
Banners: Binarized Neural Networks with Replicated Secret
Sharing

Alberto Ibarrondo
IDEMIA & EURECOM
Sophia Antipolis, France
ibarrond@eurecom.fr

Hervé Chabanne
IDEMIA & Telecom Paris

Paris, France

Melek Önen
EURECOM

Sophia Antipolis, France

ABSTRACT
Binarized Neural Networks (BNN) provide efficient implementa-
tions of Convolutional Neural Networks (CNN). This makes them
particularly suitable to perform fast and memory-light inference of
neural networks running on resource-constrained devices. Moti-
vated by the growing interest in CNN-based biometric recognition
on potentially insecure devices, or as part of strong multi-factor
authentication for sensitive applications, the protection of BNN
inference on edge devices is rendered imperative. We propose a
new method to perform secure inference of BNN relying on secure
multiparty computation. While preceding papers offered security
in a semi-honest setting for BNN or malicious security for standard
CNN, our work yields security with abort against one malicious
adversary for BNN by leveraging on Replicated Secret Sharing (RSS)
for an honest majority with three computing parties. Experimen-
tally, we implement Banners on top of MP-SPDZ and compare it
with prior work over binarized models trained for MNIST and CI-
FAR10 image classification datasets. Our results attest the efficiency
of Banners as a privacy-preserving inference technique.

CCS CONCEPTS
• Security and privacy → Privacy-preserving protocols.

KEYWORDS
Secure Multiparty Computation, Binarized Neural Networks, Se-
cure Inference, Replicated Secret Sharing, Privacy Preserving Tech-
nologies
ACM Reference Format:
Alberto Ibarrondo, Hervé Chabanne, and Melek Önen. 2021. Banners: Bi-
narized Neural Networks with Replicated Secret Sharing. In Proceedings
of the 2021 ACM Workshop on Information Hiding and Multimedia Security
(IH&MMSec ’21), June 22–25, 2021, Virtual Event, Belgium. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3437880.3460394

1 INTRODUCTION
Machine Learning has become an essential tool for private and pub-
lic sector alike, by virtue of the prediction capabilities of forecasting
models or insights gained from recommender systems. Requiring

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IH&MMSec ’21, June 22–25, 2021, Virtual Event, Belgium
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8295-3/21/06. . . $15.00
https://doi.org/10.1145/3437880.3460394

orders of magnitude more data than classical Machine Learning,
the recent progress in Deep Learning has attained models with near
human capabilities to solve complex tasks like image classification
[49], object detection [42] or natural language processing [10], also
reaching unheard-of generation capabilities for text [10], audio [40]
and image generation[56].

Making use of the deep learning toolbox comes at a non negligi-
ble cost: one needs to acquire very large amounts of structured data,
considerable computational power and vast technical expertise to
define and train the models. Subsequently, the expensively trained
deep learning models can be used to perform inference on data
not present during training. Naturally, risk arises when training or
inference computation tasks are outsourced, following the trends
of Cloud Computing (where the model is sent to the cloud) or Edge
Computing (where the trained model is pushed to edge devices
such as mobile phones or cars). In a standard setup, carrying out
these processes on an outsourced enclave forces users to keep the
model in plaintext to carry out mathematical operations, leading to
potential model theft and exposing all intermediate computations
as well as the input data and the inference result.

Moreover, there are sectors where this risk is unacceptable or
even illegal due to the limitations on sharing data (GDPR in Europe,
HIPAA for medical data in US). Biometric Identification must rely
on secure hardware or trusted parties to hold the personal data
vital for their recognition models, and all the biometric data ma-
nipulation must follow strict security rules. Hospitals and health
specialists are deprived of the advantages of training and using
models with all the available data from patients, which is proven to
be very effective to tackle genome-wide association studies: associ-
ating certain genes to illnesses such as cancer for early detection
and further understanding [37]. Banks, finance institutions and gov-
ernments are limited to the locally available data to prevent fraud
and prosecute tax evasion. Child Exploitative Imagery detection
models [51] need training data that is in itself illegal to possess.

In the specific field of Biometrics there is a growing interest on
using face & fingerprint recognition on potentially insecure devices
[22], with applications that range from secure banking access to
government services such as border control, or in general as part
of strong multi-factor authentication. Addressing the protection
of the underlying biometric identification algorithms on resource-
constrained devices is thus rendered imperative for industry leaders
in biometric solutions [31]. Since biometric algorithms are nowa-
days based on modern Convolutional Neural Networks (CNN), this
work focuses on securing the inference of these networks. Further-
more, CNN can be binarized (constrain weights and intermediate
operations to 0 and 1) in order to greatly reduce the model size and
memory usage, making the resulting Binarized Neural Networks

https://doi.org/10.1145/3437880.3460394
https://doi.org/10.1145/3437880.3460394

Maxpool
(OR)

INPUT 1st Conv
(VDP>BN>BA)

Maxpool
(OR)

Conv
(VDP>BN>BA)

FC
(VDP>BN>BA)

FC OUTPUT

…
s𝑖𝑥 = 0

𝑠𝑒𝑣𝑒𝑛 = 1
𝑒𝑖𝑔ℎ𝑡 = 0
𝑛𝑖𝑛𝑒 = 0

8-bit 1-bit

Figure 1: BNN architecture for image classification. This corresponds to the BM3 architecture for MNIST dataset in section 5.

(BNN)[29] suitable to execute in edge devices such asmobile phones.
Banners serves as the first step in this direction, implementing
secure BNN execution in a stronger security model.

Under the field of advanced cryptography, several privacy pre-
serving technologies aim to deal with these issues. Differential Pri-
vacy [2] provides privacy to individual elements of the training data
set while keeping statistically significant features of the data set to
train deep learning models, at a cost in terms of accuracy and almost
no extra computation. Fully Homomorphic Encryption (FHE)[24] is
a costly public-key encryption scheme that supports certain opera-
tions between ciphertexts (typically addition and multiplication),
yielding the results of these operations when decrypting. Secure
Multiparty Computation (MPC) covers a series of techniques (gar-
bled circuits[55], secret sharing[46], or the more recent replicated
secret sharing[5] and functional secret sharing[9]) that split com-
putation of a given function across multiple distinct parties, so
that each individual party remains ignorant of the global compu-
tation, and collaborate to jointly compute the result. Functional
Encryption [7] is a computationally-expensive public-key encryp-
tion scheme that supports evaluation of arbitrary functions when
decrypting the ciphertexts, where the decryption key holds the
information about the function to be computed, and the original
data can only be retrieved with the original encryption key. MPC is,
at the time of this writing, among the most efficient technologies
providing secure outsourced computation. This work uses MPC
to carry out secure inference of Neural Networks. Going beyond
the Honest-But-Curious adversary model present in many of the
MPC-based secure NN inference schemes, this work uses a threat
model whereby honest parties can detect a malicious adversary and
abort, ensuring a correct computation otherwise.

Our contribution. Leaning on replicated secret sharing (RSS),
Banners proposes a new method to perform secure inference of Bi-
narized Neural Networks, guaranteeing security with abort against
one malicious adversary in a 3-party setting. Throughout the pa-
per, this secure method is described mathematically, proven secure,
implemented and compared with existing techniques. The paper is
outlined as follows. Section 2 covers the preliminaries, from BNN
to MPC and RSS, including the security model. Section 3 builds
upon those preliminaries to discuss related previous work, cover-
ing state of the art on securing CNN inference. Section 4 presents

our detailed solution, covering each and every protocol we need.
Section 5 describes our implementation and experiments, closing
up with conclusions and future work on section 6.

2 PRELIMINARIES
2.1 Binarized Neural Networks
BNN [29] are a subtype of Neural Networks whose weights and
activations are constrained to two values {−1, 1} (mapped into
binary values 0, 1), taking up one bit per value while sacrificing
accuracy with respect to their full precision counterparts. Thanks
to this limitation, up to 64 bits can be packed together in a 64-bit
register, providing high parallelization on the operations in a Single
Instruction Multiple Data (SIMD) fashion. This packing technique
is named Bit Slicing [5][11], and it yields savings of up to 64 times
in memory and space. Indeed, this makes BNN particularly suitable
for edge devices and resource-constrained scenarios.

We will focus our attention on BNNs. Albeit less accurate (but
recently closing the accuracy gap w.r.t. full sized models; see [47] for
an in-depth comparison), they are good candidates for deep learning
implementations on FPGAs andASICs due to their bitwise efficiency.
We implement all the layers of a XNOR-Net[41] architecture.

2.1.1 First linear layer. Linear combination of the inputs 𝑥 with
some weights 𝑤 , there are two types of linear layers: Fully Con-
nected (FC, also known as Dense in popular frameworks) and Con-
volution (Conv). FC corresponds to a matrix multiplication, whilst
Conv can be turned into a matrix multiplication by applying a
Toeplitz transformation on the inputs and weights. This transfor-
mation is more commonly known as im2col & col2im (more info
in section 5.1 of SecureNN[52], and a nice visual explanation in
slide 66 of [19]). In the end, both FC and Conv are computed as a
matrix multiplication, which can be decomposed into Vector Dot
Products (VDP). Figure 2 represents one VDP in the first layer of
our BNN architecture, with 8-bit inputs and 1-bit weights.

There is one peculiarity with the first linear layer of a BNN:
Binarizing the input of the first layer would hurt accuracy much
more than binarizing other layers in the network (see figure 1).
Besides, the number of weights and operations in these layers tend
to be relatively small. Therefore it has become standard to leave
the input of this layer with higher precision (8 bits in our case).

8-bit 8b 8b 8b 8b

1-bit 1-bit 1-bit 1-bit 1-bit
* * * * *

8b 8b 8b 8b 8b+ + + + +…

…

…

𝚺𝑽𝑫𝑷

𝒙

𝒘𝒃

8-bit 8b

Figure 2: Diagram of a VDP in the first layer of a BNN

2.1.2 Binary Activation and Batch Normalization. A Binary Activa-
tion (BA) is equivalent to the 𝑆𝑖𝑔𝑛(𝑥) function [29], and is normally
applied after a linear layer. Given that the result of the VDP in
linear layers is a small integer (up to 𝑙𝑜𝑔2 (𝑁) for binary VDP and
8∗𝑙𝑜𝑔2 (𝑁) for the first layer, for vectors of size𝑁), it is easier/faster
to compute than the standard ReLU in CNNs. This functionality is
implemented by extracting the most significant bit (MSB).

A Batch Normalization (BN) operation normalizes all the inputs
by subtracting 𝛽 and dividing by 𝛾 , two trainable parameters. While
the original batch normalization[32] includes subtracting the mean
of the input batch and dividing by its standard deviation, the bi-
narized version can be implemented by relying solely on 𝛽 and 𝛾
[41][43]. Binary BN is most frequently located right before a BA.
Together, a BN followed by a BA is equivalent to 𝑠𝑖𝑔𝑛(𝑥 − 𝛽/𝛾),
instantiated as a comparison.

1-bit 1b 1b 1b 1b

1𝑏𝑖𝑡 1𝑏 1𝑏 1𝑏 1𝑏

⨁

1b 1b 1b 1b 1b, , , , ,…

…

𝚺𝑽𝑫𝑷

⨁ ⨁ ⨁ ⨁
𝒘𝒃

𝒗𝒃

2*N - 𝑝𝑜𝑝𝑐𝑛𝑡

Figure 3: Diagram of a binary VDP

2.1.3 Binary linear layer. Except for the first layer, all the linear
layers in a BNN have binary inputs and binary weights. Likewise,
FC and Conv are turned into matrix multiplication and decomposed
into a series of binary VDP. Following [41], and nicely displayed in
figure 2 of XONN[43], binary VPD is equivalent to XNOR (substitute
of binary multiplication) and 2 ∗ 𝑁 − 𝑝𝑜𝑝𝑐𝑜𝑢𝑛𝑡 (𝑥) (analogous to
cumulative addition). Thus effectively transforming𝑚𝑢𝑙𝑡&𝑎𝑑𝑑 →
𝑋𝑁𝑂𝑅&𝑝𝑜𝑝𝑐𝑜𝑢𝑛𝑡 . Figure 3 displays the structure of an individual
binary VDP.

2.1.4 Maxpool layer. A maxpool layer over binary inputs is ho-
mologous to the OR operation, as shown in figure 4.

2.2 Secure Multi-Party Computation
MPC allows several mutually distrusting parties to carry out to-
gether computations on some private input, so that an adversary
controlling a fraction of those parties cannot learn any information
beyond what is already known and permissible by the computation.
In our setup, we consider a BNN model owner, an input data owner
and multiple parties/servers performing the secure computation.

0
1

0
0

0
1

1
1

0
0

0
0

1
1

1
1

1
0

1
1

max
2𝑥2

OR
2𝑥2

Figure 4: Equivalence between Binary max and boolean OR
for a Maxpool layer

There are two main approaches to MPC. In Garbled Circuits(GC)
a computing party named the garbler encrypts a Boolean circuit
in the form of truth tables using keys from each of the parties and
randomly permutes the rows. Later on, the evaluator collaborates
to sequentially decrypt single rows of the logic gates’ truth tables
while the garbler remains oblivious to the information exchanged
between them by using a primitive named Oblivious Transfer. The
second approach, named Secret Sharing(SS), splits each individual
data element into 𝑁 shares sending one share per party, so that less
than 𝑘 shares reveals nothing of the input and 𝑘 or more shares
reconstruct the original secret without error. This approach offers
cheap addition operations on local shares and communication be-
tween parties to exchange shares without ever revealing more than
𝑘 − 1 shares to any computing party. A third technique, named
GMW[26], is a binary version of SS first defined alongside other
MPC primitives like Oblivious Transfer.

In the context of Neural Network operations, GC[55] and GMW
are historically more suited for non-linear operations like compar-
isons, threshold-based activation functions and MaxPool, while
standard (arithmetic) SS shines when used for integer addition and
multiplication, which is why several previous works focused on
switching between GC and SS [33][44].

On adversaries. Semi-honest adversary (also known as honest but
curious) defines an adversary that will follow the given computation
instructions while trying to extract as much information as possible
from the process. It requires passive security to overcome, making
sure that data remains private, but without the need to verify the
result of operations. Contrary to it, malicious adversaries (also
known as dishonest) can deviate arbitrarily from the requested
computation, forcing the verification of each operation to ensure
correctness.

On number of parties and majorities. An honest majority com-
prises strictly less than half of the computing parties being cor-
rupted by an adversary, whereas a dishonest majority involves at
least half of the computing parties being potentially corrupted. Gen-
erally speaking, the complexity of MPC intensifies with the number
of parties. Typically the best setup for dishonest majorities is Two
Party Computation (2PC). In contrast, 3PC is particularly beneficial
for an honest majority setting, since each honest party can always
rely on the honesty of at least one other party. By comparing the
results of the other two parties for a given computation, an honest
party in this setting can cheaply detect malicious behavior and
abort the computation[5][21].

On security guarantees As a general rule, stronger security is
coupled with higher complexity (inferred from table 3 of [18]). We
can classify the security guarantees (a gentle introduction found in
[16]) of our protocols into:

• Private computation: parties cannot extract any information
from the computation.

• Security with abort: the computation remains private, and if
the adversary deviates, honest parties detect it and halt the
computation. It does not protect against Denial of Service
(DoS) attacks.

• Security with public verifiability: the computation remains
private, and in case the adversary deviates, honest parties
identify which party cheated and abort.

• Fully secure: the computation is ensured to yield the cor-
rect output. For Semi-honest adversaries, it is equivalent to
private computation.

Overall, the setting for Banners consists of an honest majority
over 3PC, in a threat model where it provides security with abort
against one malicious adversary. The next sections are tailored to
these choices., using notation from table 1.

Table 1: Notation for standard and replicated secret sharing

3-out-of-3 shares (SS) 2-out-of-3 shares (RSS)
Integer ⟨ � ⟩ ⟨⟨ � ⟩⟩
Binary [�] J � K

2.3 Secret Sharing, Replicated Secret Sharing
Formally described, Secret Sharing in a 3PC setting consists of
splitting a secret integer 𝑥 ∈ Z𝐾 into randomly selected shares

⟨𝑥⟩ ≡ [⟨𝑥⟩0 , ⟨𝑥⟩1 , ⟨𝑥⟩2] , ⟨𝑥⟩𝑖 ∈ Z𝐾 (1)
so that 𝑥 = ⟨𝑥⟩0 + ⟨𝑥⟩1 + ⟨𝑥⟩2 , and then sending each share ⟨𝑥⟩𝑖
to party 𝑖 ∈ 0, 1, 2. Considering that you need all three shares to
reconstruct 𝑥 , it is also named 3-out-of-3 secret sharing. Against
semi-honest adversaries, parties can locally compute additions and
multiplications with public constants, additions with other shared
secrets, and multiplication with another shared secret at a cost of
one round of communication.

Comparatively, the Replicated Secret Sharing technique (based
on [5], [21]) builds upon SS, joining two SS shares into an RSS share:

⟨⟨𝑥⟩⟩ ≡ [(⟨𝑥⟩0 , ⟨𝑥⟩1), (⟨𝑥⟩1 , ⟨𝑥⟩2), (⟨𝑥⟩2 , ⟨𝑥⟩0)]
≡ [⟨⟨𝑥⟩⟩0, ⟨⟨𝑥⟩⟩1, ⟨⟨𝑥⟩⟩2]

(2)

and sends each RSS share ⟨⟨𝑥⟩⟩𝑖 to party 𝑖 ∈ 0, 1, 2. Given that you
only need two shares to reconstruct 𝑥 , it is also designated 2-out-
of-3 secret sharing. The advantage of RSS over SS is that, for the
same operations described above, the scheme is secure against one
malicious adversary in a 3PC honest majority setting. Instead of
defining ⟨⟨𝑥⟩⟩𝑖 = (⟨𝑥⟩𝑖 , ⟨𝑥⟩𝑖+1) as in [53], it might be convenient to
define ⟨⟨𝑥⟩⟩𝑖 = (⟨𝑥⟩𝑖 , ⟨𝑥⟩𝑖 ± ⟨𝑥⟩𝑖+1) as in the original paper [5].

Below we describe the instantiation of SS and RSS for integers
(𝐾 = 2𝑙 for 𝑙 bits) and bits (𝐾 = 2) that we will use in our solution,
following the notation in table 1.

We denote the next (resp. previous) party to party 𝑖 in the
{𝑃0, 𝑃1, 𝑃2} triplet as 𝑖 + 1 (resp. 𝑖 − 1).

2.3.1 Correlated randomness. Following the techniques of [5], after
a brief setup phase (where common seeds are exchanged) all par-
ties can locally compute, using pseudorandom number generators,
correlated randomness 𝛼𝑖 with the property 𝛼0 + 𝛼1 + 𝛼2 = 0 and
uniformly random in Z𝐾 . This randomness can be used by party
𝑖 to secret share a value 𝑥 without communication by defining
⟨𝑥⟩ = [⟨𝑥⟩𝑖 = 𝑥 + 𝛼𝑖 , ⟨𝑥⟩𝑖+1 = 𝛼𝑖+1, ⟨𝑥⟩𝑖−1 = 𝛼𝑖−1].

2.3.2 Integer sharing. Also known as arithmetic sharing, sharing a
single integer 𝑥 ∈ Z2𝑙 requires first to split 𝑥 into random arithmetic
shares by using randomness ⟨𝑟 ⟩𝑖 uniformly random ∈ Z2𝑙 so that
𝑟 = 0 = ⟨𝑟 ⟩0+⟨𝑟 ⟩1+⟨𝑟 ⟩2. These values are used to conceal x: ⟨𝑥⟩𝑖 =
𝑥 − ⟨𝑟 ⟩𝑖 , and it naturally holds that 𝑥 = ⟨𝑥⟩0 + ⟨𝑥⟩1 + ⟨𝑥⟩2. Note
that the equation ⟨𝑟 ⟩𝑖 = ⟨𝑥⟩𝑖+1 + ⟨𝑥⟩𝑖−1 also holds true. Following
an RSS scheme, each party 𝑖 receives ⟨⟨𝑥⟩⟩𝑖 = (⟨𝑥⟩𝑖 , ⟨𝑥⟩𝑖 + ⟨𝑥⟩𝑖+1) =
[(⟨𝑥⟩𝑖 , ⟨𝑟 ⟩𝑖−1) when sharing an integer secret. Addition of two
integer shared secrets can be computed locally on the parties[5],
and multiplication between two integer shared secrets requires one
round of communication with 2 integers sent per party[5][21].

2.3.3 Binary sharing. Similarly, sharing a single bit 𝑤 ∈ Z2 re-
quires first to split 𝑤 into random bit shares by using some cor-
related randomness [𝑠]𝑖 uniformly random ∈ Z2 so that 𝑠 = 0 =

[𝑠]0 ⊕ [𝑠]1 ⊕ [𝑠]2. These random values are used to conceal w:
[𝑤]𝑖 = 𝑤 ⊕ [𝑠]𝑖 , and it naturally holds that𝑤 = [𝑤]0⊕ [𝑤]1⊕ [𝑤]2.
Note that the equation [𝑠]𝑖 = [𝑤]𝑖+1 ⊕ [𝑤]𝑖−1 also holds true. Fol-
lowing an RSS scheme, each party 𝑖 receives ⟨⟨𝑥⟩⟩𝑖 = (⟨𝑥⟩𝑖 , ⟨𝑥⟩𝑖−1)
when sharing a binary secret. Analogous to integer sharing, XOR of
two binary shared secrets can be computed locally on the parties[5],
whereas AND between two binary shared secrets requires one
round of communication with 2 bits sent per party[5][21].

3 PREVIOUS WORK
There are several publications that serve as foundations for BaN-
NeRS. The original definition of RSS is depicted in [5], with [21]
adapting it to the fully malicious case. ABY3 [39] was one of the first
to use RSS to secure deep neural network inference, with FALCON
[53] being one of the most recent and most efficient approaches.
Banners is inspired by certain protocols and techniques from them.

XONN [43] is the most notorious prior work addressing the
subfield of secure BNN inference with MPC, relying on Garbled Cir-
cuits in a 2PC setting to secure a custom trained XNOR-Net model
[41]. Consequently, we rely on the results of XONN to compare
with the results of our experiments in section 5. SOTERIA [3] gen-
eralizes the Neural Architecture Search of XONN, also addressing
BNN inference with GC constructions. Note that, in both cases, the
security model is that of a semi-honest adversary. In contrast, our
work yields security against one malicious adversary. To the best
of our knowledge, this is the first work tackling maliciously secure
BNN inference.

In the broader field of privacy preserving Neural Network in-
ference, there has been a plethora of works in the recent years.
A good up-to-date summary can be found in Table 1 of FALCON
[53]. FHE was the foundation for the seminal CryptoNets[25] and
subsequent works improved it like [14] and [28], [8] for discretized
networks,[30] covering BN support for FHE and [15] perfecting
programmable bootstrapping. A different line of works focused on

efficient MPC implementations relying on various techniques, such
as Cryptflow[35], Fantastic4[17] and QuantizedNN[18], or hybrids
using both FHE and MPC such as Gazelle[33] or Chameleon [44].

4 OUR CONTRIBUTION
We propose Banners which makes use of RSS to protect each of
the layers described in section 2 for secure BNN inference on a 3PC
(parties 𝑃0, 𝑃1, 𝑃2) honest majority setting. We use binary sharing
and integer/arithmetic sharing as described in [5] [21], similarly to
[39] and [53].

4.1 Input data
The input data consists of a vector 𝑥 = [𝑥0, 𝑥1, 𝑥2, . . . , 𝑥𝑁−1], 𝑥𝑖 ∈
Z2𝑘 of N integers, while the model data consists of multiple vectors
of 1-bit weights𝑤 = [𝑤0,𝑤1,𝑤2, . . . ,𝑤𝑘−1],𝑤 𝑗 ∈ Z2 (being k the
number of neurons at a given layer, k=N for the first layer), that
can also be represented as 𝑦 = [𝑦0, 𝑦1, 𝑦2, . . . , 𝑦𝑘−1], 𝑦 𝑗 ∈ {−1, 1}
by the bijective mapping 𝑦 𝑗 ↔ 𝑤 𝑗 : {−1 ↔ 0, +1 ↔ 1}. We define
𝑣 = [𝑣0, 𝑣1, 𝑣2, . . . , 𝑣𝑘−1], 𝑣 𝑗 ∈ Z2 as the vector of bits used as input
to an arbitrary hidden layer. The model data also includes the BN
parameters 𝛾 and 𝛽 , as well as the entire architecture of the model.
Note that Banners requires the architecture (number of layers, type
and configuration of each layer) to be publicly shared with all the
computing parties. We do not protect against model inversion [20]
or model retrieval attacks[50], as it is orthogonal to our purposes.

The protocol makes use of a secure transfer of shares from the
data holders to the three computing parties/servers relying on
standard secure communication protocols. Input 𝑥 and all the model
parameters are shared with the parties using RSS.

4.1.1 On the size/format of 𝑥 𝑗 and 𝑦 𝑗 . Typically, the input of a
CNN is an image whose values have been normalized (between 0
and 1), thus requiring float point arithmetic with sufficient decimals
to maintain the accuracy of the first layer. However, the original
rectangular image is made of RGB pixels taking integer values
between 0 and 255 (in a 8-bit color map). Knowing this, we remove
the normalization from the data preprocessing, relying on the first
BatchNormalization layer to accomplish such task. The input values
are set to 8-bits, and the shares of the inputs can also be set to 8
bits, minimizing the size of the communication while preserving
security: 𝑥 𝑗 ∈ Z28 . By additionally changing the input domain
from [0, 255] to [−128, 127] we would be centering it on 0 while
keeping the input distribution intact. We can interpret this as a scale
shifting, which is translated implementation-wise into changing
from unsigned integers to signed integers without modifying the
values, all while using a fixed-point representation of signed (2s
complement) integers in 8-bits. This proves useful when operating
with the first layer weights. The first layer weights 𝑦 𝑗 take the
mathematical values −1, +1 in the operation. While in the Binary
layers we would map the 𝑦 𝑗 weights into bit values 𝑤 𝑗 ∈ 0, 1 as
a result of the 𝑚𝑢𝑙𝑡&𝑎𝑑𝑑 → 𝑋𝑁𝑂𝑅&𝑝𝑜𝑝𝑐𝑜𝑢𝑛𝑡 transformation
(see 2.1.3), in the first layer we are interested on keeping their
mathematical representation to operate normally. We format them
as 8-bit signed values, compressing them during communication
into single bits𝑦 𝑗 → 𝑤 𝑗 : −1 → 0, +1 → 1 to reduce 8x the amount
of communication (and reconstructing them upon reception𝑤 𝑗 →
𝑦 𝑗). 𝑦 𝑗 is shared among parties using binary RSS on the bits 𝑤 𝑗 .

Thanks to the bijective mapping, we preserve the same security
properties present in binary RSS.

4.2 First layer VDP
To be consistent with previous work, we reuse notation from XONN
[43]. XONN’s linear operation in the first layer is defined as:

𝜌𝑋𝑂𝑁𝑁 = 𝑓 (x,w) =
𝑁∑
𝑗=1

𝑥 𝑗 ∗ (−1)�̄�𝑗 =

𝑁∑
𝑗=1

𝑥 𝑗 ∗ 𝑦 𝑗 (3)

This operation is carried out in Banners with local arithmetic
multiplication further reconstruction of the RSS shares, ending with
the local cumulative addition.

𝑁∑
𝑗=1

⟨⟨𝑥 𝑗 ⟩⟩ ∗ (−1)J𝑤𝑗 K local−−−−→
mult.

𝑁∑
𝑗=1

〈
𝑧 𝑗
〉 1 round−−−−−−→

comm.

𝑁∑
𝑗=1

⟨⟨𝑧 𝑗 ⟩⟩

local−−−−−−−−−→
cumm. add

Σ𝑉𝐷𝑃 (𝜌𝑋𝑂𝑁𝑁)

(4)

4.2.1 For each individual multiplication. 𝑧 𝑗 = 𝑥 𝑗 ∗ 𝑦 𝑗
𝑧 = 𝑥 ∗ 𝑦 + 0 = (⟨𝑥⟩0 + ⟨𝑥⟩1 + ⟨𝑥⟩2) + (⟨𝑦⟩0 + ⟨𝑦⟩1 + ⟨𝑦⟩2)
= [(⟨𝑥⟩0 + ⟨𝑥⟩1) ∗ ⟨𝑦⟩0 + ⟨𝑥⟩0 ∗ ⟨𝑦⟩1] +
[(⟨𝑥⟩1 + ⟨𝑥⟩2) ∗ ⟨𝑦⟩1 + ⟨𝑥⟩1 ∗ ⟨𝑦⟩2]+
[(⟨𝑥⟩2 + ⟨𝑥⟩0) ∗ ⟨𝑦⟩2 + ⟨𝑥⟩2 ∗ ⟨𝑦⟩0] =

⟨𝑟 ⟩2 ∗ ⟨𝑦⟩0 + ⟨𝑥⟩0 ∗ ⟨𝑦⟩1 ⇒ Locally computed in 𝑃0 as ⟨𝑧⟩0
+ ⟨𝑟 ⟩0 ∗ ⟨𝑦⟩1 + ⟨𝑥⟩1 ∗ ⟨𝑦⟩2 ⇒ Locally computed in 𝑃1 as ⟨𝑧⟩1
+ ⟨𝑟 ⟩1 ∗ ⟨𝑦⟩2 + ⟨𝑥⟩2 ∗ ⟨𝑦⟩0 ⇒ Locally computed in 𝑃2 as ⟨𝑧⟩2

(5)

4.2.2 For the cumulative addition. In order to avoid overflow in
the cumulative addition we need 𝑙𝑜𝑔2𝑁 extra bits. We cast 𝑧 𝑗 from
8-bit to either 16-bit or 32-bit (depending on the size of the VDP)
and perform local addition including common randomness to hide
the result from other parties:

𝜌 =

𝑁∑
𝑗=1

⟨⟨𝑧 𝑗 ⟩⟩ =
𝑁∑
𝑗=1

⟨⟨𝑧 𝑗 ⟩⟩0 +
𝑁∑
𝑗=1

⟨⟨𝑧 𝑗 ⟩⟩1 +
𝑁∑
𝑗=1

⟨⟨𝑧 𝑗 ⟩⟩2 + 𝛼0 + 𝛼1 + 𝛼2 =

𝑁∑
𝑗=1

⟨⟨𝑧 𝑗 ⟩⟩0 + 𝛼0 ⇒ Locally computed in 𝑃0 as ⟨⟨𝜌⟩⟩0

𝑁∑
𝑗=1

⟨⟨𝑧 𝑗 ⟩⟩1 + 𝛼1 ⇒ Locally computed in 𝑃1 as ⟨⟨𝜌⟩⟩1

𝑁∑
𝑗=1

⟨⟨𝑧 𝑗 ⟩⟩2 + 𝛼2 ⇒ Locally computed in 𝑃2 as ⟨⟨𝜌⟩⟩2

(6)
As a result we obtain 2-out-of-3 shares of 𝜌 . We describe the

entire computation in algorithm 1.

4.3 BN + BA as secure comparison
Based on [41], we make use of the transformation of BN + BA into
𝑠𝑖𝑔𝑛(𝑥 − 𝜌 − 𝛽/𝛾), and while the subtraction 𝜌 − 𝛽/𝛾 can be per-
formed locally using shares of ⟨⟨𝛽/𝛾⟩⟩ gotten as part of the input

Algorithm 1 Integer-binary VPD:
Input: 𝑃0, 𝑃1, 𝑃2 hold integer shares ⟨⟨𝑥 𝑗 ⟩⟩ and ⟨⟨𝑦 𝑗 ⟩⟩ in Z2𝑙
Correlated randomness: 𝑃0, 𝑃1, 𝑃2 hold shares of zeroed value

⟨⟨𝛼 𝑗 ⟩⟩.
Output: All parties get integer shares of ⟨⟨Σ𝑉𝐷𝑃 ⟩⟩.
Note:All shares are over Z2𝑙 , with 𝑙 large enough to avoid overflow

(upper bound log2 (𝑁) + 8, based on layer size).

1:
〈
𝑧 𝑗
〉
= ⟨⟨𝑥 𝑗 ⟩⟩ ∗ ⟨⟨𝑦 𝑗 ⟩⟩

2: 𝑃𝑖 sends:
〈
𝑧 𝑗
〉
𝑖
→ 𝑃𝑖−1, and

〈
𝑧 𝑗
〉
𝑖+1 → 𝑃𝑖+1 to verify result.

3: if
〈
𝑧 𝑗
〉
𝑖+1 ≠

〈
𝑧 𝑗
〉
𝑖−1 then

4: abort
5: else
6: Reconstruct ⟨⟨𝑧 𝑗 ⟩⟩
7: end if
8: ⟨⟨Σ𝑉𝐷𝑃 ⟩⟩𝑖 =

∑𝑁
𝑗=1⟨⟨𝑧 𝑗 ⟩⟩𝑖 + ⟨⟨𝛼 𝑗 ⟩⟩

9: return Shares of ⟨⟨Σ𝑉𝐷𝑃 ⟩⟩ ∈ Z2𝑙

data, we still need a secure way to perform 𝑞 = 𝑠𝑖𝑔𝑛(𝑛). Following
the𝑚𝑢𝑙𝑡&𝑎𝑑𝑑 → 𝑋𝑁𝑂𝑅&𝑝𝑜𝑝𝑐𝑜𝑢𝑛𝑡 transformation (and its corre-
sponding mapping 𝑦 𝑗 → 𝑤 𝑗), the 𝑠𝑖𝑔𝑛(𝑛) function turns into 𝐻 (𝑛),
the Heaviside1 function a.k.a. step function:

𝑞 = 𝐻𝑒𝑎𝑣𝑖𝑠𝑖𝑑𝑒 (𝑛) = 𝐻 (𝑛) =
{
0 if 𝑛 < 0

1 if 𝑛 ≥ 0
(7)

As seen in previous work [52], this is equivalent to extract and
negate the MSB in our fixed-point arithmetic representation. In-
deed this is a step required to compute ReLU in FALCON[53] and
SecureNN[52], which makes our activation function cheaper than
standard ReLU.

Together, they turn into a comparison between input 𝑥 and 𝛽/𝛾 ,
implemented by extracting the MSB (the sign) of 𝑥−𝛽/𝛾 . We rely on
FALCON’s PrivateCompare (Algorithm 1 in [53]), simplifying it fur-
ther by setting 𝑟 = 0, described in algorithm 2. Since this algorithm
requires shares of bits of 𝑥 , we reuse the same constructions used
in FALCON to switch from arithmetic shares ⟨⟨𝑥⟩⟩𝑖 ∈ Z2𝑙 generated
by linear layers to shares of bits of 𝑥 in 𝑍𝑝 , with 𝑝 = 37.

Note that, contrary to FALCON, we can directly benefit from the
binary sharing returned by the private compare algorithm, since it
will serve as input to subsequent binarized layers without requiring
a reconversion to Z2𝑙 .

4.4 Binary VDP
Vectorized XNOR (t = v ⊕ w̄) in a RSS setting is computed locally
based on local XOR ([5] section 2.1) and local negation of 1 out of
the 3 shares. PopCount is translated into cumulative addition by
converting binary shares into arithmetic shares using the protocol
in section 5.4.2 of ABY3 [39](simplified by setting 𝑎 = 1):

𝜌𝑋𝑂𝑁𝑁 = 𝑓 (𝑣,𝑤) =
𝑁∑
𝑗=1

𝑣 𝑗 ∗ (−1)𝑤𝑗

𝑁∑
𝑗=1

𝑣 𝑗 ⊕ (𝑤 𝑗) =
𝑁∑
𝑗=1

𝑡 𝑗 (8)

1The Heaviside function is equivalent to the derivative of ReLU 𝑑𝑅𝑒𝐿𝑈 =
𝜕𝑚𝑎𝑥 (0,𝑥)

𝜕𝑥
.

The only difference is that H(t) is defined for Z only, while dReLU is defined for R

Algorithm 2 Binary BN + BA:
Input: 𝑃0, 𝑃1, 𝑃2 hold binary shares of J𝑥K in Z2.
Correlated randomness: 𝑃0, 𝑃1, 𝑃2 hold shares of a random bit in

two rings J𝛽K2 and J𝛽K𝑝 and shares of a random, secret integer
𝑚 ∈ Z∗𝑝 .

Output: All parties get shares of the bit (𝑥 ≥ 0) ∈ Z2.
Note: Arithmetic shares are over Z𝑝 after conversion.

1: ⟨⟨𝑧⟩⟩ = ⟨⟨𝑥⟩⟩ − ⟨⟨𝛽/𝛾⟩⟩
2: arith2bitdecomp: (from [53]) ⟨⟨𝑧⟩⟩ → shares of bits of 𝑧,

J𝑧𝑖K, 𝑖 ∈ 1, . . . , 𝑙
3: for 𝑖 = {ℓ − 1, ℓ − 2, . . . , 0} do
4: Compute shares of 𝑐 [𝑖] = (−1)𝛽𝑧 [𝑖] + 1 +∑ℓ

𝑘=𝑖+1 𝑧 [𝑘]
5: end for
6: Compute and reveal 𝑑 := J𝑚K𝑝 ·∏ℓ−1

𝑖=0 𝑐 [𝑖] (mod 𝑝)
7: Let 𝛽 ′ = 1 if (𝑑 ≠ 0) and 0 otherwise.
8: return Shares of J𝛽 ′ ⊕ 𝛽K ∈ Z2

With the binary input vector 𝑣 , and the weights vector𝑤 , we im-
plement their VDP using XONN’s𝑚𝑢𝑙𝑡&𝑎𝑑𝑑 → 𝑋𝑁𝑂𝑅&𝑝𝑜𝑝𝑐𝑜𝑢𝑛𝑡
transformation:

𝑁∑
𝑗=1

J𝑣 𝑗 K ⊕ J𝑤 𝑗 K
local−−−−−−−−→

XOR, NOT

𝑁∑
𝑗=1

J𝑡 𝑗 K

2 rounds−−−−−−−→
comm.

𝑁∑
𝑗=1

⟨⟨𝑡 𝑗 ⟩⟩
local−−−−−−−−−→

cumm. add
Σ𝑉𝐷𝑃 (𝜌𝑋𝑂𝑁𝑁)

(9)

4.4.1 XNOR. Starting with 2-out-of-3 shares of a vector of bits J𝑣K,
and similar shares of binary weights J𝑤K, we use local evaluation
of XOR from [5] to implement XOR, where 𝑟 = [𝑟]0 ⊕ [𝑟]1 ⊕ [𝑟]2
is the correlated randomness of 𝑣 and 𝑠 = [𝑠]0 ⊕ [𝑠]1 ⊕ [𝑠]2 is the
correlated randomness of 𝑤 ; and 𝑟 = 𝑠 = 0. Note that, using the
binary sharing proposed above, party 𝑃𝑖 holds𝑤𝑖 ,𝑤𝑖+1, and thus
holds 𝑠𝑖−1 = 𝑤𝑖 ⊕𝑤𝑖+1; respectively for 𝑣𝑖 , 𝑣𝑖+1 and 𝑟𝑖−1

J𝑡K = J𝑣 ⊕𝑤, 𝑟 ⊕ 𝑠K =
[([𝑣]0 ⊕ [𝑣]1 ⊕ [𝑣]2) ⊕ ([𝑤]0 ⊕ [𝑤]1 ⊕ ([𝑤]2)),
([𝑟]0 ⊕ [𝑟]1 ⊕ [𝑟]2) ⊕ ([𝑠]0 ⊕ [𝑠]1 ⊕ ([𝑠]2)] →
[𝑤]0 ⊕ [𝑣]0, [𝑟]2 ⊕ [𝑠]2 ⇒ Locally computed in 𝑃0 as J𝑡K0
[𝑤]1 ⊕ [𝑣]1, [𝑟]0 ⊕ [𝑠]0 ⇒ Locally computed in 𝑃1 as J𝑡K1
[𝑤]2 ⊕ [𝑣]2, [𝑟]1 ⊕ [𝑠]1 ⇒ Locally computed in 𝑃2 as J𝑡K2

(10)

4.4.2 Popcount. The equivalent of cumulative addition for integers,
popcount (or hamming weight) adds all the bits set to 1. To perform
this cumulative addition, standard Garbled Circuits require an entire
tree of ripple carry adders (RCA)[54], as it is the case in XONN[43].
This renders the computation quite expensive, seeing how each RCA
requires at least one AND operation (1 round of communication
each, 𝑙𝑜𝑔2𝑁 rounds in total). Instead, based on section 5.4.2 of ABY3
[39] we convert the binary shares into integer shares at a cost of 2
multiplications and then perform local cumulative addition over
the resulting integer shares, just like in the first layer.

The conversion happens as follows:
𝑁∑
𝑗=1

J𝑡 𝑗 K
2 rounds−−−−−−−→
comm.

𝑁∑
𝑗=1

⟨⟨𝑡 𝑗 ⟩⟩
local−−−−−−−−−→

cumm. add
Σ𝑉𝐷𝑃 (𝜌𝑋𝑂𝑁𝑁) (11)

The entire binary linear layer would look like this:

⟨⟨𝑏⟩⟩ =2 ∗ 𝑁 −
𝑁∑
𝑗=1

J𝑣 𝑗 K ⊕ J𝑤 𝑗 K
local−−−−−−−−→

XOR, NOT
2 ∗ 𝑁 −

𝑁∑
𝑗=1

J𝑡 𝑗 K
2 rounds−−−−−−−→
comm.

2 ∗ 𝑁 −
𝑁∑
𝑗=1

⟨⟨𝑡 𝑗 ⟩⟩
local−−−−−−−−−→

cumm. add
2 ∗ 𝑁 − Σ𝑉𝐷𝑃

(12)
The actual output of the binary VDP is 2 ∗ Σ𝑉𝐷𝑃 − 𝑁 , as shown

in figure 2 of XONN[43]. The complete Binary VDP is detailed in
algorithm 3.

Algorithm 3 Binary VDP:
Input: 𝑃0, 𝑃1, 𝑃2 hold binary shares of J𝑥 𝑗 K in a given window

spanning (1 . . . 𝑗 . . . 𝑁).
Correlated randomness: 𝑃0, 𝑃1, 𝑃2 hold integer shares of zeroed

values ⟨⟨𝑎 𝑗 ⟩⟩, ⟨⟨𝑏 𝑗 ⟩⟩, ⟨⟨𝑐 𝑗 ⟩⟩, ⟨⟨𝛼 𝑗 ⟩⟩.
Output: All parties get integer shares of 𝑅𝑒𝑠𝑉𝐷𝑃 .
Note: Shares over Z2𝑙 are defined with 𝑙 large enough to avoid

overflow (upper bound log2 (𝑁), based on binary layer size).
Arithmetic multiplications in steps 6 and 7 also include the
abort mechanism from algorithm 1.

1: J𝑡 𝑗 K = J𝑣 𝑗 K ⊕ J𝑤 𝑗 K
2: bin2arith J𝑡 𝑗 K → ⟨⟨𝑡 𝑗 ⟩⟩
3: 𝑃0: ⟨⟨𝑡 𝑗 ⟩⟩𝑏0 = J𝑡 𝑗 K0 + ⟨⟨𝑎 𝑗 ⟩⟩
4: 𝑃1: ⟨⟨𝑡 𝑗 ⟩⟩𝑏1 = J𝑡 𝑗 K1 + ⟨⟨𝑏 𝑗 ⟩⟩
5: 𝑃2: ⟨⟨𝑡 𝑗 ⟩⟩𝑏2 = J𝑡 𝑗 K2 + ⟨⟨𝑐 𝑗 ⟩⟩
6: ⟨⟨𝑑 𝑗 ⟩⟩ = ⟨⟨𝑡 𝑗 ⟩⟩𝑏0 + ⟨⟨𝑡 𝑗 ⟩⟩𝑏1 − 2 ∗ ⟨⟨𝑡 𝑗 ⟩⟩𝑏0 ∗ ⟨⟨𝑡 𝑗 ⟩⟩𝑏1
7: ⟨⟨𝑡 𝑗 ⟩⟩ = ⟨⟨𝑡 𝑗 ⟩⟩𝑏2 + ⟨⟨𝑑 𝑗 ⟩⟩ − 2 ∗ ⟨⟨𝑡 𝑗 ⟩⟩𝑏2 ∗ ⟨⟨𝑑 𝑗 ⟩⟩
8: ⟨⟨Σ𝑉𝐷𝑃 ⟩⟩ =

∑𝑁
𝑗=1⟨⟨𝑡 𝑗 ⟩⟩ + ⟨⟨𝛼 𝑗 ⟩⟩

9: ⟨⟨𝑅𝑒𝑠𝑉𝐷𝑃 ⟩⟩ = 2 ∗ 𝑁 − ⟨⟨Σ𝑉𝐷𝑃 ⟩⟩
10: return Shares of ⟨⟨𝑅𝑒𝑠𝑉𝐷𝑃 ⟩⟩ ∈ Z2𝑙

4.5 Max pooling
Max pooling requires computing the OR function over the values in
the sliding window. However, [5] only defines NOT, XOR and AND
as operations in the binary sharing domain. In order to compute OR,
we reformulate OR with the available gates using NAND logic and
decomposing:𝑂𝑅(𝑎, 𝑏) = 𝑁𝑂𝑇 (𝐴𝑁𝐷 (𝑁𝑂𝑇 (𝑎), 𝑁𝑂𝑇 (𝑏))). We can
now formulate the Max operation that composes a Maxpool layer:

𝑚 =𝑚𝑎𝑥window 𝑞 (𝑥) = 𝑥𝑞1 𝑂𝑅 𝑥𝑞2 𝑂𝑅 · · · =

𝑛𝑜𝑡 (𝑛𝑜𝑡 (𝑥𝑞1) 𝐴𝑁𝐷 𝑛𝑜𝑡 (𝑥𝑞2)𝐴𝑁𝐷 . . .) ≡ 𝑥𝑞1 & 𝑥𝑞2 & . . .

(13)
As such, the Binary Maxpool layer requires as many multipli-

cations as the number of elements in the sliding window, with 4
being a typical value. This implies one communication round per
multiplication. The full layer is described in algorithm 4.

Algorithm 4 MaxPool:
Input: 𝑃0, 𝑃1, 𝑃2 hold binary shares J𝑥 𝑗 K over a window of size

1 . . . 𝑗 . . . 𝑁
Correlated randomness: 𝑃0, 𝑃1, 𝑃2 hold binary shares of zeroed

bits J𝑎 𝑗 K.
Output: All parties get binary shares of J𝑚K𝑚𝑎𝑥𝑝𝑜𝑜𝑙 .
Note: &(𝐴𝑁𝐷) operation is performed following [5], with abort

conditions similar to those in algorithm 1, but applied in Z2.
𝑏 (𝑁𝑂𝑇) is performed locally negating the binary shares in 𝑃0.

1: J𝑚K = J𝑥0K
2: for 𝑖 = {2, . . . 𝑗, . . . , 𝑁 } do
3: J𝑚K = J𝑚K & J𝑥 𝑗 K
4: end for
5: J𝑚K = J𝑚K
6: return Shares of J𝑚K ∈ Z2

5 EXPERIMENTS
5.1 Implementation
We implemented Banners on top of MP-SPDZ [34], with our
own data management functions (im2col[19], col2im, padding,
flatten) while relying on existing functionalities in MP-SPDZ to
handle the MPC session and its low level operations. We report the
total communication and the total online processing time, purposely
leaving out offline processing. We used Larq[23], a high level BNN
framework extending Tensorflow[1], to define and train our own
BNN models for image classification over the MNIST and CIFAR10
datasets. We relied on recommendations from [6] to define BNN
architectures, and used the Bop optimizer[27] with notions from
[4] for training. To compare with XONN, we applied early stopping
once the accuracy reported in [43] is reached, with a maximum
deviation of 0.2%. Contrary to secure non-binarized NN inference
(whose floating point operations need to be translated into fixed-
point[52]), the secure BNN inference performs exactly the same
operations as standard BNN, preserving the model accuracy.

5.2 Comparison with XONN

BM1_s1 BM1_s3 BM2_s1 BM2_s3 BM3_s1 BM3_s3
0.0

0.1

0.2

0.3

0.4

0.5

0.6

la
te
nc
y(
s)

0.14
0.17

0.12

0.21 0.2

0.63

0.12 0.14
0.1

0.18 0.17

0.52

Banners
XONN

Figure 5: Comparison in latency for MNIST BNN models

Table 2: BNN architectures trained for comparison with XONN

Arch. Previous Papers #layers Description Dataset
BM1 XONN[43], MiniONN[38] 3 3FC MNIST
BM2 XONN[43], CryptoNets[25], MiniONN[38], Chameleon[44] 3 1 CONV, 2 FC MNIST
BM3 XONN[43], MiniONN[38] 6 2CONV,2MP,2FC MNIST
BC1 XONN[43], Chameleon[44], Gazelle[33] 10 7CONV,2MP,1FC CIFAR10
BC2 XONN[43], Fitnet[45] 13 9CONV,3MP,1FC CIFAR10
BC3 XONN[43], Fitnet[45] 13 9CONV,3MP,1FC CIFAR10
BC4 XONN[43], Fitnet[45] 15 11CONV,3MP,1FC CIFAR10
BC5 XONN[43], Fitnet[45] 21 17CONV,3MP,1FC CIFAR10
BC6 XONN[43], VGG16[48] 19 13CONV,5MP,1FC CIFAR10

As the most significant prior work on secure BNN inference,
we chose to compare Banners with XONN[43] 2. In order to do
so, we trained the BNNs shown in table 2, whose architectures
are directly taken from XONN([43], Appendix A.2). Since XONN
defines a scaling parameter s that increases the number of feature
maps in a given BNN, we trained models for 𝑠 in (1, 1.5, 2, 3, 4) to
compare ourselves with tables 11 and 12 from [43].

All our experiments were ran in a simplified LAN setting (differ-
ent TCP ports) on a single machine Intel(R) Core(TM) i7-7800X CPU
@ 3.50GHz with 12 cores, using 4 cores per party with an enforced
communication delay of 20ms on each link. Standard point-to-point
secure channels are set in place using MP-SPDZ codebase.

Observing the results from figures 5-10 (detailed results in tables
3 for MNIST models and 4 for CIFAR10 models), we discover that,
while the latency is increased in average 18% for the MNIST models
and 27% for the CIFAR models, the communication is 5% (CIFAR10)
to 15% (MNIST) lower. We can safely conclude that Banners trades
some speed in exchange for slightly lower communication and a
more robust security model: while XONN offers security against a
semi-honest adversary, Banners can detect misbehavior and stop
the computation. Furthermore, if the protocol outputs a value, then
parties are inherently sure of the correctness of the output.

BM1_s1 BM1_s3 BM2_s1 BM2_s3 BM3_s1 BM3_s3
0

20

40

60

80

100

120

140

Co
m
m
un

ica
tio

n(
M
B)

2.3
9

2.54

18.9 15.4

117

2.57
10.2

2.9

21.9 17.6

136
Banners
XONN

Figure 6: Comparison in communication for MNIST BNNs

2Comparison with other non-binarized works can be inferred from tables 4 and 6 of
XONN[43], as well as table 2 of FALCON [53].

We can bring the analysis further by comparing all the BNN
models in terms of the number of Multiply-Accumulate (MAC) op-
erations. AMAC accounts for an individual VDP operation (element-
wise multiplication with cumulative addition), and given that BN
and BA are applied element-wise to the output of a VDP, the num-
ber of MACs in a model is representative of its complexity3. The
latency is higher for all BNNmodels in our comparison from figures
7 and 11. Furthermore, while the communication increases linearly
with the model complexity, there seems to be a certain inherent
setup latency: note the almost horizontal slope in figure 8 for the
smallest models, affecting both XONN and Banners models. This
setup is rendered negligible when the BNN architectures increase
in size, such as with CIFAR10 models in figure 11.

50k 100k 200k 500k 1M 2M 5M 10M
MACs

0.1

0.2

0.3

0.4

0.6

1

la
te

nc
y(

s)

Banners
XONN

BM1
BM2
BM3

Figure 7: Tradeoff MACs - Latency for MNIST BNN

Finally, and crucial for edge devices, since all models are se-
quential, the RAM memory usage can be roughly estimated by the
communication load divided by the number of layers (table 9 of
[53]). By doing so we observe (last column in tables 3 and 4) that
the memory footprint is small enough (tens to hundreds of MB)
for Banners to be applicable for secure edge computing (e.g., a
Raspberri Pi and most modern phones have 1GB+ of RAM).

3Note that the direct relation between MACs and complexity applies to sequential
NN architectures like the ones described in this paper. It does not hold for Recurrent
Neural Networks and other non-sequential NN architectures.

Table 3: Accuracy, communication, and latency comparisons2 for MNIST dataset, Banners VS XONN[43].

Arch. s # param (x103) # MACs (x103) Accuracy (%) Communication (MB) Latency (s) Est. RAM (MB)
Banners XONN Banners XONN Banners XONN

BM1

1 31 30 97.10 2.30 2.57 0.14 0.12 0.77 0.86
1.5 58 57 97.56 3.53 4.09 0.16 0.13 1.18 1.36
2 94 93 97.82 5.13 5.87 0.15 0.13 1.71 1.96
3 190 188 98.10 9.00 10.22 0.17 0.14 3.00 3.41
4 320 316 98.34 13.73 15.62 0.18 0.15 4.58 5.21

BM2

1 74 91 97.25 2.54 2.90 0.12 0.10 0.85 0.97
1.50 153 178 97.93 5.03 5.55 0.14 0.12 1.68 1.85
2 291 326 98.28 9.14 10.09 0.16 0.14 3.05 3.36
3 652 705 98.56 18.87 21.90 0.21 0.18 6.29 7.30
4 1160 1230 98.64 33.42 38.30 0.27 0.23 11.14 12.77

BM3

1 34 667 98.54 15.36 17.59 0.20 0.17 2.56 2.93
1.5 75 1330 98.93 32.22 36.72 0.26 0.22 5.37 6.12
2 132 2200 99.13 56.35 62.77 0.36 0.3 9.39 10.46
3 293 4610 99.26 117.11 135.88 0.63 0.52 19.52 22.65
4 519 7890 99.35 207.40 236.78 0.94 0.81 34.57 39.46

Table 4: Accuracy, communication, and latency comparisons2 for CIFAR10 dataset, Banners VS XONN[43].

Arch. s # param (x103) # MACs (x106) Accuracy (%) Communication (GB) Latency (s) Est. RAM (MB)
Banners XONN 3 Banners XONN Banners XONN

BC1

1 200 42 72.0 1.22 1.26 5.02 3.96 122 126
1.5 446 92 77.0 2.60 2.82 10.89 8.59 260 282
2 788 163 80.0 4.79 4.98 18.90 15.07 479 498
3 1760 364 83.0 10.31 11.15 43.16 33.49 1031 1115

BC2

1 92 12 67.0 0.37 0.39 1.77 1.37 28 30
1.5 205 27 73.0 0.83 0.86 3.53 2.78 64 66
2 363 47 78.0 1.48 1.53 6.08 4.75 114 118
3 815 105 82.0 3.18 3.40 13.28 10.35 245 262

BC3

1 368 41 77.0 1.29 1.35 5.39 4.23 99 104
1.5 824 92 81.0 2.84 3.00 11.52 9.17 218 231
2 1460 164 83.0 4.97 5.32 20.72 16.09 382 409
3 3290 369 86.0 11.03 11.89 45.67 35.77 848 915

BC4

1 689 143 82.0 4.36 4.66 17.78 14.12 291 311
1.5 1550 322 85.0 9.88 10.41 39.98 31.33 659 694
2 2750 572 87.0 17.87 18.45 69.36 55.38 1191 1230
3 6170 1290 88.0 38.56 41.37 158.79 123.94 2571 2758

BC5

1 1210 166 81.0 5.26 5.54 21.17 16.78 250 264
1.5 2710 372 85.0 11.68 12.40 46.78 37.29 556 590
2 4810 661 86.0 20.51 21.98 83.75 65.94 977 1047
3 10800 1490 88.0 46.04 49.30 190.14 147.66 2192 2348

BC6

1 1260 23 67.0 0.60 0.65 2.74 2.15 32 34
1.5 2830 50 74.0 1.40 1.46 5.80 4.55 74 77
2 5020 90 78.0 2.48 2.58 10.03 7.91 131 136
3 11300 201 80.0 5.58 5.77 22.44 17.44 294 304

2 The accuracy in Banners models matches the one described in this table by ±0.1%. The number of parameters and number of Multiply-ACcumulate (MAC)
are obtained from Larq. The communication and latency for XONN are taken from [43], while figures reported for Banners are yielded by MP-SPDZ.

3 Although the results in communication of XONN for BC1-BC6 CIFAR10 networks are originally given in MB (see table 12 of [43]), we believe this to be a
minor typing error and report them in GB, since BC* models have around 1000 times more MACs than BM* models (compare table 3 with table 4), while the
communication costs seem to be lower (table 11 VS table 12 of [43]). This is further confirmed by the mention (appendix A.2 of [43]) of an upper bound of 40GB
above which the communication costs are just estimated; which would only make sense if indeed the communication of CIFAR10 models was measured in GB.

50k 100k 200k 500k 1M 2M 5M 10M
MACs

1

2

5

10

20

50

100

200

Co
m

m
un

ica
tio

n(
GB

)

Banners
XONN

BM1
BM2
BM3

Figure 8: Tradeoff MACs - Communication for MNIST BNN

6 CONCLUSION
With the formulation presented in this work, Banners aims to
provide an efficient secure inference implementation of BNN by
relying on Replicated Secret Sharing. All in all, the memory and
space efficiency, coupled with improved security protecting against
one malicious adversary, provides a suitable candidate to run secure
BNN inference on edge devices.

Future steps of this work will aim at Bit Slicing techniques to ob-
tain considerable parallelization by leveraging on SIMD operations.
Additionally, models trained specifically for biometric identification
(e.g., face recognition) are envisioned. Although Banners is still
slow for real time face recognition as-is, it can already be used for
non time-constrained biometric applications. Finally, we foresee
extending Banners to secure BNN training with the techniques
from section 5.1.

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. Tensorflow: A system for large-scale machine learning. In 12th {USENIX}
symposium on operating systems design and implementation ({OSDI} 16). 265–283.

[2] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov,
Kunal Talwar, and Li Zhang. 2016. Deep learning with differential privacy. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security. 308–318.

[3] Anshul Aggarwal, Trevor E Carlson, Reza Shokri, and Shruti Tople. 2020. SOTE-
RIA: In Search of Efficient Neural Networks for Private Inference. arXiv preprint
arXiv:2007.12934 (2020).

[4] Milad Alizadeh, Javier Fernández-Marqués, Nicholas D. Lane, and Yarin Gal.
2019. A Systematic Study of Binary Neural Networks’ Optimisation. In Interna-
tional Conference on Learning Representations. https://openreview.net/forum?id=
rJfUCoR5KX

[5] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara.
2016. High-throughput semi-honest secure three-party computation with an
honest majority. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security. 805–817.

[6] Joseph Bethge, Haojin Yang, Marvin Bornstein, and Christoph Meinel.
2019. Back to Simplicity: How to Train Accurate BNNs from Scratch?
arXiv:1906.08637 [cs.LG]

[7] Dan Boneh, Amit Sahai, and Brent Waters. 2011. Functional encryption: Defini-
tions and challenges. In Theory of Cryptography Conference. Springer, 253–273.

[8] Florian Bourse, Michele Minelli, Matthias Minihold, and Pascal Paillier. 2018.
Fast homomorphic evaluation of deep discretized neural networks. In Annual
International Cryptology Conference. Springer, 483–512.

[9] Elette Boyle, Niv Gilboa, and Yuval Ishai. 2015. Function secret sharing. In Annual
international conference on the theory and applications of cryptographic techniques.

Springer, 337–367.
[10] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165 (2020).

[11] Adrian Bulat and Georgios Tzimiropoulos. 2019. XNOR-Net++: Improved binary
neural networks. arXiv preprint arXiv:1909.13863 (2019).

[12] Ran Canetti. 2000. Security and composition of multiparty cryptographic proto-
cols. Journal of CRYPTOLOGY 13, 1 (2000), 143–202.

[13] Ran Canetti. 2001. Universally composable security: A new paradigm for cryp-
tographic protocols. In Proceedings 42nd IEEE Symposium on Foundations of
Computer Science. IEEE, 136–145.

[14] Hervé Chabanne, Amaury de Wargny, Jonathan Milgram, Constance Morel,
and Emmanuel Prouff. 2017. Privacy-Preserving Classification on Deep Neural
Network. IACR Cryptol. ePrint Arch. 2017 (2017), 35.

[15] Ilaria Chillotti, Marc Joye, Damien Ligier, Jean-Baptiste Orfila, and Samuel Tap.
2020. CONCRETE: Concrete Operates oN Ciphertexts Rapidly by Extending
TfhE.

[16] Ran Cohen. [n.d.]. Secure Multiparty Computation: Introduction. Open web.
https://www.cs.tau.ac.il/~iftachh/Courses/Seminars/MPC/Intro.pdf.

[17] Anders Dalskov, Daniel Escudero, and Marcel Keller. 2020. Fantastic four: Honest-
majority four-party secure computation with malicious security. Technical Report.
Cryptology ePrint Archive, Report 2020/1330, 2020. https://eprint. iacr. org

[18] Anders Dalskov, Daniel Escudero, and Marcel Keller. 2020. Secure evaluation of
quantized neural networks. Proceedings on Privacy Enhancing Technologies 2020,
4 (2020), 355–375.

[19] Justin Johnson Fei-Fei Li, Andrej Karpathy. 2016. CNNs in Practice. Open Web
slides from lecture. http://cs231n.stanford.edu/slides/2016/winter1516_lecture11.
pdf.

[20] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. 2015. Model inversion
attacks that exploit confidence information and basic countermeasures. In Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security. 1322–1333.

[21] Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein. 2017. High-
throughput secure three-party computation for malicious adversaries and an
honest majority. InAnnual International Conference on the Theory and Applications
of Cryptographic Techniques. Springer, 225–255.

[22] Gartner. 2019. Gartner Predictions on Biometric Authentication.
https://www.gartner.com/en/newsroom/press-releases/2019-02-05-gartner-
predicts-increased-adoption-of-mobile-centric (2019).

[23] Lukas Geiger and Plumerai Team. 2020. Larq: An Open-Source Library for
Training Binarized Neural Networks. Journal of Open Source Software 5, 45 (Jan.
2020), 1746. https://doi.org/10.21105/joss.01746

[24] Craig Gentry. 2009. Fully homomorphic encryption using ideal lattices. In Proceed-
ings of the forty-first annual ACM symposium on Theory of computing. 169–178.

[25] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig,
and John Wernsing. 2016. Cryptonets: Applying neural networks to encrypted
data with high throughput and accuracy. In International Conference on Machine
Learning. 201–210.

[26] Oded Goldreich, Silvio Micali, and Avi Wigderson. 2019. How to play any mental
game, or a completeness theorem for protocols with honest majority. In Providing
Sound Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio
Micali. 307–328.

[27] Koen Helwegen, James Widdicombe, Lukas Geiger, Zechun Liu, Kwang-Ting
Cheng, and Roeland Nusselder. 2019. Latent Weights Do Not Exist: Re-
thinking Binarized Neural Network Optimization. In Advances in Neural In-
formation Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.). Curran Associates, Inc., 7533–
7544. http://papers.nips.cc/paper/8971-latent-weights-do-not-exist-rethinking-
binarized-neural-network-optimization.pdf

[28] Ehsan Hesamifard, Hassan Takabi, and Mehdi Ghasemi. 2017. Cryptodl: Deep
neural networks over encrypted data. arXiv preprint arXiv:1711.05189 (2017).

[29] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. 2016. Binarized neural networks. In Advances in neural information
processing systems. 4107–4115.

[30] Alberto Ibarrondo and Melek Önen. 2018. FHE-compatible batch normalization
for privacy preserving deep learning. In Data Privacy Management, Cryptocur-
rencies and Blockchain Technology. Springer, 389–404.

[31] IDEMIA. [n.d.]. Top 4 trends in Biometrics for 2020.
https://www.idemia.com/news/idemias-top-4-trends-biometrics-2020-2020-01-28
([n. d.]).

[32] Sergey Ioffe and Christian Szegedy. 2015. Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift. In International
Conference on Machine Learning. 448–456.

[33] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. 2018.
{GAZELLE}: A low latency framework for secure neural network inference.
In 27th {USENIX} Security Symposium ({USENIX} Security 18). 1651–1669.

https://openreview.net/forum?id=rJfUCoR5KX
https://openreview.net/forum?id=rJfUCoR5KX
https://arxiv.org/abs/1906.08637
https://www.cs.tau.ac.il/~iftachh/Courses/Seminars/MPC/Intro.pdf
http://cs231n.stanford.edu/slides/2016/winter1516_lecture11.pdf
http://cs231n.stanford.edu/slides/2016/winter1516_lecture11.pdf
https://doi.org/10.21105/joss.01746
http://papers.nips.cc/paper/8971-latent-weights-do-not-exist-rethinking-binarized-neural-network-optimization.pdf
http://papers.nips.cc/paper/8971-latent-weights-do-not-exist-rethinking-binarized-neural-network-optimization.pdf

[34] Marcel Keller. 2020. MP-SPDZ: A Versatile Framework for Multi-Party Computa-
tion. Cryptology ePrint Archive, Report 2020/521. https://eprint.iacr.org/2020/
521.

[35] Nishant Kumar, Mayank Rathee, Nishanth Chandran, Divya Gupta, Aseem Ras-
togi, and Rahul Sharma. 2020. Cryptflow: Secure tensorflow inference. In 2020
IEEE Symposium on Security and Privacy (SP). IEEE, 336–353.

[36] Eyal Kushilevitz, Yehuda Lindell, and Tal Rabin. 2010. Information-theoretically
secure protocols and security under composition. SIAM J. Comput. 39, 5 (2010),
2090–2112.

[37] Baiqiang Liang, Hongrong Ding, Lianfang Huang, Haiqing Luo, and Xiao Zhu.
2020. GWAS in cancer: progress and challenges. Molecular Genetics and Genomics
(2020), 1–25.

[38] Jian Liu, Mika Juuti, Yao Lu, and Nadarajah Asokan. 2017. Oblivious neural
network predictions via minionn transformations. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security. 619–631.

[39] Payman Mohassel and Peter Rindal. 2018. ABY3: A mixed protocol framework
for machine learning. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. 35–52.

[40] Christine Payne. 2019. MuseNet, 2019. URL https://openai. com/blog/musenet
(2019).

[41] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. 2016.
XNOR-Net: Imagenet classification using binary convolutional neural networks.
In European conference on computer vision. Springer, 525–542.

[42] Joseph Redmon and Ali Farhadi. 2018. Yolov3: An incremental improvement.
arXiv preprint arXiv:1804.02767 (2018).

[43] M. Sadegh Riazi, Mohammad Samragh, Hao Chen, Kim Laine, Kristin Lauter, and
Farinaz Koushanfar. 2019. XONN: XNOR-Based Oblivious Deep Neural Network
Inference. In Proceedings of the 28th USENIX Conference on Security Symposium.
USENIX Association, USA, 1501–1518.

[44] M Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M Songhori,
Thomas Schneider, and Farinaz Koushanfar. 2018. Chameleon: A hybrid secure
computation framework for machine learning applications. In Proceedings of the
2018 on Asia Conference on Computer and Communications Security. 707–721.

[45] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang,
Carlo Gatta, and Yoshua Bengio. 2014. Fitnets: Hints for thin deep nets. arXiv
preprint arXiv:1412.6550 (2014).

[46] Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (1979), 612–613.
[47] Taylor Simons and Dah-Jye Lee. 2019. A Review of Binarized Neural Networks.

Electronics 8, 6 (2019). https://doi.org/10.3390/electronics8060661
[48] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks

for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).
[49] Mingxing Tan and Quoc Le. 2019. EfficientNet: Rethinking Model Scaling for

Convolutional Neural Networks. In International Conference on Machine Learning.
6105–6114.

[50] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart.
2016. Stealing machine learning models via prediction apis. In 25th {USENIX}
Security Symposium ({USENIX} Security 16). 601–618.

[51] Paulo Vitorino, Sandra Avila, Mauricio Perez, and Anderson Rocha. 2018. Lever-
aging deep neural networks to fight child pornography in the age of social media.
Journal of Visual Communication and Image Representation 50 (2018), 303–313.

[52] Sameer Wagh, Divya Gupta, and Nishanth Chandran. 2018. SecureNN: Efficient
and Private Neural Network Training. IACR Cryptol. ePrint Arch. 2018 (2018),
442.

[53] Sameer Wagh, Shruti Tople, Fabrice Benhamouda, Eyal Kushilevitz, Prateek
Mittal, and Tal Rabin. 2020. FALCON: Honest-Majority Maliciously Secure
Framework for Private Deep Learning. arXiv preprint arXiv:2004.02229 (2020).

[54] Wikipedia. 2020. Ripple Carry Adder. Open web. https://en.wikipedia.org/wiki/
Adder_(electronics)#Ripple-carry_adder.

[55] Andrew Chi-Chih Yao. 1986. How to generate and exchange secrets. In 27th
Annual Symposium on Foundations of Computer Science (sfcs 1986). IEEE, 162–167.

[56] Yang Yu, Zhiqiang Gong, Ping Zhong, and Jiaxin Shan. 2017. Unsupervised
representation learning with deep convolutional neural network for remote
sensing images. In International Conference on Image and Graphics. Springer,
97–108.

APPENDIX
A SECURITY PROOFS
We apply the ideal VS real world simulation from [26][12][13] to
prove the security of our protocols, instantiating it for the setup of
Banners. We consider a static corruption model where the adver-
sary must choose which participant to corrupt before the execution
of the computations.

Our protocols preserve security in all contexts that use them
as a black box, providing inputs and fresh randomness and using
only the outputs. As such, they achieve universal composability. To
prove that our protocols are secure under general composition, we
rely on the Theorem 1.2 of [36].

The ideal world simulation contains an additional trusted party
that receives all the inputs from all the standard parties, computes
the ideal functionality correctly and sends the corresponding re-
sults to the standard parties. Conversely, the real world simulation
executes the protocol as described in the Banners algorithms in
the presence of adversaries (one malicious adversary in our case).
We then prove our protocols secure by verifying that for every
adversary in the real interaction, there exists a simulator in the
ideal interaction such that the environment cannot distinguish be-
tween the two scenarios. In other words, whatever information the
adversary extracts in the real interaction, the simulator can extract
it in the ideal world as well. Thus, the entire blackbox behavior and
interactions (inputs, outputs, communication) of all the parties in
the real world scenario is statistically equivalent to that of the ideal
world with the trusted party for the given adversary.

To prove each algorithm being secure, we replace it by their cor-
responding ideal functionality and then prove that the interactions
can be simulated, then showing that the real and ideal interactions
are indistinguishable from each other.

We set party 𝑃𝑘 to be corrupt. In the ideal world, the simulator
interacts with the adversary 𝑃𝑘 and simulates exact transcripts for
interactions between 𝑃𝑘 and the other two honest parties, 𝑃𝑖 , 𝑃 𝑗 . In
the real world, 𝑃𝑘 interacts with 𝑃𝑖 , 𝑃 𝑗 directly. In all these cases,
the simulator is able to extract the inputs from 𝑃𝑘 by using only
the values for the inputs of honest 𝑃𝑖 & 𝑃 𝑗 , since our 2-out-of-3
RSS scheme requires only two shares to reconstruct a secret. These
inputs are fed to the ideal/real functionality to generate correct
output distributions.

Ideal Functionality 1 Integer-Binary VDP:
Input: Functionality receives integer shares ⟨⟨𝑥 𝑗 ⟩⟩ , ⟨⟨𝑦 𝑗 ⟩⟩ ∈ Z2𝑙
Output: Compute the element-wise multiplication of ⟨⟨𝑥 𝑗 ⟩⟩ ∗ ⟨⟨𝑦 𝑗 ⟩⟩,

the cumulative addition of ⟨⟨Σ𝑉𝐷𝑃 ⟩⟩, and sends resulting shares
back to parties.

Theorem A.1. The Integer-Binary VDP algorithm (algorithm 1)
securely realizes the Integer-Binary VDP functionality with abort in
the presence of one malicious party.

Proof. The simulator S for a malicious adversary corrupting
𝑃𝑘 plays the role of the trusted party. To be able to simulate, we
need to show that:

• Real interaction transcripts can be simulated.
• Honest parties 𝑃𝑖 , 𝑃 𝑗 receive their outputs correctly.

Simulation can be easily derived from the standard maliciously
secure multiplication of [21] in the integer case, also treated in
theorem 2 of [39], along with theorem 5 of [39] for the binary to
arithmetic conversion. The simulator for this multiplication can
simulate the transcripts from steps 2-7. Note that the distributions
of all random values (such as the first 2 SS shares in a triplet) are all
uniform and hence achieve perfect security. Local steps such as 1

https://eprint.iacr.org/2020/521
https://eprint.iacr.org/2020/521
https://doi.org/10.3390/electronics8060661
https://en.wikipedia.org/wiki/Adder_(electronics)#Ripple-carry_adder
https://en.wikipedia.org/wiki/Adder_(electronics)#Ripple-carry_adder

and 8 do not need simulation. If the protocol aborts at any time in the
internal run, then the simulator sends Abort to the functionalities.
Otherwise, it inputs the extracted shares of 𝑃𝑘 along with those of
𝑃𝑖 , 𝑃 𝑗 , and the parties receive their outputs.

Ideal Functionality 2 Binary BN + BA:
Input: Functionality receives arithmetic shares ⟨⟨𝑥⟩⟩, ⟨⟨𝛽/𝛾⟩⟩ ∈ Z2𝑙 .
Output: Computes local subtraction ⟨⟨𝑥⟩⟩ − ⟨⟨𝛽/𝛾⟩⟩, followed by

reconstruction extraction of the MSB. Generates and sends
binary shares of result.

Theorem A.2. The Binary BN+BA algorithm (algorithm 2) se-
curely realizes the Binary BN+BA ideal functionality with abort in
the presence of one malicious party.

Proof. The simulation can be derived from the standard mali-
ciously secure integer addition (step 1) from [21], along with the
theorem 2 of [53] for the binary activation. Abort conditions and
outputs of honest parties apply just like in the previous proof.

Ideal Functionality 3 Binary VDP:
Input: The functionality receives binary shares of J𝑥 𝑗 K in a given

window with 𝑁 elements.
Output: Computes element-wise XOR, transforms the resulting

binary shares into arithmetic (with two intermediate AND
gates) and performs local cumulative addition. Generates and
sends shares of 𝑅𝑒𝑠𝑉𝐷𝑃 to parties.

Theorem A.3. The Binary VDP algorithm (algorithm 3) securely
realizes the Binary VDP ideal functionality with abort in the presence
of one malicious party.

Proof. We apply a similar logic to that of the first functionality.
The simulation can be derived from the standard maliciously secure
XOR of [21] in the binary case (step 1) as well as secure integer
addition (step 8), along with theorem 5 of [39] for the binary to
arithmetic conversion (steps 2-7). Local steps such as 1 and 8 do not
need simulation. Abort conditions and outputs of honest parties
apply just like in the previous proof.

Ideal Functionality 4 Maxpool:
Input: Functionality receives 𝑁 binary shares J𝑥 𝑗 K over a window.
Output: Computes local𝑁𝑂𝑇 on all shares followed by cumulative

𝐴𝑁𝐷 (following [21]) and a final 𝑁𝑂𝑇 . Generates and sends
binary shares of J𝑚K𝑚𝑎𝑥𝑝𝑜𝑜𝑙 to parties.

Theorem A.4. The Maxpool algorithm (algorithm 4) securely re-
alizes the Maxpool ideal functionality with abort in the presence of
one malicious party.

Proof. We apply composability of maliciously secure AND of
[21] in the binary case (steps 3-5). Local negation of steps 1 and 5
does not need simulation.

B GRAPHS FOR CIFAR10 COMPARISON

BC1_s1 BC2_s1 BC3_s1 BC4_s1 BC5_s1 BC6_s1
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

la
te
nc
y(
s)

5.02

1.77

5.39

17.8

21.2

2.74
3.96

1.37

4.23

14.1

16.8

2.15

Banners
XONN

Figure 9: Comparison in latency for CIFAR10 BNN models

BC1_s1 BC2_s1 BC3_s1 BC4_s1 BC5_s1 BC6_s1
0

1

2

3

4

5
Co

m
m
un

ica
tio

n(
GB

)

1.22

0.37

1.29

4.36

5.26

0.6

1.26

0.39

1.35

4.66

5.54

0.65

Banners
XONN

Figure 10: Comparing communication for CIFAR10 BNNs

10k 20k 50k 100k 200k 500k 1M
MACs

1

2

5

10

20

50

100

200

la
te

nc
y(

s)

Banners
XONN

BC1
BC2
BC3
BC4
BC5
BC6

Figure 11: Tradeoff betweenMACs and Latency for CIFAR10
BNN models

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Binarized Neural Networks
	2.2 Secure Multi-Party Computation
	2.3 Secret Sharing, Replicated Secret Sharing

	3 Previous work
	4 Our contribution
	4.1 Input data
	4.2 First layer VDP
	4.3 BN + BA as secure comparison
	4.4 Binary VDP
	4.5 Max pooling

	5 Experiments
	5.1 Implementation
	5.2 Comparison with XONN

	6 Conclusion
	References
	A Security Proofs
	B Graphs for CIFAR10 comparison

