [29] considered a setting where users are able
to request files in arbitrary time-slots while they may end their
session before the requested file has been fully communicated.
The work in [30] considers a single-stream setting, where
users can potentially have heterogeneous cache-sizes, request
content asynchronously and pose delay constraints on the
reception of their requested content. The authors propose
an optimization algorithm that outputs the multicast message
order which would minimize the delivery time and abide by
the delay constraints imposed by the users. Finally, the work in
[31] considers a fog access network where each access point
has a cache, storing in a decentralized manner. For this setting,
the authors design coded caching transmission schemes with
the goal of reducing the impact of asynchronous requests.

C. Contributions and paper outline

In this work, we focus on the delay required to satisfy all
K user requests i.e., from the point when the first user arrives
to the point the last bit is transmitted. While we recognise
that the metric of choice may remain impractical for some
systems (see discussion in Sec. IV), it nonetheless constitutes
a first attempt into addressing this problem. For the proposed
problem, we develop an algorithm that minimizes this delay
and show that its performance is near-optimal; optimal within a
multiplicative factor of 2 under uncoded placement and within
a factor of 4.02 under any placement scheme.

We summarize some interesting outcomes of this work.
• We show that coded caching is able to withstand some

degree of asynchronicity, in the sense that it can achieve
the same performance as the equivalent synchronous
system even when users place requests asynchronously.
The two parameters that determine if the two delays
are the same are i) the multicasting gain, and ii) the
activation pattern of the users, i.e. the arrival times of
each user in the system. The lower the nominal gain,
the higher the potential to fully stave off asynchronicity.
The set of asynchronous activation patterns that bare no
asynchronicity penalty, are fully captured in our work.

• Users who request content last are not necessarily those
responsible for the increase in the delay. As we will show,
the increase in the overall delay can be typically attributed
to a user that arrives “somewhere in the middle”. It is
this threshold user that defines the overall delay, and
as a consequence, this delay would not reduce had the
remaining users arrived earlier than they actually did.

• A very important outcome of our work is that the
original placement algorithm of [1], which does not take
into account such demand asynchronicity, is capable of
achieving a near-optimal delay.

• Finally, the proposed placement and delivery schemes
have the advantage of being computationally efficient.
While previous works such as [29], [30] have proposed
schemes with complexity growing as a function of the
subpacketization, i.e. exponential in the number of users,
we instead show that our scheme requires very low
complexity.

II. SETTING AND NOTATION

We consider a single-stream shared-link noise-less channel,
where one server is connected to a set of K users. The server
has access to a library of N files, {Wn}Kn=1, each of size F
bits, while each user is equipped with a cache of size M · F
bits, i.e. a cache of normalized size γ = M

N . Each user requests
a single file from the library, in some arbitrary time. Index dk
denotes that file W dk is requested by user k.

We assume that time is slotted, and requests are placed at
any arbitrary time-slot. Further, the time difference between
any two time-slots is equal to the time required to transmit
F/
(
K
Kγ

)
bits. We denote with tk, k ∈ [K] the time-slot

during which user k places its request, where without loss
of generality ti ≤ tj , ∀i > j while we set tK = 0, i.e. the
user placing a request first is user K, followed by user K− 1
and so on. The session is completed once all users are served,
and we are interested in minimizing the overall session time.

Notation: We use [K] , {1, 2, ...,K} for the set of the
first K integers, while | · | denotes the cardinality of a set. For
natural numbers n, k the binomial coefficient is defined as

(
n

k

)
=

{
n!

(n−k)!k! , n ≥ k
0, n < k.

Remark 1. We note that despite the fact that the arrival
process is represented as a function of the subpacketization,
this is done purely for the sake of simplicity of representing
the different tk values in integer form. In principle the arrival
process is represented in basic units of time.

III. MAIN RESULTS

Theorem 1. The achievable overall delivery time for the
single-stream channel where K users ask for files at arbitrary
time-slots tk and where each user is equipped with a cache
of normalized size γ is given by

T = max
w∈[K]

{
tw +

(
K

Kγ+1

)
−
(
K−w
Kγ+1

)
(
K
Kγ

)
}

(2)

and is within a multiplicative factor of 2 from the optimal
delay under the assumption of uncoded placement, and within
4.02 under general placement schemes.

Proof. The achievability part of the proof is described in Sec-
tion III-A, while the converse is proved in Section III-B.

Remark 2. From Theorem 1 we see that the achieved delay is
not, necessarily, dependent on the user who arrives last, but
rather on some intermediate user w who maximizes (2).

Corollary 1. The proposed algorithm is able to serve every
request with delay equal to the synchronous system while each
user w ∈ [K] places a request to the system with delay

tw ≤
(
K − w
Kγ + 1

)
. (3)

Proof. The proof is described in Section III-C.

A. Achievable scheme
In this section we propose a new, order-optimal delivery

scheme that minimizes the overall delay, from the time when
the first user arrives to the system until the last bit of requested
information has been communicated.

Remark 3. The near-optimal placement and delivery algo-
rithms presented in the next section do not require knowledge
of the users’ arrival times.

a) Placement algorithm: The placement algorithm is
borrowed from [1], thus we only describe this process here
in short. Each file is divided into S =

(
K
Kγ

)
subpackets as

Wn → {Wn
τ : τ ⊂ [K], |τ | = Kγ}, ∀n ∈ [N] (4)

such that each subfile is described by a Kγ-length index whose
elements belong in set [K]. Subsequently, user k ∈ [K] stores
all subfiles whose index contains k, and thus cache Zk of user
k, is filled as follows

Zk = {Wn
τ : τ 3 k,∀n ∈ [N]}. (5)

b) Delivery algorithm: During the delivery phase, each
user is allowed to request a single file at an arbitrary time-
slot. Without loss of generality we assume that users place
requests in a descending order2, i.e. user K arrives first, then
user K − 1 and so on.

The multicast messages that will eventually convey the
requested files to the users are formed as in the algorithm
of [1]. Hence, a multicast message aimed for users of set
σ ⊆ [K], |σ| = Kγ + 1, takes the form

Xσ =
⊕

k∈σ

W dk
σ\{k}. (6)

Remark 4. We note that any message Xσ is just a placeholder
which is then evaluated during the time of the transmission. If
all users in σ are active then the message is formed as in (6).
In a different case the message is formed using the subset of
users from σ that are currently active.

During each iteration of the algorithm (time-slot t) the
algorithm uses sets P (t) and Kact. Set P (t) stores all the
remaining multicast messages that need to be communicated,
and set Kact represents the set of active users. At each time-
slot t the algorithm is responsible of selecting a new multicast
message to communicate to the users. This message is picked
from P (t) such that the set of its intended users is a maximal
subset of the set of active users. In other words, the algorithm
picks a message that would be useful to as many active users
as possible.

2In a different case we can simply rename the users to reflect this ordering.

Algorithm 1: Communicating under asynchronous re-
quests

1 Initialize: P (0) = {Xσ, σ ⊆ [K], |σ| = Kγ + 1},
Kact = ∅, t = 0

2 while Kact 6= [K] & P (t) 6= ∅ do
3 if user k arrives then
4

Kact = Kact ∪ {k}

5 Pick multicast message Xσ such that

Xσ ∈ P (t) : σ ∈ arg max
φ⊆[K]
|φ|=Kγ+1

{ ∣∣φ ∩ Kact
∣∣ }

6 Transmit Xσ .
7 if σ ⊆ Kact then
8 P (t) = P (t) \ {Xσ}.
9 t = t+ 1

10 P (t) = P (t− 1)

c) Algorithm description: Algorithm 1 begins by initial-
izing sets P (0) and Kact. The main part of the algorithm is
governed by a While loop, where each iteration corresponds
to a single time-slot.

Inside the While loop is an If condition, which is used to
ascertain whether a new user has become active, in which case
set Kact is updated to include this new user (Step 4).

Further, in Step 5 the algorithm selects one multicast
message Xσ ∈ P (t), such that it forms a maximal subset
of the active-users set, i.e. is aimed to serve as many users
as possible. If all users of the selected multicast message are
active, then the algorithm removes Xσ from set P (t) (Steps
7−8). Finally, in Step 9 the the time index is updated as well
as the message set P (t) (Step 10) and the algorithm proceeds
with the next iteration.

Remark 5. The complexity of the algorithm at some time-slot
t depends on identifying one multicast message which belongs
in set P (t) and serves as many active users as possible.

d) Delay calculation: The metric of interest is the delay
required to serve all K users. In each time-slot t the algo-
rithm is responsible for selecting one multicast message for
transmission, such that it serves the maximum possible active
users. At each time-slot tk the size of set P (tk) is

|P (tk)| ≥
(

K

Kγ + 1

)
−
(
K − k
Kγ + 1

)
(7)

because the algorithm cannot remove from P (t) messages for
users that have not appeared. At any given slot tk the algorithm
will need to iterate a minimum of |P (tk)| slots such that
it would serve the remaining messages in P (tk). Thus, the
achieved delay needs to be greater or equal to

T ≥ max
m∈[K]

{
tm +

(
K

Kγ+1

)
−
(
K−m
Kγ+1

)
(
K
Kγ

)
}
. (8)

Naming the user who maximizes the left-hand-side of (10)
as user w we observe that

tw+

(
K

Kγ+1

)
−
(
K − w
Kγ+1

)
≥ ty+

(
K

Kγ+1

)
−
(
K − y
Kγ+1

)

(
K − y
Kγ + 1

)
−
(
K − w
Kγ + 1

)
≥ ty − tw, ∀y < w. (9)

From (9) we see that the number of messages intended to
at least one user from the set of users {y + 1, ..., w} are less
than the number of time-slots between tw and ty . Hence, in
each time-slot t ≥ tw the algorithm will transmit and then
remove one message from set P (t). This further means that
the achievable delay is given by

T = max
w∈[K]

{
tw +

(
K

Kγ+1

)
−
(
K−w
Kγ+1

)
(
K
Kγ

)
}
. (10)

�
We proceed with two examples that aim to illustrate the

mechanics of Algorithm 1.

Example 1. Let us consider a single-stream setting where
K = 4 users will request files from a library of N = 4 files,
and Each user has a cache of normalized size γ = 1

4 . The
cached content at user k ∈ [4] takes the form

Zk = {Wn
k ,∀n ∈ [N]}. (11)

We assume3 that the arrival times of the users are as follows

(t4, t3, t2, t1) = (0, 0, 1, 3). (12)

According to (2), the achievable delay is given by

T =
1

4
·max
k∈[4]

{
6 + t4, 6 + t3, 5 + t2, 3 + t1

}
=

3

2
(13)

i.e., equal to the synchronous case.
The delivery phase begins when users 3, 4 arrive to the

system. The set of active users Kact is updated, while the set
of desired multicast messages is now4

P (0) = {D3 ⊕ C4, D1 ⊕A4, D2 ⊕B4, C2 ⊕B3,

C1 ⊕A3, A2 ⊕B1}.

During some time-slot t the algorithm selects one multicast
message from set P (t) such that the biggest possible number
of users associated with this message also appear in set Kact.
Thus, in time-slot t = 0 the only message that satisfies the
above requirement is D3 ⊕ C4. This message is sent, and
subsequently removed from set P (0) so that a new iteration
of the algorithm starts.

At the beginning of time-slot 1, user 2 arrives at the system,
which prompts the update of the active users set to Kact =
{2, 3, 4}. There are two possible messages that can be selected
for transmission, C2 ⊕ B3 and D2 ⊕ B4, since both contain
the maximal number of active users. One of those messages

3For simplicity we name the requests of each user by consecutive letters,
i.e. A ,W d1 , B ,W d2 , and so on.

4The multicast messages of set P (t) are formed using the requests of the
active users, and are updated every time a user arrives at the system.

is selected at random, it is transmitted, and then is removed
from set P (1). At the beginning of time-slot t = 2, and given
that no new user joins, the other of the above two messages
is selected, sent, and removed from P (2).

At time-slot t = 3 all users are active, hence the algorithm
can proceed with the transmission of the remaining messages
in an arbitrary order. Completing the transmission required 6
time-slots, thus the delay of the algorithm is T = 6

4 .

Example 2. We consider the same system of K = 4 users, but
now the arrival times of the users are

(t4, t3, t2, t1) = (0, 1, 2, 3). (14)

Similarly, the achievable delay becomes

T =
1

4
·max
k∈[4]

{
6 + t4, 6 + t3, 5 + t2, 3 + t1

}
=

7

4
. (15)

When user 4 places a request the set of active users Kact is
updated, while the set of desired multicast messages is

P (0) = {D3 ⊕ C4, D1 ⊕A4, D2 ⊕B4, C2 ⊕B3,

C1 ⊕A3, A2 ⊕B1}.

Time-slot t = 0: The algorithm select one of the messages
D3 ⊕ C4, D1 ⊕ A4, D2 ⊕ B4. This message is sent, but not
removed from set P (0) due to the fact that not all of its
intended users are active.

Time-slot t = 1: User 3 arrives at the system, which
prompts the update of the active-users set to Kact = {3, 4}.
The only message that corresponds to a maximal subset of
active users is D3 ⊕ C4, which is transmitted and removed
from P (1).

Time-slot t = 2: The set of active-users is Kact =
{2, 3, 4}, hence the algorithm selects one of D1⊕A4, D2⊕B4

messages for transmission and then removes it from set P (2).
Time-slot t = 3: At this point all users are active

hence, the algorithm can proceed with the transmission of
the remaining messages in an arbitrary order. Completing
the transmission required 7 time-slots, thus the delay of the
algorithm is T = 7

4 .

B. Converse

We consider a hypothetical augmented system comprised
of w users, where w corresponds to the user that maximizes
expression (2). These w users place requests simultaneously
at time-slot tw and which requests can be served using the
algorithm of [1], with delay

T[w] =
tw(
K
Kγ

) w(1− γ)
1 + wγ

(16)

which is exactly optimal under uncoded placement schemes
[2], [3] and within a multiplicative factor of 2.01 for general
placement schemes [4]. Hence, a lower bound on the above
augmented system is also a lower bound on the achievable
result of Theorem 1. This bound takes the form

T ≥ tw(
K
Kγ

) + 1

b

w(1− γ)
1 + wγ

(17)

where factor b = 1 when considering uncoded placement,
while b = 2.01 for general placement schemes. Comparing
(17) with the achievable delay in (2), we get

tw+(K
Kγ+1)−(

K−w
Kγ+1)

(KKγ)
tw
(KKγ)

+ 1
b
w(1−γ)
1+wγ

(i)

≤

(K
Kγ+1)−(

K−w
Kγ+1)

(KKγ)
1
b
w(1−γ)
1+wγ

(ii)

≤ 2b (18)

where inequality (i) is achieved by using the fact that the ratio
is maximized when tw = 0, while inequality (ii) uses a result
from [7], and which concludes the proof. �

C. Intuition on the results

An interesting characteristic of our algorithm is that it can—
in certain cases—maintain the fully synchronous performance
corresponding to the scenario where all the requests come
at the very beginning (time t = 0). As we showed above,
by prioritising at any given time-slot the multicast messages
intended for a maximal subset of users who are simultaneously
active, we are able, to a certain extent achieve the same delay
as the synchronous system.

In this section we characterize the maximum delay that is
allowed for any user to place a request while still allowing the
achieved delay to be equal to the synchronous case.

Using the result of Theorem 1 and requiring the delay to
be equal to that of the synchronous case (cf. (1)) we have

(
K

Kγ+1

)
(
K
Kγ

) ≥
tw +

(
K

Kγ+1

)
−
(
K−w
Kγ+1

)
(
K
Kγ

) , ∀w ∈ [K] (19)

hence, for the asynchronous system to enjoy the same delay
as the synchronous one, then the arrival time-slot of any user
may not exceed

tw ≤
(
K − w
Kγ + 1

)
. (20)

In Fig. 1 we display the maximum allowed, per-user delay
which can still achieve the delay of the synchronous problem.

0 10 20 30 40 50 60 70 80 90 User index
0

1.25

2.5

5

7.5

10

User arrival threshold time (norm. by
(
K
Kγ

)
)

Fig. 1. The delay thresholds that achieve the synchronous delay in settings
with K = 100 users.

Remark 6. Let us focus on the setting of Figure 1 that is
comprised of K = 100 users with caches of normalized size
γ = 5

100 (corresponding to Kγ = 5, solid blue line). We notice

that even if 30 users place requests with delay 1.5
(
100
5

)
time-

slots, the system will still experience the synchronous system
delay, thus incurring no penalty from asynchronicity. Similarly
for the setting with γ = 1

10 we observe that 12 users can
become active at time-slot 1.5

(
100
10

)
while allowing the system

to experience the same delay as the synchronous one.

IV. FINAL REMARKS & FUTURE WORK

It is interesting to observe the striking similarity between
the current setting and the (wireless) coded caching setting
with non-identical link capacities (cf. [7], [8]). In this latter,
degraded channel setting each user—instead of having an
equally strong channel of unit normalized capacity (as in
[1])—experiences a reduced strength link of some capacity
αk ∈ (0, 1]. As shown in [7], [8] the order-optimal delay takes
the form

Tdeg = max
w∈[K]

{
1

αw

(
K

Kγ+1

)
−
(
K−w
Kγ+1

)
(
K
Kγ

)
}

(21)

which nicely resembles (2) and which draws a parallel between
the effects of channel asymmetry and temporal asynchronicity.

Future work: We note that in the longer version of this
work we explore and describe the following scenarios as well:
• Completing user-requests in a “first-in-first-out” manner

and minimizing the time each user spends in the system.
• Designing coded caching for delay-sensitive applications,

where each request is accompanied by a strict completion
time-frame.

REFERENCES

[1] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
IEEE Trans. on Information Theory, vol. 60, pp. 2856–2867, May 2014.

[2] K. Wan, D. Tuninetti, and P. Piantanida, “An index coding approach
to caching with uncoded cache placement,” IEEE Transactions on
Information Theory, vol. 66, no. 3, pp. 1318–1332, 2020.

[3] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “The exact rate-
memory tradeoff for caching with uncoded prefetching,” IEEE Transac-
tions on Information Theory, vol. 64, pp. 1281–1296, Feb 2018.

[4] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Characterizing the
rate-memory tradeoff in cache networks within a factor of 2,” IEEE
Transactions on Information Theory, vol. 65, pp. 647–663, Jan 2019.

[5] J. Zhang and P. Elia, “Wireless coded caching: A topological perspec-
tive,” in IEEE International Symposium on Information Theory (ISIT),
pp. 401–405, June 2017.

[6] E. Lampiris, J. Zhang, and P. Elia, “Cache-aided cooperation with no
CSIT,” in IEEE International Symposium on Information Theory (ISIT),
pp. 2960–2964, June 2017.

[7] E. Lampiris, J. Zhang, O. Simeone, and P. Elia, “Fundamental limits of
wireless caching under uneven-capacity channels,” in Internation Zurich
Seminar (IZS), Feb 2020.

[8] H. Joudeh, E. Lampiris, P. Elia, and G. Caire, “Fundamental limits of
wireless caching under mixed cacheable and uncacheable traffic,” in
IEEE International Symposium on Information Theory (ISIT), June 2020.

[9] S. P. Shariatpanahi, S. A. Motahari, and B. H. Khalaj, “Multi-server
coded caching,” IEEE Transactions on Information Theory, vol. 62,
pp. 7253–7271, Dec 2016.

[10] E. Lampiris, A. Bazco-Nogueras, and P. Elia, “Resolving the feed-
back bottleneck of multi-antenna coded caching,” arXiv preprint
arXiv:1811.03935, 2018.

[11] E. Lampiris and P. Elia, “Bridging two extremes: Multi-antenna coded
caching with reduced subpacketization and CSIT,” SPAWC, 2019.

[12] M. Bayat, R. K. Mungara, and G. Caire, “Achieving spatial scal-
ability for coded caching over wireless networks,” arXiv preprint
arXiv:1803.05702, 2018.

[13] M. Bayat, K. Wan, and G. Caire, “Coded caching over multicast routing
networks,” 2020.

[14] F. Engelmann and P. Elia, “A content-delivery protocol, exploiting
the privacy benefits of coded caching,” in 2017 15th International
Symposium on Modeling and Optimization in Mobile, Ad Hoc, and
Wireless Networks (WiOpt), pp. 1–6, 2017.

[15] K. Wan and G. Caire, “On coded caching with private demands,” arXiv
1908.10821, Aug. 2019.

[16] Q. Yan and D. Tuninetti, “Fundamental limits of caching for demand
privacy against colluding users.” arXiv 2008.03642, Aug. 2020.

[17] A. Sengupta, R. Tandon, and T. C. Clancy, “Layered caching for
heterogeneous storage,” in 2016 50th Asilomar Conference on Signals,
Systems and Computers, pp. 719–723, Nov 2016.

[18] A. M. Ibrahim, A. A. Zewail, and A. Yener, “Coded caching for hetero-
geneous systems: An optimization perspective,” IEEE Transactions on
Communications, vol. 67, no. 8, pp. 5321–5335, 2019.

[19] E. Lampiris and P. Elia, “Full coded caching gains for cache-less users,”
IEEE Transactions on Information Theory, Aug 2020.

[20] M. Mohammadi Amiri, Q. Yang, and D. Gündüz, “Decentralized caching
and coded delivery with distinct cache capacities,” IEEE Transactions
on Communications, vol. 65, pp. 4657–4669, Nov 2017.

[21] M. A. Maddah-Ali and U. Niesen, “Decentralized coded caching at-
tains order-optimal memory-rate tradeoff,” IEEE/ACM Transactions on
Networking, vol. 23, pp. 1029–1040, Aug 2015.

[22] S. P. Shariatpanahi, G. Caire, and B. Hossein Khalaj, “Physical-layer
schemes for wireless coded caching,” IEEE Transactions on Information
Theory, vol. 65, pp. 2792–2807, May 2019.

[23] A. Tölli, S. P. Shariatpanahi, J. Kaleva, and B. H. Khalaj, “Multi-antenna
interference management for coded caching,” IEEE Transactions on
Wireless Communications, vol. 19, no. 3, pp. 2091–2106, 2020.

[24] E. Lampiris, P. Elia, and G. Caire, “Bridging the gap between multi-
plexing and diversity in finite snr multiple antenna coded caching,” in
2019 53rd Asilomar Conference on Signals, Systems, and Computers,
pp. 1272–1277, 2019.

[25] K. Shanmugam, M. Ji, A. M. Tulino, J. Llorca, and A. G. Dimakis.,
“Finite-length analysis of caching-aided coded multicasting,” IEEE
Transactions on Information Theory, vol. 62, pp. 5524–5537, Oct 2016.

[26] Q. Yan, M. Cheng, X. Tang, and Q. Chen, “On the placement delivery
array design for centralized coded caching scheme,” IEEE Transactions
on Information Theory, vol. 63, pp. 5821–5833, Sep. 2017.

[27] E. Lampiris and P. Elia, “Adding transmitters dramatically boosts coded-
caching gains for finite file sizes,” IEEE Journal on Selected Areas in
Communications (JSAC), vol. 36, pp. 1176–1188, June 2018.

[28] U. Niesen and M. A. Maddah-Ali, “Coded caching for delay-sensitive
content,” in 2015 IEEE International Conference on Communications
(ICC), pp. 5559–5564, 2015.

[29] Q. Yang, M. Mohammadi Amiri, and D. Gündüz, “Audience-retention-
rate-aware caching and coded video delivery with asynchronous de-
mands,” IEEE Transactions on Communications, vol. 67, no. 10,
pp. 7088–7102, 2019.

[30] H. Ghasemi and A. Ramamoorthy, “Asynchronous coded caching with
uncoded prefetching,” IEEE/ACM Transactions on Networking, pp. 1–
14, 2020.

[31] Y. Jiang, W. Huang, M. Bennis, and F. Zheng, “Decentralized asyn-
chronous coded caching design and performance analysis in fog radio
access networks,” IEEE Transactions on Mobile Computing, vol. 19,
no. 3, pp. 540–551, 2020.

