
Accel-Align: A Fast Sequence Mapper and Aligner
Based on the Seed–Embed–Extend Method
Yiqing Yan 1 Nimisha Chaturvedi 2 and Raja Appuswamy 1,∗

1Data Science Department, EURECOM, Biot, 06410, France and
2ACCELOM, Antibes, 06600, France.

∗To whom correspondence should be addressed.
Abstract

Background: Improvements in sequencing technology continue to drive sequencing cost towards $100
per genome. However, mapping sequenced data to a reference genome remains a computationally-
intensive task due to the dependence on edit distance for dealing with indels and mismatches introduced by
sequencing. All modern aligners use seed–filter–extend (SFE) methodology and rely on filtration heuristics
to reduce the overhead of edit distance computation. However, filtering has inherent performance–accuracy
trade-offs that limits its effectiveness.
Results: Motivated by algorithmic advances in randomized low-distortion embedding, we introduce seed–
embed–extend (SEE), a new methodology for developing sequence mappers and aligners. While SFE
focuses on eliminating sub-optimal candidates, SEE focuses instead on identifying optimal candidates. To
do so, SEE transforms the read and reference strings from edit distance regime to the Hamming regime
by embedding them using a randomized algorithm, and uses Hamming distance over the embedded set
to identify optimal candidates. To show that SEE performs well in practice, we present Accel-Align, an
SEE-based short-read sequence mapper and aligner that is 3-12× faster than state-of-the-art aligners
on commodity CPUs, without any special-purpose hardware, while providing comparable accuracy.
Conclusions: As sequencing technologies continue to increase read length while improving throughput
and accuracy, we believe that randomized embeddings open up new avenues for optimization that cannot
be achieved by using edit distance. Thus, the techniques presented in this paper have a much broader
scope as they can be used for other applications like graph alignment, multiple sequence alignment, and
sequence assembly.
Availability: https://github.com/raja-appuswamy/accel-align-release
Contact: raja.appuswamy@eurecom.fr

1 Introduction
Over the last decade, DNA sequencing technology has achieved dramatic
improvements in both cost and throughput. With the $100-per-genome
sequencing goal emerging as a realistic target in the near future, the amount
of genomic data generated by sequencing is only poised to grow faster. The
first, and often one of the most time consuming steps, in analyzing genomic
datasets is sequence alignment–the process of determining the location in
the reference genome of each sequencing read. Sequence alignment can
be boiled down to a string matching problem. Given a string G as the
reference genome, and a set of substrings R as the sequencing reads, the
task of read alignment is to find the origin location of each read r ε R in G.
However, due to sequencing errors, and differences between the reference
genome and the sequenced organism, a read might not exactly align at
any candidate location in the reference genome. Thus, an aligner has to
perform approximate string matching to tolerate errors.

The error-handling capability of a string matching algorithm is related
to the distance metric used for comparing strings. The two popular string
distance metrics are Hamming distance which only counts the number
of position-wise mismatches between two strings, and edit distance or

Levenshtein distance, which counts the difference between two strings
while allowing for characters to be inserted or deleted. Aligners can
be classified into ungapped or gapped depending on whether they use
Hamming or Levenshtein distance for computing mismatch between reads
and the reference Canzar and Salzberg (2017). As modern sequencers can
produce both substitution and indel errors, gapped aligners are preferred
in practice over their ungapped counterparts.

Modern gapped read aligners, like Bowtie2, BWA-MEM, and
Minimap2, can map thousands of reads per second to the reference
genome. However, as sequencing datasets continue to grow at a rapid
pace, even these state-of-the-art aligners face scalability bottlenecks due
to a crucial design aspect that is universal across all gapped read aligners–
the use of edit-distance as a string comparison metric. Computing edit
distance between two sequences is a computationally-expensive task that
takes approximately quadratic time in the length of the input sequences.
Given that sub-quadratic computation of edit distance is extremely unlikely
Backurs and Indyk (2015), the brute force approach of trying to align a
read at each position in the reference is infeasible even for a single read
due to sheer number of edit-distance computations that would be required.
State-of-the-art aligners add to this complexity through the use of affine-
gap penalty scoring function with optional soft clipping. Thus, all modern

2 Yan et al.

aligners focus on minimizing the number of such computations using a
seed-filter-extend (SFE) strategy for performing alignment Canzar and
Salzberg (2017).

SFE strategy works by first indexing the reference genome. Each read
is processed in three steps. First, reads are broken down into smaller
segments, referred to as seeds, and these seeds are used to look up potential
mapping locations in the reference genome using an index. Second,
candidate filtering techniques are used to filter out as many candidate
locations as possible to minimize the overhead of the extension stage.
Third, during the extension stage, the entire read is aligned at each of
unfiltered candidate locations using the edit-distance-based approximate
string matching algorithms.

Candidate filtering plays an important role in determining the overall
throughput and scalability of read alignment, as it can eliminate many
locations that would result in an incorrect mapping. However, current
candidate filtering techniques present a performance–accuracy trade off.
State-of-the-art candidate filtering techniques can be classified broadly as
elimination-based or selection-based depending on the type of filtering
strategy used. Elimination-based techniques, like adjacency filtering Xin
et al. (2013), shifted hamming distance Xin et al. (2015b), focus on
maintaining a high accuracy by conservatively eliminating candidate
locations without significantly increasing the probability of misalignment
due to accidental elimination of a true match. Recent research has
demonstrated that such techniques create computational bottlenecks of
their own that need to be addressed using specialized hardware Kim et al.
(2018); Alser et al. (2019). Selection-based techniques, like voting in
Subread Liao et al. (2013b), in contrast, use computationally less intensive
selection criteria to directly pick a few candidate locations. Thus, they
trade off accuracy for performance, as the selection criteria can end up
eliminating a true match.

In this paper, we investigate a new selection-based candidate filtering
strategy based on recent theoretical advances in the design of randomized
algorithms that can perform embedding from edit distance into Hamming
distance with very low distortion Chakraborty et al. (2016). These
algorithms provide a one-to-one mapping f that can be used to transform a
set of strings S into another set of strings S’, such that the worst case ratio
between Hamming distance of any two strings f(x) and f(y) in S’, and the
edit distance of their equivalent strings x and y in S, also called distortion,
is very low. In this work, we investigate the use of such randomized
algorithms in designing a Seed-Embed-Extend (SEE) aligner. An SEE
aligner uses seeding to identify candidate locations similar to other SFE
aligners. Randomized algorithms are then used to embed the reference
string at each candidate location, and the Hamming distance between the
embedded reference and the embedded read is used to rank the candidate
locations based on likelihood of being an actual alignment target. Finally,
candidates with the highest rank are chosen for extension.

To show that SEE works well in practice, we present Accel-Align–
an SEE-based short-read sequence mapper and aligner that can provide
both extension-free mapping and base-to-base alignment with CIGAR
and MAPQ. In doing so, we show that a naive implementation of SEE
will result in the embedding step becoming a computational bottleneck,
and describe several optimizations that Accel-Align uses to implement
SEE-based alignment effectively. Using experimental results from both
simulated and real datasets, we show that embedding is capable of picking
locations that are likely to be the correct alignment targets with very
high accuracy. Using the SEE-approach to sequence alignment, Accel-
Align can align 280,000 100bp reads per second on a commodity quad-core
CPU, and is up to 9× faster than BWA-MEM, 12× faster than Bowtie2, and
3× faster than Minimap2, while providing comparable accuracy without
using any special purpose hardware. We believe that SEE specifically, and
embedding in general, is a robust technique that opens up new optimization

opportunities not only for sequencing alignment, but also for several other
computational biology problems that rely on edit distance.

2 Methods
Accel-Align adopts the SEE methodology for sequence alignment. During
alignment, Accel-Align processes each read by first extracting seeds to
find candidate locations. After seeding, Accel-Align embeds both the
read string and the reference string at each candidate location found by
seeding. After embedding, Accel-Align calculates the Hamming distance
between each embedded reference and the read, and selects the two best
candidate locations with the lowest Hamming distance for extension and
scoring. In the rest of this section, we will introduce each of the three
stages of SEE, and their implementation in Accel-Align, in detail.

2.1 Building the index and seeding

2.1.1 Building the index
As Accel-Align uses seeding, it requires the reference genome to be
indexed before execution. Similar to other aligners, we construct an index
over the reference genome in a separate, offline phase. The index is a
hash table of key-value pairs, where the key and value are both 32-bit
unsigned integers. In order to populate the hash table, we extract k-mers
from each position of the reference genome. As the reference sequence
usually contains only 4 characters, namely A, T, C and G, we convert each
character in the extracted k-mer into a two-bit equivalent representation.
Any k-mers that contain ’N’ characters are not added to the index. The
k-mer length is a configurable parameter in Accel-Align, but we set it to
32 to enable a k-mer to fit in a single 64-bit integer. We hash the k-mer to
generate the key by using a simple modulo-based hash function that maps
the 64-bit integer into one ofM buckets, whereM is a large prime number
that fits in a 32-bit integer. The 32-bit reference location offset from where
the k-mer was extracted is the value associated with the key.

As the hash table is repeatedly used for looking up candidates during
alignment, it is important to physically store these key–value pairs
efficiently. We do this by using a chained hash table implementation based
on two flat 32-bit integer arrays. With our construction, there are at most
M different keys and N − k + 1 different values, where N is the length
of reference genome. As multiple k-mers can hash to the same key, each
key can correspond to multiple position values. We gather all position
values for each key, sort them individually, and store all such sorted values
together, in key order, in a single position array. We represent the keys
implicitly by an offset in a separate 4GB key array, and in each key-array
entry, we store the cumulative count of candidate positions for all keys
smaller than that key. Thus, as the position array is ordered by key, all the
candidate locations indexed between the offsetsK andK +1 in position
table belong to the key K. The process is illustrated in Fig 1. Thus, the
entire index, represented using the key and position arrays, is saved in a
single file on disk, and loaded in memory whenever alignment starts.

2.1.2 Seeding
During seeding phase of alignment, we extract all non-overlapping k-mers
of each read. For each k-mer, we compute the key, and use the key to
extract the list of candidate positions. In situations where the seeds do
not produce any candidates, we perform non-overlapping seeding after
shifting the offset of the first seed by one position repeatedly until we find
candidate positions. The positions are adjusted using the offset of the k-
mer into the read to get normalized candidate positions. Then, we merge
the candidate lists across k-mers to produce the final list of normalized
positions that does not have any duplicates. One way of performing this
merging is to gather all candidates in an array, sort it, and then find unique

Accel-Align 3

Fig. 1. An index building example. Xi represents a 32-mer extracted from reference genome. a, b, c, d are the keys calculated from Xi . ni represents the number of keys smaller than
the corresponding key. For example, n1 is the number of keys smaller than a. Specifically, X1 , X4 and X7 have the same key a. So there are n1 + 3 keys smaller than a + 1. Thus, l1 ,
l2 and l3 indexed with n1 , n1 + 1, n1 + 2 in value table are the locations for X1 , X4 and X7 .

elements. However, such an approach would takeO(Nl lgNl) time ifNl

is the total number of candidates across all k-mers.
We avoid sorting by exploiting the physical organization of our hash

table index. The position array of the hash table contains a key-ordered list
of candidate positions, where each key’s candidates are stored in sorted
order. Thus, during seeding, the candidates retrieved for each k-mer will
also be in sorted order. We maintain a min-priority queue of size Nk ,
where Nk = readlength/k is the number of k-mers in each read, and
initialize it with the first candidate location of each k-mer. Then, we pop
the minimum value from the queue and push the next candidate from the
same k-mer as the popped one into the queue. We repeat the pop–and–push
steps until the all candidates have been processed. This approach allows
us to process all candidates in O(Nl) time without sorting as long as the
number of k-mers is small enough to keep the overhead of min-priority-
queue negligible, which we found to be the case for short-read alignment
using an empirical evaluation.

In the case of single-end reads, we don’t apply any filtering to the
merged candidate lists. Thus, all candidates are passed to the embedding
stage. For paired-end reads, however, we use a configurable pairwise-
distance threshold for identifying candidates from one read that have a
matching pair within the specified distance in the other read. All such
candidate pairs are passed to the embedding stage.

2.2 Embedding

After candidate locations are identified by seeding, Accel-Align moves
to embedding, the second stage of SEE. We extract strings of length
equal to the read length from the reference genome at each candidate
location. The goal of embedding is to transform these reference strings,
and the query string which is the read, into different strings such that
the edit distance between the original strings can be approximated using
the Hamming distance between new strings. We have implemented two
randomized embedding algorithms in Accel-Align.

2.2.1 3N -embedding
The first algorithm was proposed by Chakraborty et al. (2016) who showed
that given two strings x, y of length N taken from an alphabet

∑
such

that dE(x, y), the edit distance between x and y, is less than K, there
exists an embedding function f :

∑N →
∑3N , such that the distortion

D(x, y) = dH(f(x), f(y))/dE(x, y) lies in [1, O(K)] with at least
0.99 probability, where dH(x, y) is the Hamming distance between the
embedded strings. In other words, Chakraborty et al. (2016) proposed a

randomized algorithm that can embed strings of length N into strings of
length 3N such that Hamming distance of embedded strings is at most
square of the edit distance between original strings. Recent studies have
demonstrated that this algorithm, which we henceforth refer to as 3N-
embedding (3NE), works well in practice for performing edit similarity
joins for even relatively large edit distances.Zhang and Zhang (2017)

Accel-Align uses 3NE for embedding both reference strings and the
read itself. Listing 1 shows the pseudo-code for the embedding algorithm.
The input string is a DNA sequence of lengthN consisting of four possible
characters (A,C,G,T). The output is an embedding string of length 3N

consisting of the four characters and possibly multiple repeats of a pad
character (P). In each iteration, the algorithm appends a character from the
input string, or the pad if it runs out of the input string, to the output string.
Then, it uses a random binary bit string to decide if the input index should
be advanced. The net effect of this algorithm is that some input characters
appear uniquely in the output string, while others are randomly repeated
multiple times. Using the theory of simple random walks, Chakraborty
et al. (2016) established that the randomization in this algorithm will result
in strings that differ by a small edit distance converging quickly to produce
embedded strings that have a small Hamming distance.

Algorithm 1 3N -embedding

Input: A string S ∈ {A,C,G, T}N , and a random string r ∈ {0, 1}3N

Output: The embedded string S
′ ∈

∑3N

1: i← 0

2: for j = 0→ 3N − 1 do
3: if i < N then
4: S

′
j ← Si

5: else
6: S

′
j ← P

7: end if
8: i← i+ rj
9: end for
10: return S

′

2.2.2 2N -embedding
An initial implementation of 3NE in Accel-Align showed us early on that
despite the simplicity of the algorithm, it was computationally intensive to
embed billions of candidate locations across millions of reads. We describe

4 Yan et al.

several optimizations later in Section 2.4 that reduced the overhead of
embedding, but one of the first optimizations we designed was a variant of
the embedding proposed by Chakraborty et al. (2016), which we refer to
as 2N-Embedding (2NE). Listing 2 shows the pseudocode for 2NE which
is conceptually similar to 3NE with the exception that each character in
the input string is copied to the output string at most two times. Thus,
2NE implements a mapping f :

∑N →
∑2N instead of

∑N →
∑3N .

After implementing 2NE in Accel-Align, we found that Zhang et al. (2019)
had also developed it in parallel, performed a theoretical analysis of its
optimality, and used it for the edit similarity join application. As we show
in our evaluation, we found 2NE to be functionally comparable to 3NE in
terms of accuracy, and slightly better in terms of performance as it reduces
the embedding time due to a reduction in the embedded string length from
3N to 2N .

Algorithm 2 2N -embedding

Input: A string S ∈ {A,C,G, T}N , and a random string r ∈ {0, 1}N

Output: The embedded string S
′ ∈

∑2N

1: j ← 0

2: for i = 0→ N − 1 do
3: S

′
j ← Si

4: j ++

5: if ri = 1 then
6: S

′
j+1 ← Si

7: j ++

8: end if
9: end for
10: for j = j + 1→ 2N − 1 do
11: S

′
j ← P

12: end for
13: return S

′

2.2.3 Candidate Selection
We use one of the two embedding algorithms described above to embed all
reference strings and the read. Then, we compute the Hamming distance
between each embedded reference and the embedded read. We refer to this
distance as the embedding distance. While doing so, we dynamically keep
track of the top two candidate locations with least embedding distance
and forward them to the third phase for further extension, scoring, and
mapping quality computation.

2.3 Extension and MAPQ Computation

Before extension, Accel-Align will rectify the position of the best
candidate. As mentioned in Seeding section, the positions are adjusted
using the offset of the k-mer into the read to get normalized candidate
positions. This is an approximate approach and not accurate when there
are InDels before. For example, if the second seed has a candidate position
p, and it has an insert in the first seed, then the expected normalized position
is p−k+1, not p−k. To fix this problem, we embed the first seed of the
read and the k-mers in reference genome which start from P − l to P + l,
where P is the best candidate position, l is the maximum sum of indel
length in a seed, l is 5 by default. Finally, we take the starting position of
k-mer which has the least embedding distance with the first seed of read
as the final position.

Accel-Align can be configured to run in alignment-free mapping mode
where only the identified candidate location is reported, or full-alignment
mode where base-by-base extension is performed and the CIGAR string
is reported. For the mapping mode, we simply pick the best candidate
location, which is the one whose reference strings has the least embedding

distance, and report its normalized location. For the full-alignment mode,
we perform a global extension at the best candidate location using lib-ksw
Suzuki and Kasahara (2018) with match(1), mismatch(4), gap-open(6),
and gap-extension(1) penalties configured to match the settings used by
BWA-MEM for computing the alignment score and CIGAR.

In addition to the CIGAR, popular aligners also report a mapping
quality (MAPQ) that represents the degree of confidence in the alignment
for each read. The basic idea behind MAPQ is that if multiple candidates
align to the read with comparable alignment score, the aligner cannot
be confident in its final choice. However, if alignment scores between
the chosen candidate and others are very different, the aligner can be
reasonably confident in its choice. Thus, MAPQ computation typically
requires aligners to extend at least two candidate locations so that alignment
scores can be compared. SEE, in contrast, makes it possible to avoid such
extensions as we can exploit embedding distance once again to compute
MAPQ. If two candidates are spaced apart with respect to edit distance
from a read, then the embedded reference strings will also be spaced
apart with respect to Hamming distance from the embedded read. Thus,
Accel-Align uses Bowtie2’s MAPQ estimation procedure Langmead and
Salzberg (2012) adjusted to use the embedded length, instead of the read
length, and embedding distance of the top two candidates, instead of their
alignment scores produced from Smith-Waterman extension, in order to
produce a MAPQ value between 0 and 42.

2.4 Optimizations

A naive SEE implementation would perform seeding, embedding, and
extension as described so far in sequence. However, during initial
experimentation Accel-Align, we found that while embedding reduced the
overhead of extension, the computational task of embedding and Hamming
distance computation added non-negligible overhead. Thus, in addition
to the 2NE algorithm described in Section 2.2.2, we implemented three
other optimizations, namely, pipelining, early-stop, and prioritizing, that
reduced the overhead of embedding without any change in functionality
or accuracy.
Pipelining. Instead of embedding all candidates and then computing the
Hamming distance, our first optimization is to pipeline these steps. We do
this by modifying the embedding step so that the read is embedded first.
Then each candidate location is embedded one by one, and the embedding
algorithm simply updates the embedding distance in each iteration by
comparing the output character of the candidate generated in that iteration
with the corresponding character in the embedded read. This pipelining
of embedding and distance computation provides three major benefits.
First, as embedded strings are no longer generated in their entirety, it
reduces memory consumption and associated overheads of allocating and
freeing memory for storing embedded candidates. Second, it reduces the
overhead caused by a needless second loop over the embedded candidates
to calculate the Hamming distance. Third, as the output character generated
by the algorithm is used immediately for distance computation, it improves
processor cache utilization.
Early-stop. Using pipelining to produce the embedding distance for
each candidate enables us to apply the second optimization based on the
observation that only the top-two candidates with the least embedding
distance are selected for further extension. Thus, if we have already
encountered a candidate with a very low embedding distance, there is no
point in continuing the embedding process for another candidate whose
distance has already exceeded the previously observed minimum. Thus,
we parameterize the embedding algorithm with a threshold such that the
algorithm stops embedding a candidate as soon its embedding distance
exceeds the threshold. Instead of storing the embedded distance of all
candidates, we dynamically track the lowest and second-lowest distances,
and simply use the latter as the threshold parameter.

Accel-Align 5

Prioritizing. Our third optimization is a policy that drives pipelining and
early-stop mechanisms. It is based on the intuition that if candidates with
low embedding distance are prioritized before others, the overall cost of
embedding will be low. This is due to the fact that the threshold will be set
to a relatively low value during the early stages of embedding. As a result,
early-stop will be applied to most candidates. However, the embedding
distance of candidates is not known to us in advance. Therefore, we use
candidate counting, a technique used by SFE aligners for count filtering
Liao et al. (2013b), to prioritize candidates based on the assumption that
candidates with higher counts or votes are more likely to have lower
embedding distance, and more likely to be picked as the best candidate.
Thus, we modify the seeding phase to associate with each candidate
location a count of the number of k-mers that produced that location during
the hash lookup. During embedding, we first embed the candidate with the
highest count followed by all other candidates. It is important to note here
that we still embed all candidates, albeit in a different order. Thus, unlike
SFE aligners, we do not filter out candidates based on k-mer counting.

3 Results
In this section, we present an evaluation of Accel-Align using both
simulated and real data to compare its performance and accuracy with
respect to four state-of-the-art short-read aligners, namely, BWA-MEM
(v0.7.17) Li (2013), Bowtie2 (v2.3.5) Langmead and Salzberg (2012),
Minimap2 (v2.17) Li (2018), SubreadLiao et al. (2013a). These aligners
occupy different points on the design spectrum with respect to the choice
of index (hash table versus FM index) and candidate filtering strategy
(elimination versus selection) among other aspects. We also tried to
evaluate SNAP Zaharia et al. (2011), but we do not report the results
here as SNAP failed to index the reference on our server as it requires
more memory than our server capacity. Accel-Align is implemented in
C++ and is configured to use 2NE algorithm by default as it was found
to be faster than 3NE with comparable accuracy as we demonstrate later.
Accel-Align uses Intel Thread Building Blocks for parallelizing both index
generation and alignment.

All experiments were run on a server equipped with a quad-core
Intel(R) Core(TM) i5-7500 CPU clocked at 3.40GHz, 32GB RAM, and
a 256GB SATA SSD. In an offline phase not reported here, we used
each aligner to pre-index the reference genome. Then, in each alignment
experiment, we run the aligner five times and gather execution statistics.
As all aligners read the index from secondary storage, the first run is
typically “cold” as data is not in memory. Table 1 shows the index size
of each aligner, and time to load the reference and index with such a cold
cache. As our index storage device is a SATA SSD with limited bandwidth
(500 MB/s), aligners with larger indexes take longer to load the index.
However, in practice, this is never an issue even with our commodity SSD,
as a single run of any aligner results in the appropriate index being memory
resident. Hence, in all remaining results, we ignore the first run and report
performance of all aligners under “warm” execution when the index has
already been cached in memory. As we found the “warm” performance of
the last four runs to be stable with all aligners, we only report the average
of last four execution times.

Table 1. Time to load index

BWA-MEM Bowtie2 Minimap2 Subread Accel-align
Time (second) 9 6 14 26 26

Size (GB) 5.1 3.8 6.7 15 13

3.1 Benchmark with simulated short reads

For benchmarking Accel-Align, we used hg37 (hs37-1kg) as the reference
genome. We used Mason2 Holtgrewe (2010) to generate a VCF file and
then simulated reads from the VCF file together with an alignment file
describing the exact coordinate of each read. We used Accel-Align, BWA-
MEM, Bowtie2, Minimap2 (short-read mode), and Subread to align the
reads and measured the end-to-end wall clock time for alignment. Using
the Mason2 generated alignment file as our ground truth, we also evaluated
the accuracy of each aligner with respect to two aspects. The first is the
fraction of correctly mapped reads out of all input reads; we consider a
read to be correctly mapped if the reported alignment overlaps with the
Mason-provided one by at least 10% of read length. The second is the
fraction of unmapped reads out of all input reads.

3.1.1 Aligner comparison
Table 2 reports the performance (wall-clock execution time) and accuracy
of the five aligners for a 10M, 100bp, single-end simulated read dataset
generated by Mason2. In terms of performance, it can be seen that Accel-
Align clearly outperforms the other aligners, as it is 9× faster than Bowtie2,
6× faster than BWA-MEM, 2.7× faster than Minimap2, and 5× faster than
Subread.

Table 2. Evaluation on simulated single-end data (time format MM:SS)

BWA-MEM Bowtie2 Minimap2 Subread Accel-align
Exec. time 06:47 09:35 02:50 05:09 01:01

Correctly mapped 97.36% 97.23% 96.51% 90.1% 96.75%
Not mapped 0.0028% 0.044% 0.73% 9.64% 0%

Table 3 reports the performance and accuracy for a 10M, 100bp, paired-
end dataset generated by Mason2. Accel-Align outperforms some aligners
by an even larger margin here, as it is 11× faster than Bowtie2, 8× faster
than BWA-MEM, 3× faster than Minimap2, and 4× faster than Subread.
In terms of accuracy, Accel-Align is comparable with BWA-MEM,
Bowtie2, and Minimap2, as a majority of reads are correctly mapped
in both the single-end and paired-end datasets. Comparing Subread with
BWA-MEM and Bowtie2, we can clearly see the performance–accuracy
trade off of the voting strategy used by Subread for candidate filtering.
Accel-Align, in contrast, can provide an order of magnitude improvement
in performance over state-of-the-art aligners without sacrificing accuracy
due to the use of embedding for candidate filtering.

Table 3. Evaluation on simulated paired-end data (time format MM:SS)

BWA-MEM Bowtie2 Minimap2 Subread Accel-align
Exec. time 14:49 19:37 04:58 06:32 01:40

Correctly mapped 98.54% 98.51% 98.09% 92.39% 98.24%
Not mapped 0.002% 0.0034% 0.035% 5.63% 0.049%

Fig 2 shows the RoC curve for the five aligners by plotting the
fraction of reads mapped (Y-axis) and their error rate (X-axis) using each
MAPQ value as a threshold (high to low from left to right). Once again,
Subread has lowest accuracy at all MAPQ. Accel-Align generally performs
better than Minimap2 but under performs BWA-MEM and Bowtie2 as it
generally assigns fewer reads to higher MAPQ. Recall that Accel-Align,
by default, uses embedding distance instead of alignment score for MAPQ
computation. In order to isolate and understand the impact of embedding
on MAPQ better, Fig 2 also shows the RoC curve for a modified version of
Accel-Align, which we refer to as Accel-Align-AS, that uses embedding to
pick the top two candidate locations and then uses alignment score obtained

6 Yan et al.

from extension of both candidates instead of the embedding distance to
calculate the MAPQ.

Comparing Accel-Align with the Accel-Align-AS configuration, we
see that Accel-Align-AS assigns a few more alignments (0.7%) to a higher
MAPQ. As the only difference between these two configurations is the use
of alignment score in Accel-Align-AS versus the embedding distance in
the default version for computing MAPQ, we see that using embedding
distance for MAPQ makes the aligner marginally more conservative in
estimating MAPQ. Bowtie2’s MAPQ estimation procedure assigns MAPQ
by comparing the best alignment score with respect to a threshold minimum
score, and the second best score. We know that embedding distance
computed for each candidate location is always larger than original edit
distance. Thus, when embedding distance is used in MAPQ estimation,
alignments that are further away from minimum with respect to alignment
score end up moving closer to the minimum. This intuitively explains why
MAPQ assignment is more conservative. However, it is important to note
that the mapping location and difference in the overall error rate is the
same for both Accel-Align and Accel-Align-AS. Thus, for the rest of this
evaluation, we use the default version of Accel-Align.

Fig. 2. Error rate and fraction of reads over each MAPQ of 100bp pair-end reads.

3.1.2 Varying read length
The computational cost of the embedding step is proportional to the read
length, as each read and at least one candidate are converted from lengthN
into a new string of length 2N . To test the sensitivity of performance with
respect to read length, we used Mason2 to generate three more paired-end
datasets with 10M reads, where each dataset was configured with a read
length of either 125bp, 150bp, or 175bp. Table 4 shows the accuracy and
Fig 3 shows the throughput (thousands of reads processed) per second per
thread of the five aligners under various read lengths. The throughput of
Bowtie2, Accel-Align and Subread is calculated by removing the reported
reference and index preparation time from processing time. The throughput
of BWA-MEM and Minimap2 is reported directly from their output log.
Clearly, Accel-Align outperforms the other aligners at all read lengths as
it provides 7–11× improvement over Bowtie2, 5–8× over BWA-MEM,
2–3× over Minimap2, 2-4× over Subread across a range of read lengths.
Accel-Align correctly mapped around 0.2–0.5% less than BWA-MEM,
Bowtie2 and Minimap2, while 1.6–5.8% more than Subread.

3.1.3 Alignment-free Mapping
Both Accel-Align and Minimap2 can be configured to run in alignment-
free mapping mode where they report the position without the CIGAR
string. The mapping mode completely eliminates the overhead of edit-
distance computation. Although such mapping is useful in several

Table 4. Accuracy (% correctly mapped) on simulated paired-end data of
different read length

BWA-MEM Bowtie2 Minimap2 Subread Accel-align
100bp 98.54% 98.51% 98.09% 92.39% 98.24%
125bp 98.73% 98.71% 98.53% 93.23% 98.38%
150bp 98.82% 98.80% 98.72% 93.65% 98.41%
175bp 98.85% 98.84% 98.78% 96.70% 98.36%

Fig. 3. Throughput per second per thread for 100bp, 125bp, 150bp and 175bp pair-end
reads.

applications that do not require base-by-base alignment, we use it in
this context to isolate the benefit of embedding. To compare Accel-
Align with Minimap2 in mapping mode, we used the two aligners to
perform alignment-free mapping of the four paired-end Mason2 datasets.
Fig 4 shows the execution time for various read lengths. Comparing Figs 3
and 4, we can make two observations. First, alignment-free mapping
provides a further 1.3× improvement in throughput over base-to-base
alignment. Accel-Align maps 10M, 100bp, paired-end reads in 75 seconds,
thus, mapping more than 66,000 reads per second per thread without
requiring any special hardware. These results demonstrate the benefit
of using embedding in sequence mapping. Second, Accel-Align is 2.7–
3.5× faster than Minimap2 at all read lengths (Fig 4) with alignment-free
mapping while offering compatible accuracy (Table 3). This demonstrates
that our optimizations have eliminated any the computational overheads
associated with embedding, making Accel-Align a competitive alternate
to state-of-the-art sequence mappers.

Fig. 4. Alignment-free mapping throughput per second per thread for 100bp, 125bp, 150bp
and 175bp read.

3.1.4 Impact of embedding
To further isolate and understand the benefit of embedding in Accel-Align,
we modified Accel-Align to run in three modes. (i) a no-embed mode where
embedding is not used, and all candidate locations identified by seeding are

Accel-Align 7

directly forwarded for extension, (ii) the default mode using 2NE, and (iii)
using 3NE instead of 2NE. Table 5 shows the performance and accuracy
results for these three modes under the 10M, 150bp, Mason2 pair-end,
simulated-read dataset.

Table 5. Comparison of 2N-embedding and 3N-embedding

No-embedding 2N-embedding 3N-embedding
Exec. time (MM:SS) 25:29 02:59 03:51

Correctly mapped 98.73% 98.41% 98.37%
Not mapped 0.0073% 0.0073% 0.0073%

Comparing 2NE and 3NE cases, we can see that 2NE provides a 23%
improvement in performance with no discernible difference in accuracy.
Comparing 2NE and the no embedding cases, we see that embedding
provides a 8× reduction in execution time as it is able to identify the
optimal candidate location without relying on edit distance computations
at a marginal 0.3% lower accuracy.

Recall that Accel-Align uses lib-ksw for extension. However,
embedding is orthogonal to the type of extension technique used. To
understand the effectiveness of embedding in the presence of alternate,
more efficient extension methods, we incorporated the recently published
Wavefront Alignment Algorithm (lib-wfa)Marco-Sola et al. (2020) as an
alternative to lib-ksw for computing the alignment score and CIGAR. We
modified Accel-Align to run in four modes. In NO-KSW and NO-WFA
modes, we do not use embedding and pass all candidates for extension
with either lib-ksw or lib-wfa. In 2NE-KSW and 2NE-WFA modes, we use
2NE for embedding to select top two candidate locations, and pass them
for extension with lib-ksw or lib-wfa. Table 6 shows the performance for
these four modes under the 10M, 150bp, Mason2 pair-end, simulated-read
dataset.

Table 6. Comparison of optimized extension

NO-KSW NO-WFA 2NE-KSW 2NE-WFA
Exec. time (MM:SS) 25:29 10:46 02:59 02:02

Correctly mapped 98.73% 98.73% 98.41% 98.41%

There are several two important observations to be made from Table 6.
First, we can see that replacing KSW with WFA provides a 2× reduction
in execution time. 2NE-KSW provides another 4× reduction over NO-
WFA due to the use of embedding. This shows that candidate filtering
with embedding can provide a substantial improvement in performance
even compared to optimized extension methods. Second, comparing 2NE-
KSW and 2NE-WFA, we can see it is possible to achieve a further 1.4×
improvement in execution time by combining embedding with optimized
extension method like WFA. To maintain a fair comparison with other
aligners which also use lib-ksw, particularly BWA-MEM and Minimap2,
the rest of the results reported in this paper are based on lib-ksw.

3.2 Benchmark with real short reads

To evaluate the accuracy of Accel-Align on real data, we used the human
whole-exome sequencing dataset NA12878 (accession No.: SRR098401).
We built a pipeline similar to prior work Kumaran et al. (2019) to detect
variants using GATK HaplotypeCaller (v4.1.0) DePristo et al. (2011). We
used all aligners to align 85M paired-end reads in NA12878 to the hg37
reference genome. Then, we used the SureSelect Human All Exon v2 target
captured kit bed file (ELID: S0293689) for capturing variant locations, and
took high confidence variant calls (v2.19) from Genome in a Bottle (GiaB)
consortium for validation.

We compare the aligners with respect to several metrics as shown in
Table 7. The results for Accel-Align using the default parameters is shown
in the column AA-32-mer. The execution time reports the wall-clock time
taken by various aligners for aligning 85M paired-end reads (or 170M
reads in total). Accel-Align provides a speedup of 9× over Bowtie2, 7.8×
over BWA-MEM, 2.6× over Minimap2, and 4.8× over Subread, similar to
the Mason2 dataset. The second metric is transition-to-transversion ratio
(Ti/Tv), which is a key metric in detecting SNVs and should fall between
2.7–3.3 for this dataset, which is the case with all aligners. The last three
metrics report precision, recall, and F-score values based on the GiaB truth
set contains 23,686 SNVs and 1,258 indels contributing to a total of 24,944
variants for the NA12878 exome. The overall F-score of all four aligners are
comparable except Subread. Accel-Align offers a slightly higher precision
than the other aligners as most variants detected with Accel-Align are true
variants. However, Accel-Align provides slightly lower recall, as it fails
to detect some variants in the truth set.

Table 7. Evaluation on real data (time format HH:MM:SS)

BWA-MEM Bowtie2 Minimap2 Subread AA-32-mer AA-25-mer
Exec. time 1:32:02 1:48:09 00:31:24 00:56:24 00:11:46 00:19:20

Ti/Tv 2.71 2.73 2.73 2.85 2.78 2.76
Precision 0.961 0.967 0.967 0.980 0.972 0.968

Recall 0.952 0.948 0.952 0.901 0.942 0.946
F-score 0.956 0.957 0.959 0.939 0.957 0.958

F-score(SNP) 0.959 0.960 0.961 0.940 0.959 0.960
F-score(InDels) 0.920 0.915 0.927 0.914 0.912 0.915

% Mapped 99.86% 99.16% 99.55% 91.43% 96.92% 98.67%

Fig. 5. Venn diagram of variants detected by various aligners and Accel-Align (32-mer).
A: Accel-align, B: BWA-MEM", C: Minimap2, D: Bowtie2, E: Subread.

To better understand the difference between detected variants, we show
a Venn diagram of variants detected by various aligners in Fig 5. Clearly,
90.7% of variants are captured by all aligners. We find that there are 147
variants detected by the other four alignment tools, but not by Accel-
Align. Upon further inspection, we found this to be due to two reasons.
First, although embedding identifies the correct candidate location in most
cases, there are reads for which it chooses the wrong candidate location.
We found this to be particularly problematic for reads that map with a low
edit distance to multiple locations in the reference. In such cases, we found
that the hamming distance of embedded candidates is not spaced apart for
embedding to identify a clear target. The second reason is the use of large
k-mer length (32) in Accel-Align compared to the very short read length in

8 Yan et al.

NA12878 (76bp) which resulted in reads with two erroneous k-mers being
unmapped. Table 7 shows the percent of mapped reads, and as can be
seen, Accel-Align aligns 2.2-2.9% fewer reads comparing to BWA-MEM,
Bowtie2 and Minimap2.

To understand the impact of k-mer size on overall accuracy, we
modified Accel-Align to use 25-mers instead of 32-mers. Table 7 shows
the results obtained using the 25-mer setting under column AA-25-mer.
Comparing it with AA-32-mer, we have two important observations. First,
the overall execution time increases by 39% compared to AA-32-mer case.
Fig 6 shows a breakdown of execution time across the three stages when
25-mers or 32-mers are used. Clearly, this increase in time can be attributed
almost entirely to seeding as 25-mers produce 4× more candidates than
32-mers. As SEE does not filter out any candidates, the overhead of
candidate normalization, counting, and duplicate elimination performed
during seeding increases. Despite this, embedding is able to identify the
candidates, avoid needless extension, and still provide 2–6× reduction
in execution time over other aligners. Second, the fraction of mapped
reads increases by 1.7% by using 25-mers instead of 32-mers. Comparing
Figs 5 and 7, we can see that this translates to an increase in the number
of variants detected by Accel-Align. However, while the 25-mer case has
better recall rate than the 32-mer case, it has a slightly lower precision as
shown in Table 7. As a result, in terms of the overall F-score, the 25-mer
case provides similar accuracy to the 32-mer case.

25-mer 32-mer
0

20

40

60

80

100

pe
rc

en
t

seeding
embedding
extension

Fig. 6. The percent of seeding, embedding and extension over the total processing time.

Fig. 7. Venn diagram of variants detected by various aligners and Accel-Align (25-mer).
A: Accel-align, B: BWA-MEM", C: Minimap2, D: Bowtie2, E: Subread.

In order to isolate and understand the behavior of Accel-Align in the
presence of SNP and indel variants, we show the F-score for SNP and
InDels separately in Table 7 and show two Venn diagrams for the two types
of variants separately in Fig 8. Clearly, Accel-Align is able to capture a
majority of SNP and indel variants. In order to understand the impact of

indel length on Accel-Align’s accuracy, we show the F-score of various
aligners at each indel length in Fig 9. From these results we see that Accel-
Align has the capability to detect even very long indels as evidenced by
an F-score of 1 at the extremities in Fig 9. On investigation, we found that
majority of indels missed by Accel-Align were short in length, and the
main reason for lower accuracy was the inability of the non-overlapping
seeding used by Accel-Align to produce the correct candidate location for
embedding due to short 76nt read length of the NA12878 dataset. Our use
of non-overlapping, sequential k-mers as seeds, and hash table as an index,
was motivated by similar design choices made by other aligners Zaharia
et al. (2011); Marçais et al. (2018) based on the assumption that with
increasing read length and accuracy of short-read sequencers, it will be
possible to draw enough, independent, long seeds with a high probability
of at least one being error free. While researchers have demonstrated the
benefit of other seed design strategies (like spaced-seeds Ma et al. (2002)
and minimizers Roberts et al. (2004)) and seed selection strategies (like
cheap k-mer selection Xin et al. (2013), or dynamic programming Xin
et al. (2015a)), they are orthogonal to the problem of candidate filtering
which is the focus of this paper. Similarly, in contrast to our fixed, but
configurable, pair-wise filtering criteria, aligners also automatically learn
the pair-filtering-distance dynamically, and use it to rescue paired reads
where one of the pairs does not produce a mapping, or disambiguate
otherwise equivalent mappings Canzar and Salzberg (2017). We leave
open the task of combining embedding with better seed and pair selection
strategies to future work.

Fig. 8. Venn diagram of SNP/InDels variants detected by various aligners and Accel-
Align (32-mer). A: Accel-align, B: BWA-MEM", C: Minimap2, D: Bowtie2, E: Subread.

4 Discussion
In this work, we presented Accel-Align–a fast sequence mapper and aligner
that uses the SEE method for quickly identifying optimal candidates based
on randomized embedding. Using an extensive evaluation, we showed that
Accel-Align specifically, and SEE more generally, can provide an order of
magnitude improvement over some state-of-the-art aligners on commodity
CPUs. We are pursing several avenues of future work. First, we are working
on extending Accel-Align to support additional functionalities like soft
clipping and local alignment. Currently we do not support this as neither
our current embedding approach, nor lib-ksw, support local extension.
In order to support soft clipping, Accel-Align cannot embed the entire
read, as a position with a high embedding distance can still be the original
mapping position chosen by local extension after soft clipping. Instead, we
are investigating the use sub-sequences of a read between exactly-matched
seeds as the embedding target.

Accel-Align 9

Fig. 9. F-scores of InDels against the base pair length of the InDels.

Another natural extension of this work that we are pursuing
is investigating the effectiveness of SEE for long-read alignment.
Research on string-similarity join has demonstrated that these randomized
embeddings excel when applied to long strings with even up to 20%
mismatch Zhang and Zhang (2017). This suggests that SEE can also be
used for aligning error-prone long reads generated by Nanopore or PacBio
sequencers. Another line of work that we are exploring involves exploiting
hardware-acceleration techniques for implementing SEE across CPUs and
GPUs. Looking at Fig 6, we can see that seeding dominates overall
execution time at low k-mer sizes and accounts for a substantial portion of
time with large k-mers. In a recent microarchitectural study Appuswamy
et al. (2018) of various sequence aligners, we demonstrated that the seeding
stage is a prime candidate for acceleration by GPUs due to its data-parallel
nature, unlike the extension stage which is difficult to parallelize due to
data dependencies in dynamic programming. Thus, we are developing a
parallel version of Accel-Align which can work across CPUs and GPUs and
provide better accuracy, and a 10× further improvement in performance
over the purely CPU-based Accel-Align.

5 Conclusions
As sequencing technologies continue to increase read length while
improving throughput and accuracy, we believe that randomized
embeddings open up new avenues for optimization that cannot be achieved
by using edit distance. Accel-Align clearly demonstrates the potential
of using embedding for short-read sequence alignment. We believe
that the benefit of SEE methodology and low-distortion embedding
are not limited to short-read alignment; any computational biology
problem that is limited by the overhead of edit distance can benefit from
embedding. As embedding transforms strings from edit to Hamming
regime, computational tools like Locality Sensitive Hashing can also be
applied on the resulting strings. Thus, the techniques presented in this paper
have a much broader scope as they can be used for other applications like
spliced RNA-seq and bi-sulfite alignment, multiple sequence alignment,
and even sequence assembly.

References
Alser, M., Hassan, H., Kumar, A., Mutlu, O., and Alkan, C. (2019).

Shouji: a fast and efficient pre-alignment filter for sequence alignment.
Bioinformatics, 35(21), 4255–4263.

Appuswamy, R., Fellay, J., and Chaturvedi, N. (2018). Sequence
alignment through the looking glass. In 2018 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW).

Backurs, A. and Indyk, P. (2015). Edit distance cannot be computed in
strongly subquadratic time (unless seth is false). In Proceedings of the
Forty-Seventh Annual ACM Symposium on Theory of Computing, page
51–58.

Canzar, S. and Salzberg, S. L. (2017). Short read mapping: An algorithmic
tour. Proceedings of the IEEE, 105(3), 436–458.

Chakraborty, D., Goldenberg, E., and Kouckỳ, M. (2016). Streaming
algorithms for embedding and computing edit distance in the low
distance regime. In Proceedings of the forty-eighth annual ACM
symposium on Theory of Computing, pages 712–725.

DePristo, M. A., Banks, E., Poplin, R., Garimella, K. V., Maguire, J. R.,
Hartl, C., Philippakis, A. A., Angel, G. D., Rivas, M. A., and Hanna,
M. (2011). A framework for variation discovery and genotyping using
next-generation dna sequencing data. Nature genetics, 43(5), 491.

Holtgrewe, M. (2010). Mason: a read simulator for second generation
sequencing data.

Kim, J., Senol Cali, D., Xin, H., Lee, D., Ghose, S., Alser, M., Hassan,
H., Ergin, O., Alkan, C., and Mutlu, O. (2018). Grim-filter: Fast
seed location filtering in dna read mapping using processing-in-memory
technologies. BMC Genomics, 19.

Kumaran, M., Subramanian, U., and Devarajan, B. (2019). Performance
assessment of variant calling pipelines using human whole exome
sequencing and simulated data. BMC bioinformatics, 20(342).

Langmead, B. and Salzberg, S. L. (2012). Fast gapped-read alignment
with bowtie 2. Nature methods, 9(4), 357.

Li, H. (2013). Aligning sequence reads, clone sequences and assembly
contigs with bwa-mem. arXiv preprint arXiv:1303.3997.

Li, H. (2018). Minimap2: pairwise alignment for nucleotide sequences.
Bioinformatics, 34(18), 3094–3100.

Liao, Y., Smyth, G. K., and Shi, W. (2013a). The subread aligner: fast,
accurate and scalable read mapping by seed-and-vote. Nucleic acids
research, 41(10), e108–e108.

Liao, Y., Smyth, G. K., and Shi, W. (2013b). The Subread aligner: fast,
accurate and scalable read mapping by seed-and-vote. Nucleic Acids
Research, 41(10).

Ma, B., Tromp, J., and Li, M. (2002). Patternhunter: faster and more
sensitive homology search. Bioinformatics, 18(3), 440—445.

Marco-Sola, S., Moure López, J. C., Moreto Planas, M., and
Espinosa Morales, A. (2020). Fast gap-affine pairwise alignment using
the wavefront algorithm. Bioinformatics, (btaa777), 1–8.

Marçais, G., Delcher, A. L., Phillippy, A. M., Coston, R., Salzberg, S. L.,
and Zimin, A. (2018). Mummer4: A fast and versatile genome alignment
system. PLOS Computational Biology, 14, 1–14.

Roberts, M., Hayes, W., Hunt, B. R., Mount, S. M., and Yorke, J. A. (2004).
Reducing storage requirements for biological sequence comparison.
Bioinformatics, 20(18), 3363–3369.

Suzuki, H. and Kasahara, M. (2018). Introducing difference recurrence
relations for faster semi-global alignment of long sequences. BMC
bioinformatics, 19(45).

Xin, H., Lee, D., Hormozdiari, F., Yedkar, S., Mutlu, O., and Alkan, C.
(2013). Accelerating read mapping with fasthash. BMC Genomics, 14.

Xin, H., Nahar, S., Zhu, R., Emmons, J., Pekhimenko, G., Kingsford, C.,
Alkan, C., and Mutlu, O. (2015a). Optimal seed solver: optimizing seed
selection in read mapping. Bioinformatics, 32(11), 1632–1642.

Xin, H., Greth, J., Emmons, J., Pekhimenko, G., Kingsford, C., Alkan,
C., and Mutlu, O. (2015b). Shifted Hamming distance: a fast and
accurate SIMD-friendly filter to accelerate alignment verification in read

10 Yan et al.

mapping. Bioinformatics, 31(10), 1553–1560.
Zaharia, M., Bolosky, W. J., Curtis, K., Fox, A., Patterson, D., Shenker, S.,

Stoica, I., Karp, R. M., and Sittler, T. (2011). Faster and more accurate
sequence alignment with snap.

Zhang, H. and Zhang, Q. (2017). Embedjoin: Efficient edit similarity joins
via embeddings. In Proceedings of the 23rd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 585–594.
Zhang, X., Yuan, Y., and Indyk, P. (2019). Neural embeddings for nearest

neighbor search under edit distance.

