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Abstract

Nowadays, Machine Learning and Artificial Intelligence (ai) are impacting the
future of every industry and human being. The potential of such technologies
is recognized in many application sectors. However, they meet the high barrier
of interpretability, sometimes referred as explainability, that affects the so
called black-box models. The lack of interpretability is a serious problem and
prevents the usage of ai systems in fields involving critical decision-making,
with significant consequences on human life.

In the literature, there are mainly two approaches to tackle machine learning
interpretability: the former bypasses the issue by relying on naturally inter-
pretable, transparent methods; the latter exploits post-hoc interpretability
techniques, specifically designed to explain black-box methods. In both cases,
interpretability depends on the comprehensibility of the data representation
taken as input by the models.

The contributions presented in this work are two-fold. We first provide a
general overview of explanations and interpretable machine learning, making
connections with different fields, including sociology, psychology, and phi-
losophy, introducing a taxonomy of popular explainability approaches and
evaluation methods. We subsequently focus on rule learning, a specific family
of transparent models, and propose a novel rule-based classification approach,
based on monotone Boolean function synthesis: libre. libre is an ensemble
method that combines the candidate rules learned by multiple bottom-up
learners with a simple union, in order to obtain a final intepretable rule set.
Our method overcomes most of the limitations of state-of-the-art competitors:
it successfully deals with both balanced and imbalanced datasets, efficiently
achieving superior performance and higher interpretability in real datasets.

Interpretability of data representations is central in our discussion on machine
learning interpretability and constitutes the second broad contribution to this
work. We restrict our attention to disentangled representation learning, and,
in particular, vae-based disentanglement methods to automatically learn
representations consisting of semantically meaningful features. Disentan-
gled representations are not only interpretable, but also useful to simplify
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downstream tasks, for the benefit of the whole predictive chain. Recent
contributions have demonstrated that disentanglement is impossible in purely
unsupervised settings. Nevertheless, incorporating inductive biases on models
and data may overcome such limitations. We present a new disentanglement
method – idvae – with theoretical guarantees on disentanglement, deriving
from the employment of an optimal exponential factorized prior, conditionally
dependent on auxiliary variables complementing input observations. We addi-
tionally propose a semi-supervised version of our method. Our experimental
campaign on well-established datasets in the literature shows that idvae

often beats its competitors according to several disentanglement metrics.

Keywords: Interpretable Machine Learning, Explainable Artificial Intelligence,
Rule Learning, Disentangled Representation Learning.



Preface

This thesis comprises the work on Interpretable Machine Learning carried
out over the duration of my PhD.

Chapter 1 is a gentle introduction to the gigantic field of interpretable
machine learning. It summarizes the exploration work of the first part of
my research, with interesting references to different fields, including human
sciences, well aligned with my classical background and strongly related to
the concept of explanations and interpretability. This preliminary phase has
been crucial for identifying the direction of the thesis, that can be mainly
divided into two distinct parts, focusing on interpretability of machine learning
models (rule learning) and data representations (disentangled representation
learning), respectively.

Chapter 2 and Chapter 3 extend the work presented in:

Graziano Mita, Paolo Papotti, Maurizio Filippone, Pietro Michiardi.
libre: Learning Interpretable Boolean Rule Ensembles. Proceedings of
the 23rd International Conference on Artificial Intelligence and Statistics,
AISTATS, 2020.

In particular, Chapter 2 submits a unified view of transparent, rule learning
approaches, with a critical review of their main problems and possible solu-
tions. Chapter 3 builds on top of the considerations of Chapter 2 and details
our proposal to overcome such issues.

Chapter 4 and Chapter 5, expand on:

Graziano Mita, Maurizio Filippone, Pietro Michiardi. An Identifiable
Double vae For Disentangled Representations. Under review by the 38th
International Conference on Machine Learning, ICML, 2021.

Chapter 4 defines the problem of learning disentangled representations, re-
porting quantitative measures to evaluate disentanglement and practical
examples where disentanglement is beneficial. Chapter 5 reviews the main
vae-based approaches from the literature to learn disentangled representation
and analyzes the relation between model identifiability and disentanglement.
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Moreover, it delineates our proposal to learn disentangled representation with
theoretical guarantees.

Chapter 6 concludes this thesis with a summary of the main themes and
contributions, followed by a brief discussion on future work.
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CHAPTER

ONE

INTERPRETABLE MACHINE LEARNING

Over the last decades, the terms interpretability and explainability have become popular in
the machine learning research community. However, if we thought they were new concepts,
we would be definitely wrong. Explanations have very ancient origins: philosophers have
always tried to answer existential questions about why things happen, social scientists
and psychologists have investigated the way humans communicate explanations to each
other for years. Today, we are trying to extend those findings to mathematical models, in
the hope of making them not only more intelligent and accurate, but also comprehensible
to those who are not necessarily experts. This is particularly important when such
models are used in critical application areas, where the decisions made by a machine
may have severe consequences on human lives.

1.1 Overview

With the increasing availability of data and the recent technological advancements
that allow people to access powerful hardware at accessible prices, machine learning
has naturally become part of our everyday life. Nowadays, machine learning, and in
particular deep learning models, are potentially adopted everywhere to solve practical
problems. In some fields, such as computer vision, Aritificial Intelligence (ai) has already
exceeded human capabilities, providing undeniable benefits. However, this huge diffusion
has also highlighted important weaknesses: many ai applications, especially the ones
that involve critical decision-making, see limited usage or are not appropriate, mainly
due to ethical and legal problems, or the lack of trust from their users.

Motivated by the limitations above, the concept of interpretability of machine learning
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Chapter 1. Interpretable Machine Learning 2

models has seen a renewed interest in recent years. The basic idea is that by designing
interpretable models, or by finding a way to explain opaque (black-box) models, the
users can better understand their internal mechanisms and, as a consequence, trust
these systems. There are, of course, other reasons for machine learning interpretability,
including the need to comply with new laws and regulations.

Despite this intuitive definition, navigating through the immense literature about inter-
pretable machine learning is quite complicated. Due to its intrinsic subjective nature
that involves humans in the loop, the work on explainable ai covers different fields, not
necessarily related to computer science or machine learning. If we want to design and
implement intelligent systems that people can interpret, analyzing the process humans
follow to explain decisions and evaluate explanations becomes essential. This takes us
in the world of social sciences, that have studied human behavior for a long time, and
represents the starting point to try to give a general and valid definition of interpretability
in machine learning, identifying its properties and goals. Then, we propose a taxonomy
to structure the work in the area. Chapter 1 is an indispensable step towards the next
chapters: the time spent to explore and organize the literature helped us to mature a
critical view of the field, moving us into specific research directions, leaving out others.

Outline of the chapter. In Section 1.2, we summarize the work carried out in social
sciences about how and why humans explain things. This is preliminary to Section 1.3,
where we focus on interpretability in the context of machine learning models, highlighting
properties, desiderata and common types of explanations in the literature; we additionally
report a general framework for evaluating explanations. In Section 1.4, we present a
taxonomy of interpretable machine learning, mainly distinguishing between transparent
models and post-hoc explainability techniques. We conclude the chapter with a discussion
about what we think should be the future of interpretable machine learning; this section
will also act as a bridge to the next chapters.

1.2 The Social Importance of Explaining Why

Despite its long history of research, that might be dated back to the invention of the
first expert systems in the 1970s, there is not a formal and commonly accepted definition
of machine learning interpretability, yet. A vast majority of recent work in the field
assumes a personal view of what a good explanation is, neglecting many, if not all, the
studies about human explanations. This might seem natural, considering the subjective
nature of the concept of interpretability. Nevertheless ignoring the huge amount of work
from sociology, psychology, and philosophy, about how humans define, communicate and
evaluate explanations would be counterproductive.
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Therefore, we start our journey by reviewing some insights from social sciences (Miller,
2019), so as to understand what people generally expect from explanations, and propose,
in the next sections, a more rigorous definition of machine learning interpretability.

1.2.1 The Art of Explaining to Humans

In one of its philosophical papers, David K. Lewis claims that explaining an event means
“providing some information about its causal history. In an act of explaining, someone
who is in possession of some information about the causal history of some event tries
to convey it to someone else” (Lewis, 1986). In other words, an explanation is both a
product and a process: on the one hand it is a product because it can be seen as an
answer to a why-question, given a presupposition such as “they did that. Why did they
do it?”, on the other hand it might also be considered as the cognitive process of deriving
an explanation. Philosophers and psychologists agree on the fact that explanations refer
to a cause (Salmon, 1989; Woodward, 2004) (in this work, we will not consider non-causal
explanations, answers to questions like “what happened”). However, there are also other
important properties to consider when discussing about explanations. Many explanations
are contrastive: people do not usually ask why event P happened, but why event P
happened instead of a different event Q. Answering these questions is generally easier
than providing complete explanations. Explanations may also be implicitly contrastive,
which makes it harder (or even infeasible) to figure out the event Q the user is implicitly
referring to. Explanations are selected : people do not ask for the complete cause of an
event, but select one or two causes to be the explanation. Finally, explanations may be
social : in this case, they should be seen as a conversation with the goal of transferring
knowledge, hence they should take into account how people interact.

Interpretable explanations. Throughout the whole thesis, the terms interpretability
and explainability are used interchangeably and invoke a measure of how understandable
an explanation is. More formally, in Biran and Cotton (2017) interpretability is defined
as the degree to which an observer may understand why a given decision has been taken.
This means that a certain concept, used to explain a given decision, may be transmitted
in different forms and different degrees of complexities, depending on the listener.

The reasons behind an explanation. An obvious reason to ask for explanations is
to understand why something happened. In this case, explanations are seen as a need
for humans to find meaning. Deeper logics involving social interactions, like creating a
shared meaning of something, transferring knowledge, influencing people’s beliefs, and
so on (Malle, 2004) are outside the scope of this work. In general, explanations might
be required to persuade someone that a given decision is right (Lombrozo, 2006): then,
providing the true reason might become of secondary importance.
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The structure of an explanation. Different questions require different explanations:
for example, asking why a certain event happened is not the same as asking where it
happened. In this work, we focus on why questions only. One of the oldest and most
known explanation models in philosophy is the Aristotle’s Four Causes model. According
to the Greek philosopher, we know something (and we can explain it) when we are able
to identify its causes, that is when we know why something exists and why it exists as
it is. This translates into four causes or modes: the former two, material and formal,
refer to its composition; the latter two, efficient and final, regard their origin and goal.
For instance, the material cause for a statue is the marble, the formal cause is the shape
given to the marble, the essence cause is the sculptor’s scalpel, and the final cause is the
reason why the sculptor makes the statue. Each of these causes, either taken alone or all
together, can be considered as reasonable explanations for why questions.

How people explain behavior. Research on social attribution, which studies how
people explain behavior to others, constitutes the foundation for much of the work on
explanations in general, and it is of great interest for ai explainability. Heider and Simmel
(1944) are the first to demonstrate that humans tend to attribute folk psychological
concepts, such as desire and intention, to objects. In one of their experiments, they asked
the participants to watch a video with animated shapes moving around the screen, and
to describe the scene. The participants described the movements of the objects as they
were performed by humans. Then, Heider argued that the main difference between the
human perception of objects and other humans is strongly related to the presence or lack
of specific intentions. Many years later, in one of his most famous books (Malle, 2004),
Malle proposes a conceptual framework for behavior explanations, formally distinguishing
between intentional and unintentional behaviors: for unintentional behavior, people
tend to offer only causes, while for intentional behavior people prefer more complex
explanations, taking into account mental states, desires, background reasons and emotions.
Also norms and morals have a huge impact on social attributions. When people explain
immoral behaviors or behaviors that go against commonly accepted “unwritten rules”,
they are likely to include their personal thoughts and judgements in the explanations. In
other words, explanations are biased by social beliefs. Unfortunately, human behavior,
personal and social opinions are hard to model and encode into ai explanations.

1.2.2 Selecting and Evaluating Explanations

Explanations can be seen as a cognitive process that guides the generation and reception
of explanations. Such process can be split into three steps (Miller, 2019): i) causal
connection, where we identify the main causes of an event; ii) explanation selection, where
a small subset of the causes is selected as the explanation, iii) explanation evaluation,
usually performed by people to whom the explanation is addressed.



Chapter 1. Interpretable Machine Learning 5

Causal connection. It is the process of identifying the causes of a fact, inferring them
from observation and/or prior knowledge. It is obvious that people cannot simulate back
all possible events to understand the associated causes. They use heuristics based on
several criteria: people tend to focus more on abnormal/unusual causes (abnormality of
events), intentional events receive more consideration than unintentional ones (intention of
events), a major focus is attributed to recent and controllable events, not coincidences, to
identify the causes of a fact (timing and controllability of events); changing the perspective,
the causes associated to an event typically change (perspective). In Section 1.3.2, we will
see that most machine learning models learn associations rather than causal relationships.

Explanation selection. Even when it is possible to establish all possible causes of a
fact, it would be impossible for a human to understand them. Explanation selection is
the process of selecting a subset of the causes identified in the previous step to provide
an explanation. The work in this area shows that people usually select explanations
according to criteria that are very similar to the ones used to identify them: explanations
taking into account differences with respect to other events, abnormal conditions and
intentional causes are more likely to be selected. In general, necessary causes are
preferred to sufficient ones; goals are generally better explanations than preconditions,
but preconditions and goals together are sometimes preferred.

Explanation evaluation. When individuals receive an explanation, they determine its
quality according to several criteria. In his Theory for Explanatory Coherence (Thagard,
1989), Thagard argues that humans judge positively explanations that are aligned and
coherent with their prior beliefs. Moreover, high quality explanations are simple (few
causes) and general (they explain multiple events). This simplicity principle is followed
by many interpretable machine learning models, including libre (see Chapter 3 for
more details). Surprisingly, while true and high probability causes are part of good
explanations, they are not always related to explanations that people find useful (Hilton,
1996). Vasilyeva et al. (2015) also notice that explanations where the explanatory mode
(material, formal, efficient, final) is well aligned with the goal of the question are preferred.

1.2.3 Communicating Explanations

According to the conversational model of explanation (Hilton, 1990), explanations can
be seen as a two-stage process: i) the diagnosis of causality, where the explanation
is actually “crafted” by identifying the main causes, and ii) the conversation, where
the explanation is conveyed to someone. Because of this second step, explanations are
subjected to the rules of conversations. Then, those explanations should contain causes
that are relevant to the explainee, aligned both with his prior and shared knowledge
between explainer and explainee.
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The Grice’s maxims (Greaves et al., 1999). They are a set of basic rules that
should be followed to present an explanation. Although they are explicitly conceived for
speeches, they naturally extend to any other conversation language. Grice identifies four
classes of maxims that we summarize as follows. i) Quality : a) do not say things that you
believe to be false, b) do not say things without sufficient evidence. ii) Quantity : a) make
your contribution as informative as is required, b) do not make it more informative than
is required. iii) Relation: a) Be relevant. iv) Manner : a) avoid obscurity of expression,
b) avoid ambiguity, c) be concise and (d) be orderly. In a few words, an explanation
should only contain necessary and relevant information.

Argumentation. A research study from Antaki and Leudar (1992) shows that a
considerable amount of statements in explanations are argumentative claim-backings.
When the explainer explicates or justifies something, he has to be ready to defend his
claims. Interestingly, argumentation is dependent on what the explainee already knows,
and focuses on abnormal factors as a way to empower the explanation. This confirms
that good explanations must be relevant to both the question and the mental model of
the explainee. Argumentative ai explanations are outside the scope of this thesis.

1.3 Interpretable Explanations in ai

When we talk about explainability and interpretability in machine learning, most of the
concepts introduced in the previous section are valid and should rather be considered
as necessary conditions to obtain “really interpretable” artificial intelligent systems.
Unfortunately, today we are still far from this ideal goal: although many works, maybe
unknowingly, tackle some of the desiderata for effective explanations, there is currently no
work that satisfies all the characteristics covered in the previous section. Such limitations
can be traced back to the lack of a commonly accepted definition of interpretable machine
learning: indeed, popular definitions are either contrasting or incomplete, as they only
consider a subset of goals; goals in isolation are not a sufficient condition to make a
model interpretable.

1.3.1 Toward a General Definition of Interpretable Machine Learning

In the machine learning literature, there has been a proliferation of definitions about
interpretable ai starting from 2016. It is not a coincidence that, in the same year, the
European Parliament has adopted, for the first time, a set of regulations for the collection,
storage and use of personal information, the General Data Protection Regulation (gdpr).
In particular, Article 22 refers to automated individual decision-making, including profiling,
and affirms a right to explanation, with a consequent strong impact on machine learning
algorithms. With the gdpr, explainable ai becomes a real need also by law.
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Limitations of popular definitions. Here below some of the most popular definitions
about explainable machine learning:

“By explaining a prediction, we mean presenting textual or visual artifacts that
provide qualitative understanding of the relationship between the instance’s
components and the model’s prediction, [. . . ] as a solution to the trusting a
prediction problem.” (Ribeiro et al., 2016).

“An interpretable explanation, or explanation, is a simple model, visualization,
or text description that lies in an interpretable feature space and approximates
a more complex model.” (Herman, 2017).

“In the context of machine learning models, we define interpretability as
the ability to explain or to present in understandable terms to a human.”
(Doshi-Velez and Kim, 2017).

“To intuitively understand a machine learning model, we need to visualize it,
make it accessible to the senses.” (Offert, 2017).

“Explainable Artificial Intelligence will create a suite of machine learning
techniques that enables human users to understand, appropriately trust, and
effectively manage the emerging generation of artificially intelligent partner.”
(Gunning, 2019).

These definitions have several drawbacks: i) they are sometimes too vague (Offert, 2017),
ii) they are linked to a specific explanation type, like textual or visual, which are not the
only alternatives, as we will see later; iii) they involve the concept of “understanding”
which is completely dependent on the explainee; iv) they consider a subset of the
desiderata of an explanation (we refer the reader to Section 1.3.2 for further details),
such as informativeness and trust.

A general definition. With that in mind, Arrieta et al. (2020) have recently proposed
a more general and coherent definition:

“Given an audience, an explainable Artificial Intelligence is one that produces
details or reasons to make its functioning clear or easy to understand.”,

Here, the key is the presence of the three words “given an audience”, that makes the
concepts of clarity and simplicity specific for a given target explainee. Last but not
least, this definition involves causal reasoning, that we identified as one of the main
components of the explanation process, and “details” that refer to any other type of
information we want to capture in the explanation.
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1.3.2 Desiderata of Interpretable Explanations

Recent work from the literature on interpretable machine learning identify different
desiderata for interpretable explanations. We have already seen that explanations can be
considered as answers to “why-questions”. If we restrict our focus on machine learning
models, we might say that explanations answer the question “Why does the model give
that output?”. This question gives rise to a series of side-goals that, depending on the
task and application area, might be the real reason why we need the explanation.

Informativeness. Every time we run a machine learning model to solve a given task,
we obtain some information back, in the form of an output. However, by interpreting
either the internal mechanisms of the model or the output (or both) we can obtain
additional information, that can then be used by human decision makers to make better
decisions. Interpretable machine learning aims at simplifying this process, making this
“additional information” easier to understand, given the explainee and the solved task.
All work carried out in this area has the informativeness goal in mind.

Causality. Overall, machine learning algorithms are not guaranteed to learn causal
relationships; they rather learn associations among input data. Indeed, there could
always exist unobserved variables that the machine learning model cannot take into
account and that actually represent the true causes. Even when causal inference (Pearl,
2009) is possible, it usually relies on strong assumptions, that are not always satisfiable
in practice. It is also true that causation involves correlation; thus, we may hope that by
designing interpretable models or interpreting models, we could generate hypotheses that
scientists could then test experimentally. While causality is one of the main reasons for
explanations, surprisingly there are not many works on interpretable machine learning
that explicitly set it as their goal.

Trustworthiness. Interpretability has often been studied in the light of trust (Ribeiro
et al., 2016; Lipton, 2018). Trustworthiness is defined as the confidence that a model
will act as expected. It is a property that every machine learning model should ideally
respect, but trusting a model does not necessarily imply that a model is interpretable.
Additionally, a perfect model, that always returns the exact output, is not automatically
trustworthy; it might be the case for a model that makes “reasonable mistakes”, for
example in situations where also humans make mistakes.

Transferability. Transferability is another important goal for interpretable models
(Ribeiro et al., 2016; Lipton, 2018). Being able to understand the decisions made
by a model is a necessary condition to exploit the discovered knowledge in different
contexts. In Section 2.4.2, we will see that this is true for rule-based systems, where
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knowledge is encoded in the form of rules that can be continuously learned, removed,
adapted to maintain their effectiveness even in presence of concept-drift (Lu et al., 2019).
Disentanglement methods constitute another example of interpretable models, well suited
for transfer learning tasks (see Section 4.4.2 for more details).

Fairness. Many works argue that interpretability is a practical way to increase fairness
in machine learning models. We know that data is unfair, simply because society is
unfair, too. The internal mechanisms of machine learning algorithms might amplify
such problems. This is particularly relevant in sensible applications, where decisions
made by a model impact human lives and cannot be based on ethical biases. The right
to explanation, defined in the gdpr, regulates all cases where personal data are used:
then, explanations must not only guarantee fairness, but also be provably correct and
contestable. As will be discussed in Section 4.4.3, learning disentangled representations
is a suitable way to achieve fair machine learning.

Interactivity. If we follow the view of explanations as conversations, some machine
learning models (Langley et al., 2017) support interactions with the user who can question
the model and obtain an answer. This implies the capability of the model to establish a
dialogue and provide explanations.

Accessibility. Dealing with interpretable models also considerably affects their devel-
opment process, from training to validation. Indeed, understanding how and why a given
model returns a given output might allow even non-expert users to improve the model’s
performance, more easily than highly non-linear black-box models.

Other desiderata. Explanations and interpretable models have also been used to i)
improve the stability of machine learning models (Lakkaraju et al., 2020), ii) increase
the robustness against adversarial attacks (see Section 4.4.4), iii) preserve privacy
when models process sensible information (Baron and Musolesi, 2020).

1.3.3 Properties of Interpretable Models

In the literature, there is a clear distinction between interpretable-by-design models,
that are considered, to some degree, naturally interpretable, and black-box (or opaque)
models, like neural networks, that, in contrast, require external techniques to interpret
them, uncovering the meaning of their parameters. These two families of approaches are
known as transparency and post-hoc interpretability, respectively.

This is just a first level of distinction: transparent models can be further classified
according to three properties that reflect different levels of transparency: simulatability,
decompasability and algorithmic transparency. Post-hoc interpretability techniques can
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also be discerned according to i) the type of explanation (text, visual, etc...), ii) their
dependence (or independence) from specific models, iii) their ability to provide either
local or global explanations. We remind the reader that, according to the conversational
model of explanation (Hilton, 1990), every time we generate an explanation we may
communicate it in different ways and format, thus using different techniques, depending
on the audience.

Transparency. Not all transparent models are the same: some of them are more inter-
pretable than others. Thus, it is worth establishing three different levels of transparency:
simulatability, decompasability and algorithmic transparency, where each level is also
covered by the previous ones. For example, a simulatable model is decomposable and
algorithmically transparent, but a decomposable model is not necessarily simulatable.

• Simulatability. A model is simulatable if a user can “contemplate the entire model
at once” (Lipton, 2018). More precisely, given an input observation and the model’s
parameters, a user has to manually generate the output of the model, in reasonable
time. This is possible only if the model is simple and compact. Simulatability
suggests that no model is intrinsically interpretable: sparse linear models are more
interpretable than the dense ones, but, for the same reason, a single perceptron
neural network is more interpretable than a big decision tree.

• Decomposability. Even if users are not able to fully simulate the output of a
model, they might still be able to follow and understand the output generation
process. More formally, a model is decomposable if a user can intuitively explain
each of its components: inputs, parameters and calculations. A simple and compact
model that takes complex features as input is not decomposable.

• Algorithmic transparency. A model is algorithmically transparent if a user can
totally explore it by means of mathematical analysis and methods. Linear models,
independently from their size and sparsity, are algorithmically transparent as it
is possible to reason about their loss shape. This is not the same for deep neural
networks and their complex loss functions.

Post-hoc interpretability. Black-box models require external techniques to be inter-
preted. They can be classified according to three different levels:

• Explanation type. i) Text explanations provide explanations in textual format.
This line of work also contains models that generate captions from images. ii)
Visual explanations aim at explaining what a model has learned by means of
visualizations. Some methods use dimensionality reduction techniques to represent
input observations on two or three dimensions; methods from the computer vision
community highlight the portion of the image/video the target model is focusing
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on to generate its output. iii) Explanations by example rely on the assumption that
a model should behave similarly when processing similar input observations. Then,
the decision of a model is explained by means of one or more similar examples or
proxies. iv) Feature relevance methods clarify the inner mechanisms of a model
by computing a relevance score for each input feature: the higher the score, the
higher the impact on the output.

• Local vs global. Local techniques consider a portion of the solution space, and
provide explanations for a less complex subspace. Such techniques usually pertur-
bate the input observation, for which we require an explanation, and approximate
the target model with a simpler, interpretable one. Alternatively, it is possible to
learn a transparent model that replicates the behavior of the entire target model.

• Model-specific vs model-agnostic. Some post-hoc interpretability techniques
are constrained to work with a specific type or family of models, whereas others
are model-independent (agnostic).

1.3.4 Evaluation Procedures

Doshi-Velez and Kim (2017) are the first to formally propose a taxonomy of evaluation
approaches for interpretability, distinguishing among application, human and function-
level evaluation.

Application level evaluation (real task). It is the more specific and costly evalu-
ation procedure. It involves conducting human experiments within a real application:
a transparent model, or a black-box model combined with a post-hoc model, runs in a
real scenario and is evaluated by humans, better if domain experts. The quality of the
explanation is measured according to its practical utility to solve the task at hand, in
terms, for example, of better identification of errors, less discrimination, and so on.

Human level evaluation (simple task). It can be seen as a simplified application
level evaluation, where experiments are carried out with a lay person instead of domain
experts. This is particularly convenient because it does not require high-profile testers,
hence it is easier to find more testers, but it is also limiting because it impacts the essence
of real end-tasks. Potential experiments might be, for instance, binary forced choices,
where the testers are presented with pairs of explanations and have to choose the best
one, or forward simulations, where, given an input and the corresponding explanation,
the testers have to simulate the output of the model.

Function level evaluation (proxy task). This evaluation procedure is the easiest
to automatize as it does not involve humans in the loop. It relies on some proxies
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to measure the interpretability of a model. Some models are better suited for this
evaluation procedure than others. For example, a proxy for rule-based systems might be
the number of rules, their size or a linear combination of them; a proxy for decision-trees
might be their height, and so on, eventually penalizing models that lead to a significant
performance drop. For other models, finding a good proxy is still an open problem.

1.4 A review of Explainability Approaches

On the basis of the taxonomy presented in the previous section, we will now review some
of the most popular approaches for interpretable machine learning. A quick summary is
illustrated in Figure 1.1.

ML Interpretability

Transparent Models

Linear/Logistic Regression

Generalized Linear Models

Generalized Additive Models

Rule-based Models

Decision Trees

K-Nearest Neighbors

Naive Bayes Classifier

Post-Hoc Interpretability

Model Agnostic

Explanation by Simplification

Explanation by Feature Relevance

Explanation by Visualization

Model Specific

Support Vector Machines
Explanation by Simplification

Explanation by Visualization/Feature Relevance

Tree Ensembles
Explanation by Simplification

Explanation by Visualization/Feature Relevance

Neural Networks

Explanation by Simplification

Explanation by Visualization/Feature Relevance

Text Explanations

Figure 1.1: A taxonomy of machine learning interpretability approaches.

1.4.1 Transparent Models

One of the options to achieve machine learning interpretability is to use a subset of the
models that are considered natively-interpretable, the so called transparent models. In
this section, we are not going to present an extensive treatment of such methods, that
are already well known; we will rather look to a representative subset of transparent
models from an interpretability perspective, focusing on their transparency properties.

Linear/Logistic Regression. Linear regression (Bishop, 2006) predicts a continuous
target as a linear combination of the input features. If we analyze the weights, we can
have an idea about the feature importance. When the number of input features is high,
sparse linear models, like lasso (Tibshirani, 1996), are preferred because they push
many weights to be close to zero, increasing the interpretability of the model. Logistic
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regression (Bishop, 2006) is the equivalent of linear regression for (binary) classification
tasks: rather than fitting a line (or hyperplane), logistic regression squeezes the output
of the linear equation between zero and one, by applying the logistic function; the output
can then be interpreted as the probability of a sample to belong to the positive class.
Again, the weights associated to each feature are linked to their importance. The linear
assumption is, at the same time, the main strength and limitation of such models: i) it
is one of the reasons of success not only in statistics but also in other fields like medicine,
social sciences, and so on; ii) assuming that the relation among features is linear is
too restrictive for many scenarios (in this cases, non-linearity has to be hand-crafted,
affecting the final interpretability). Despite their simplicity, it is not rare to apply
post-hoc explainability (mainly visualization) techniques to explain linear models to
non-experts.

Generalized Linear Models (glm). In a linear regression model, the value of the
target variable is assumed to follow a Gaussian distribution. Generalized Linear Models
(McCullagh and Nelder, 1989) extend linear models by allowing outcome distributions
from the exponential family. The expected value of such distributions is then computed
as the result of a link function g, eventually non linear, applied to the weighed sum of
features. Logistic regression is a special case of glm, with a Bernoulli distribution and
the logit function as link function. Depending on the choice of the outcome distribution
and link function, we can get more or less transparent models, usually with better
performance than a simple linear model.

Generalized Additive Models (gam). Generalized Additive Models (Hastie and
Tibshirani, 1990) can be seen as a further generalization of Generalized Linear Models,
where the weighted sum of features is substituted by a sum of arbitrary functions,
eventually nonlinear, of each feature. These functions can be either fixed or learned
automatically, and this implies adding another stage in the interpretation of such models.
Despite their performance (often worse than more complex models), they are considered
interpretable and versatile enough to be used in many practical applications like finance,
biology, healthcare.

Rule-based Models. Rule-based models are among the oldest and most studied
models in machine learning (Fürnkranz et al., 2014). They use conditional rules to
encode the functional relation between input data and the target concept. It is possible
to learn either independent rules (rule sets) or mutually-exclusive rules (rule lists).
Depending on the number and size of the rules, rule-based models can be simulatable,
decomposable, or algorithmically transparent. Refer to Chapter 2 for more details.
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Decision Trees. Decision Trees are used for both regression and classification problems.
In the literature, there are many different decision tree algorithms like cart (Breiman
et al., 1984), id3 (Quinlan, 1986), c4.5 (Quinlan, 1993). They are very popular in
decision making contexts because of their intuitive hierarchical structure. Given an
input, we can follow the path from the root to the leaf to obtain the output. The
path can be easily mapped to conditional rules, whose form is easily understandable by
humans. Depending on their size, the number of used features and the complexity of the
features, they can belong to any of the three layered transparent levels. Alternatively, it
is possible to compute feature importance scores. There is also a considerable amount of
work in decision tree simplification (Quinlan, 1987b). Unfortunately, they do not always
guarantee high performance, which is why we have tree ensembles like random forest
(Breiman, 2001) that are, however, not directly interpretable.

K-Nearest Neighbors (knn). K-Nearest Neighbors (Cover and Hart, 1967) is an
instance-based classification method where input samples are classified by voting among
the classes of its k nearest neighbors, according to a chosen distance measure. For
regression problems, voting is an aggregate function, like mean or median. This approach
resembles the way humans make similar decisions for similar events they experienced in
the past. Again, knn falls within the category of transparent models. Depending on
the value of K and the choice of more or less interpretable distance measures, it can be
located in one of the three transparent categories.

Naive Bayes Classifier. Naive Bayes Classifier is a probabilistic model based on
the Bayes’ theorem with a strong (naive) independence assumption among features. In
summary, given an input x = (x1, . . . , xn) with n features, and a class Ck, where k is
the number of possible classes, it assigns to x the class probability p(Ck|x1, . . . , xn) ∝
P (Ck)

∏n
i=1 p(xi|Ck). The independence assumption makes this model interpretable as

it is possible to evaluate the direct impact of each single feature on the target class.
Depending on the number of features and their complexity, the Naive Bayes Classifier
can satisfy simulatability, decomposability and algorithmic transparency.

1.4.2 Post-Hoc Interpretability

When a machine learning method is not transparent, an external method has to be
designed and applied to the opaque model to explain its output. In Section 1.3.3, we have
seen that such techniques can be either model agnostic or designed to explain specific
models only. On the basis of the same taxonomy, we will briefly review some popular
post-hoc interpretability techniques: among the model specific techniques, we will focus
on those that have been studied the most in the literature, particularly the ones that
explain support vector machines, (tree) ensembles and neural networks.
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(a) Original image. (b) Electric guitar. (c) Acoustic guitar. (d) Labrador.

Figure 1.2: Example reported in Ribeiro et al. (2016). Google’s Inception neural
network generates the following predictions for the image in Figure 1.2a: electic guitar
(p = 0.32), acoustic guitar (p = 0.24), labrador (p = 0.21). Figures 1.2b to 1.2d show the
explanations provided by lime for each prediction.

Model agnostic techniques. A considerable amount of work in interpretable machine
learning has been carried out for model agnostic explainability techniques, designed to
work with possibly any target model. The vast majority of these approaches aim at
simplifying the target model, either globally or locally, to make its prediction procedure
more transparent. Feature relevance and visualization approaches are popular, too.

• Explanation by simplification. The easiest way to explain a black-box model
is to train a separate, more interpretable, explainer model that approximates its
predictions, applying the so called teacher-student model (Tan et al., 2018), where
the black-box has the role of a teacher and the interpretable model is a student
that mimics the teacher’s behavior. Decision trees and rule-based learners are
popular student models but, in principle, any transparent model can be a suitable
choice. When the student replicates the teacher locally, we have local explanations.
Among the most known contributions to this approach we find lime (Ribeiro et al.,
2016), that supports many methods as local approximators. In Figure 1.2, we
report an example where lime uses super-pixels explanations to justify the output
of a convolutional neural network. Alternatively, it is also possible to approximate
the whole black-box model, finding a trade-off between predictive accuracy and
simplicity. Similarly, a well-known approach in this case is g-rex (Konig et al.,
2008), a rule-based genetic algorithm that extracts global rules from opaque models.

• Explanation by feature relevance. One of the possible ways to understand
the decisions made by an algorithm is to measure the influence of each feature on
its output. In a recent framework called shap (Shapley Additive Explanations)
(Lundberg and Lee, 2017), a set of feature importance scores satisfying specific
properties is computed for every prediction, showing better consistency with human
intuition than previous approaches. The feature importance of individual prediction
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has also been studied through the lenses of coalitional game theory (Strumbelj and
Kononenko, 2010), local gradients (Robnik-Šikonja and Kononenko, 2008; Baehrens
et al., 2010), sensitivity analysis (Cortez and Embrechts, 2011), influence functions
(Koh and Liang, 2017) and saliency methods (Dabkowski and Gal, 2017).

• Explanation by visualization. Many model-agnostic visualization techniques
are based on feature relevance and visualize the impact of single features on the
output of a model. A Partial Dependency Plot (pdp) (Friedman, 2000) for a given
feature shows how the average prediction of the target model varies as a function of
that feature. The same goal is attained by Accumulated Local Effects plots (ale)
(Apley and Zhu, 2019). The equivalent to a pdp for individual instances is called
Individual Conditional Expectation plot (ice) (Goldstein et al., 2013). Other sets
of visualization techniques can be found in Cortez and Embrechts (2011, 2013).

Post-hoc interpretability of support vector machines. In the simplest setting,
support vector machines (svm) (Cortes and Vapnik, 1995) learn a hyper-plane, in a high
dimensional space, to separate instances belonging to two classes. The best hyperplane is
the one allowing the largest separation, or margin. Despite their intuitive idea, support
vector machines are considered, especially by non-experts, opaque models and require
post-hoc techniques to be explained.

• Explanation by simplification. Rule-based learners appear to be the de-facto
standard to simplify support vector machines. In Chaves et al. (2005); Barakat and
Diederich (2006); Barakat and Bradley (2007), rules are extracted from support
vectors; in Fu et al. (2004) hyperplane and support vectors are used together to
induce a set of rules; in Nuñez et al. (2002, 2006) support and prototype vectors are
combined to generate hyper-rectangles in the input space, then mapped to rules.

• Explanation by visualization. Visualization techniques for svm are strictly
linked to feature relevance and display the features that are most probably related
to the predicted output. We find methods that can be applied for linear svm

(Rosenbaum et al., 2011), classification (Gaonkar et al., 2015) and regression (Üstün
et al., 2007) tasks.

Post-hoc interpretability of tree ensembles. Tree ensembles are among the most
used and accurate machine learning models, especially for structured data. In a tree
ensemble, multiple decision trees are trained on a (random) subset of input features
and combined by mean of an aggregation function. The resulting model is much more
robust to noise than a single weak learner and achieves better generalization (Ho, 1998;
Breiman, 2001). Unfortunately, this is also the main source of issues when it comes to
explaining such models.
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• Explanation by simplification. A considerable portion of work to explain tree
ensembles follows the simplification approach, where a simpler model is trained to
replicate the behavior of the ensemble. The authors of Domingos (1998) use c4.5

(Quinlan, 1993) to learn a less complex model from a set of samples labeled by the
ensemble. Theoretically, their approach also works with other opaque models. In
Deng (2019), a set of rules are extracted, cleaned and eventually refined from the
ensemble, and are used to build a rule-based learner. In Hara and Hayashi (2018),
a Bayesian model aims at learning the simplest, still accurate representation of a
tree ensemble by simplifying its boundary.

• Explanation by feature relevance. Similarly to decision trees, it is possible to
compute feature scores for tree ensembles as well. As far as we know, Breiman was
the first to propose a feature importance measure for random forests (Breiman,
2001). In Auret and Aldrich (2012), significant features within a random forest are
detected by including particular dummy variables in the system. In another work
(Tolomei et al., 2017), the authors design an algorithm that outputs which feature
should be changed and how to transform an instance into the opposite class for a
binary random forest classifier.

Post-hoc interpretability of neural networks. Neural networks and, in general,
deep learning methods have been successfully applied to many fields, often achieving or
overcoming human accuracy levels for certain prediction tasks. Despite their incredible
predictive power, neural networks struggle to be adopted in critical fields due to their
intrinsic opaque nature. Recently, there has been a proliferation of publications aiming at
improving the explainability of these black-box models, not only single-layer and multi-
layer perceptrons (mlp), but also convolutional (cnn) and recurrent neural networks
(rnn). Most of the proposed post-hoc interpretability techniques fall into the category
of explanations by simplification, feature relevance and visualization.

• Explanations by simplification. Rule-based methods are the preferred trans-
parent models when it comes to simplify neural networks. According to the authors,
deepred (Zilke et al., 2016) is the first rule extraction algorithm for deep neural
networks: it extends an older decompositional approach designed for feedforward
networks, cred (Sato and Tsukimoto, 2001), by learning intermediate rules for
every hidden layer. treeview (Thiagarajan et al., 2016) makes a hierarchical
partitioning of the feature space learned by a fully connected deep model and build
simpler, more interpretable meta-features, which reveals the iterative rejection
of unlikely class labels until the correct association is predicted. Despite being
a model-agnostic approach, lime (Ribeiro et al., 2016) has been often used to
interpret multiple types of neural networks by producing local explanations.
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(a) Edges (b) Textures (c) Patterns (d) Objects

Figure 1.3: Feature visualization from Olah et al. (2017), learned by GoogLeNet
(Szegedy et al., 2015), trained on the ImageNet dataset (Deng et al., 2009). Deeper
layers (left-to-right) learn more complex features.

• Explanation by feature relevance and visualization. Feature relevance and
the associated visualization methods represent a particularly important family of
post-hoc explainability methods for neural networks. The authors of Montavon
et al. (2017) adopt what they call deep Taylor decomposition to map the relevance
of output neurons to the top layer that, in their case, consists of pixels. The final
explanation is a heat-map of relevance scores associated to the input pixels that
try to understand the regions of the input image the model focuses on to generate
its output. In the same manner, deeplift (Shrikumar et al., 2017) computes the
activation of each neuron and compares it to its reference activation to generate
an importance score for that neuron. deeplift has considerable advantages over
previously-proposed gradient-based methods. Zeiler et al. (2011) is another seminal
work in this family that uses an adaptive deconvolutional network, where each
layer learns a feature map that is projected back to the original image space. The
strongest activations are then visualized with saliency maps and help to interpret
what the model learned. The authors of (Mahendran and Vedaldi, 2015) propose
to reconstruct input images from the cnn representations learned by intermediate
layers, showing that they were able to capture accurate and human-interpretable
information about the images, as shown in Figure 1.3. The work by Simonyan et al.
(2014); Nguyen et al. (2016), instead, try to reconstruct the most representative
image that maximizes a given class score, obtaining abstract images that resembles
the true target classes. Interpretability of rnn has been less explored. We mainly
find two approaches: i) understanding what a rnn has learned (Karpathy et al.,
2015; Arras et al., 2017), ii) modifying the rnn architecture to make it more
intelligible (Choi et al., 2016; Krakovna and Doshi-Velez, 2016).

• Text explanations. Some works propose to produce text explanations to clarify
the output of neural networks, often cnn models. This methods usually rely on
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rnn models to generate appropriate text descriptions for images (Hendricks et al.,
2016; Donahue et al., 2017) or videos (Dong et al., 2017), eventually using attention
mechanisms (Xiao et al., 2015; Xu et al., 2015).

1.5 Discussion

Getting oriented in the world of explainable ai is really tough. In the previous sections,
we have seen that several fields, not necessarily related to computer science and machine
learning, consider interpretability as a core concept for many, often critical, applications.
Despite common belief, it is a very old research subject, that we tried to cover by
providing a taxonomy and an overview of the most studied and popular approaches:
transparent methods and post-hoc interpretability techniques.

At this point, it should be clear that every family and sub-family of explainable methods
has its own advantages and disadvantages. We will now discuss more formally their
criticalities, trying to figure out what might be the most desirable direction for future
work. We want to specify that this is our personal view of the field, which pushed us to
work in specific directions, disregarding others. Readers are invited to make up their
own mind, that might eventually be completely opposite to ours.

1.5.1 On the Reliability of Post-Hoc Explanations

Every time we use post-hoc interpretability techniques to explain black-box models, there
is the implicit belief that black-box models are better, in terms of performance, with
respect to alternative transparent models. This is motivated by the wrong assumption
that interpretability always comes at the expenses of predictive performance. It might
actually be true for some fields, like computer vision, where opaque deep learning models
are the de-facto standard, but this should not prevent us from designing increasingly
accurate, still interpretable methods. In most practical scenarios, the space of solutions
is so wide that it might indeed be possible to find simple models whose performance is
equivalent to much complex ones.

In general, post-hoc interpretability techniques do not produce reliable explanations.
If we focus on simplification methods for a moment, the goal is to train a transparent
model that mimics the behavior of the black-box. Ideally, if the performance of the two
is exactly the same, we would not need the black-box anymore. Unfortunately, even
when performance is equal, we cannot be sure that the “reasoning” behind the decision
made by the two models is the same. Indeed, the functions learned by the two models
might generate the same output, still being different, that is using different features in
different ways. On the other side, if the transparent model is only an approximation,
there is no trivial way to trust its output as explanation. Simplification methods are not
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(a) Image labeled as
siberian husky.

(b) Explanation for
siberian husky

(c) Explanation for tra-
verse flute

Figure 1.4: Example reported in Rudin (2019). Saliency maps are not reliable explana-
tion tools, because they provide similar explanations for different predictive outputs.

useless, but it might be misleading to consider them as completely truthful explanations.

Another interesting example of unreliability of post-hoc explanations is represented by
all the feature relevance techniques that explain the output of opaque models, especially
neural networks that process images, through saliency maps, heat-maps or other related
visualization methods. The intuition is that, by figuring out which are the portions of the
input where the network is focusing to generate its output, we can understand something
about its decision process. Unfortunately, these techniques are able to reasonably
recognize what part of the input is neglected by the model, but they do not provide any
information about how the remaining information is used. Rudin (2019) showed that
when we use saliency maps to explain, for example, cnn classifiers, they give similar, if
not identical, explanations for each class, including wrong classes, simply because they
focus on edges and boundaries, as shown in Figure 1.4.

We might continue giving other examples; however, the main idea is that every time an
external model is used to explain a target model, we should expect to face one of the
problems described above.

1.5.2 Challenges and Opportunities

In the light of the discussion above, a natural way of avoiding the issues associated to post-
hoc explanations is to design directly transparent models, or models that satisfy specific
interpretable properties by design, where explanations reflect the true decision process.
This leads to other challenges, not necessarily easier to solve, and new opportunities.

Key issues of transparent models. Post-hoc methods are usually based on deriva-
tives and can be optimized by gradient-descent. Interpretability constraints of transparent
methods often lead, by contrast, to combinatorial optimization problems, known to be
computationally hard to solve. Moreover, designing transparent methods is just a link
in the chain: if we aim at obtaining performance that is in line with black-box models,
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we need to spend much more time on the data knowledge discovery process, selecting
and designing meaningful and high predictive features. The results are worth the effort
since we can then rely on models and data that we fully understand. There is also
another underestimated issue: in a world where researchers, data scientists and developers
are trained to deploy deep learning models, expertise in interpretable methods is rare.
Unfortunately, there are cases where post-hoc techniques are the only available option:
some companies might have proprietary opaque models for which they do not want to
reveal internal details, or that are being used without particular issues for a long period
and there is resilience in substituting them.

Transparent models are the way. The preliminary analysis and exploration phase
on explainable ai in this introductory chapter allowed us to get a general understanding
of the field and the possible research directions. It has been definitely time-consuming,
considering the high number of topics it covers, but essential to decide the next steps
in our research. At this point, our opinion and preferences on explainable ai should be
clear. If interpretability is a major constraint, we believe that transparent models are the
way to go. Even when transparent models are wrong, explanations are still meaningful
and allow us to understand what leads to the error, and improve the model. Motivated
by this belief, we have explored two of the possibly infinite paths of explainable ai, that
we are going to detail in the next chapters: i) rule learning, that is historically the
oldest field related to interpretable machine learning and ii) disentangled representation
learning, that aims at making modern deep learning generative methods interpretable.





CHAPTER

TWO

RULE LEARNING

Rule Learning is probably the oldest and most investigated field in machine learning
and data mining. It plays an important role in the knowledge data discovery process
by extracting useful information from data in the form of rules: the human-readable
structure of rules makes them understandable by the users who can have an immediate
feedback from the output of the machine learning model. Even when the learned rules
are not always correct, they still reflect what the model actually computes and help
to simplify the decision making process. Although it might seem a simple procedure,
learning rules from data is a computationally expensive process, involving many building
blocks, that can be implemented in different ways, each with their own advantages
and disadvantages. Their interconnection determines the properties of the resulting
rule-based methods, that we carefully organize into a general rule learning framework.

2.1 Overview

The first references to rules in the literature date back at least to 1970s, with the rise of
the first expert systems (Jackson, 1998; Leondes, 2002). Expert systems were employed
as diagnostic tools especially in medicine and biology, emulating the decision-making
ability of a human expert through if-then-else rules. Since then, research on rule-based
systems has never stopped and rule learning has become, without a doubt, one of the
most studied and well defined field in the data mining and machine learning community.

Rule learning can be broken in two main categories: descriptive rule discovery and
predictive rule learning. The former aims at finding out patterns and regularities in
the data for exploration purposes, while the latter focuses on discovering rules that

23
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identify particular targets or concepts of interest. Descriptive rule learning does not
focus on predictive performance, but on the statistical significance of the discovered rules.
The two main tasks for descriptive rule learning are subgroup discovery (Klösgen, 1996;
Wrobel, 1997) where, as the name suggests, the purpose is to find subgroups according
to a property of interest, and association rule discovery (Agrawal and Srikant, 1994;
Pasquier et al., 1999; Borgelt, 2005), that extracts useful co-occurrences in the data.

In this work, we focus on predictive rule learning, that we investigate in the wider context
of interpretable transparent models. Indeed, as anticipated in the previous chapter, the
concepts learned by rule-based systems come in the form of rules that can be easily
understood by humans, making them a suitable choice for critical applications.

Outline of the chapter. In Section 2.2, we formally define the main assumptions and
concepts used to describe the rule learning task: we fix some notational conventions in
terms of input data and rule representation. In Section 2.3, we present a unified view of
the rule learning process that consists of three main steps: i) feature construction, ii) rule
induction, and iii) hypothesis construction. The rule construction step necessarily implies
rule evaluation, briefly reviewed in Section 2.3.3. In Section 2.3.5, we also report some
popular techniques applied to avoid overfitting and obtain more general rules. Section 2.4
concludes the chapter with a concise but complete and critic view of the most popular
and impacting rule-based methods. This analysis allows us to bring to light some of the
most recurring problems in the field and acts as a bridge to the next chapter, where we
actually propose our solution to these issues.

2.2 Problem Definition

Predictive rule learning can be defined, informally, as the task of learning rules from a
training dataset with the goal of classifying new samples according to a given target.
Input samples in the training dataset consist of a set of feature values and a class label.
In the easiest settings, when a sample satisfies all the conditions of a rule, it is classified
according to the class of that rule. Although the definition above is intuitive, it neglects
important constraints for the learning task that are generally known as language bias of
the learning problem: i) the data description language defining the input data format,
and ii) the hypothesis description language describing the structure of the rules. Finally,
a coverage function establishes the relation between data and hypothesis description
language, allowing both to learn the relation between the features and the target, and to
apply it to new data.
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2.2.1 Data Description Language

The input data for the rule-based classifier consists of a set of records described by a
set of features F = {f1, · · · , fF } and a classification label c ∈ C. Then, each record xi

can be written in feature-value format as: xi = (v1i, . . . , vFi, ci), where vji is the value
that feature fj takes for the input record xi, and ci is the corresponding classification
label. Input features can be either categorical or numerical. In order not to make things
unnecessarily harder, we assume c ∈ {0, 1}. In Section 2.3.1, we will observe that the
original features F are transformed, either implicitly or explicitly, into a binary set of
features B: such binary features will be the building blocks of the learned rules.

2.2.2 Hypothesis Description Language

A rule learning model learns rules from feature-value datasets with the following form:

if condition1 and . . .and conditionL︸ ︷︷ ︸
body

then target label︸ ︷︷ ︸
head

(2.1)

The condition part of the rule is called antecedent (or body), whereas the final part is
called consequent or head. The antecedent consists of one or more Boolean conditions
(or atoms) connected through the Boolean and operator. Each condition corresponds to
a check on a particular property of the target class, expressed as a function of the input
features: in the simplest formulation, rule conditions have the form fi op v, where v is a
possible value for feature fi, and op is a comparison operator. For discrete features, op

corresponds to the equality operator, while for numerical features it can be any operator
among the following ones: =, 6=, <,>,≤,≥. Any ordinal relation can also be expressed
in range format. One or more rules makes an hypothesis (or theory): in a rule set, all
rules are equally important and are combined through the or operator; in a rule list (or
decision list), on the contrary, rules are mutually-exclusive and can be seen as a list of
if-elseif statements. If not specified, we refer to rule sets.

2.2.3 Coverage Function

A rule r covers a given sample if all its conditions are true for that sample. We indicate
coverage with an upper hat and non-coverage with an upper bar. More precisely, if we
denote by P a set of positive samples and N a set of negative samples, then P̂(r) and
N̂ (r) represent the set of positive and negative samples covered by rule r, respectively;
P̂ (r) = |P̂(r)| and N̂(r) = |N̂ (r)| represent their size. Equivalently, P̄(r) and N̄ (r)

denote the set of positive and negative samples not covered by rule r, respectively;
P̄ (r) = |P̄(r)| and N̄(r) = N̄ (r) indicate their size. Given the total number of positive
and negative samples, P = |P| and N = |N |, we also define: π̂ = P̂

P (true positive rate),
ν̂ = N̂

N (false positive rate), π̄ = P̄
P (false negative rate), ν̄ = N̄

N (true negative rate).
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(a) complete and
consistent

(b) incomplete and
consistent

(c) complete and in-
consistent

(d) incomplete and
inconsistent

Figure 2.1: Completeness and consistency of rule-set R. Target concept in black.

2.2.4 Predictive Rule Learning

At this point, we can finally give a more formal definition of predictive rule learning.

Definition 2.2.1. Given a data description language, a hypothesis description language,
a target class, a coverage function and a set of positive and negative samples according
to the target class, predictive rule learning aims at finding a hypothesis (or theory) R in
the hypothesis description language that describes the target class.

Completeness and Consistency. The target class is also known as target concept.
In ideal situations, without noise and errors, where positive and negative samples do
not overlap, it is possible to learn a hypothesis, given a proper hypothesis description
language, that is complete and consistent with the target concept (refer to Figure 2.1).

Definition 2.2.2. A hypothesis describing a target concept is: complete if it assigns the
target class label to all the samples belonging to the target concept; consistent if it does
not assign the target class label to samples that do not belong to the target class.

It is clear that, in realistic scenarios with noisy data and overlapping concepts, complete-
ness and consistency are not only impossible to obtain, but also undesirable, as they
would easily lead to overfitting. Even in the absence of noise, with perfectly separable
samples according to the target concept, the chosen hypothesis description language
might not allow to learn a complete and consistent set of rules. In practice, completeness
and consistency are often relaxed and replaced by weaker conditions like partial coverage
of the target samples, predictive accuracy, or other metrics.

Dealing with multiple classes. In the definitions above, we implicitly assumed to
deal with binary classification problems, where the positive class is the target concept.
Therefore, learning a hypothesis for the target class is sufficient to fully characterize the
non-target class, too. When we deal with more than two classes/concepts, it is possible
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to iteratively apply single concept learning to the different concepts, transforming the
multiclass learning problem into multiple concept learning tasks. In this case, we might
also need a strategy to manage conflicts, that is to decide the output class when different
rules return different outputs.

2.3 Rule Learning Process

We present the rule learning process with a unified framework that allows us to analyze
and compare most of the known rule-based methods. We split the rule learning process
into three distinct steps:

• Feature Construction. The first step of any rule learning model is to transform
the set of input attribute-value features in binary features. Some algorithms do this
step implicitly, integrating it in the rule induction process; others have a separated
feature construction operation before learning the rules.

• Rule Construction. This step, also known as rule induction or rule learning,
establishes how single rules are learned. Each rule is typically induced for a specific
target class or concept. Most of the rule learning methods learn the set of conditions
by using heuristics, but smarter and more complex approaches are possible, of
course. Rule construction inevitably involves rule evaluation.

• Hypothesis Construction. Multiple rules are usually needed to define a hy-
pothesis. We can mainly choose to learn unordered rule sets or ordered rule lists
(decision lists), each with their advantages and disadvantages.

In addition, many rule-based methods apply pruning techniques to fight overfitting
and increase the generalization capabilities of the learned hypothesis. This can be
considered either as a separate step after the hypothesis construction, or incorporated
within the rule construction process. Predictive performance might be further improved
by combining weak hypothesis with rule ensembles, often – but not always – sacrificing
the interpretability of the final model.

2.3.1 Feature Construction

Any rule learning model performs, either explicitly (Lavrač et al., 1991; Lavrac and
Dzeroski, 1993) or implicitly (Clark et al., 1987; Cohen, 1995), a feature transformation
operation to convert the original input features into binary features that are then used
to build the antecedent of the rules. Binary features can be distinguished between
propositional and relational features.

• Propositional features. When a binary feature refers to a single input feature,
we call it propositional feature. A propositional feature is usually in the form
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Samples Binary Features

ID LABEL b1 b2 b3 . . . bB

1 True False True False . . . True

2 True True False False . . . False

3 False False False False . . . True

Figure 2.2: Example of covering table with three input samples and B binary features.

fi op v, where fi ∈ F , op is a comparison operator, and v is a value in the domain
of the input feature fi.

• Relational features. When a binary feature refers to multiple input features,
we call it relational feature. We can have a simple comparison between two input
features like fi op fj , or more complex conditions like g(fi, . . . , fj), where g(·) can
be any operation or transformation that returns true or false. In our work, we do
not deal with relational features, but they can always be hand-crafted and included
as additional binary features before rule induction, if feature construction and rule
induction happen as separate steps.

From input to binary features. Constructing a good set of binary features is not
an easy task: it is a domain dependent operation and might become computationally
expensive, especially when most of the original features are numerical. We rely on
covering tables to build binary features. A covering table (Figure 2.2) is a binary table
where the original records are represented in terms of binary features.

In Algorithm 1, we report a simple algorithm (Gamberger and Lavrac, 2002) to build
propositional features for binary classification tasks. It can be shown that this algorithm
generates a sufficiently reach binary feature set that allows to build a complete and
consistent set of rules, if feasible (Fürnkranz et al., 2014, Section 4.4). It receives as
input the set of positive and negative training samples (D+,D−) and the set of original
features F . Then, if a feature f is discrete, it generates binary features f = v for all the
values appearing in the positive samples (v ∈ V+), and f 6= v for all the values in the
negative samples (v ∈ V−). If a feature f is numerical, it first sorts all possible values of
f , identifies couples of consecutive values vi, vi+1 belonging to different classes, computes
the mean v = (vi + vi+1)/2 and then generates binary features as follows: if the smaller
value vi belongs to the positive class (and the greater value vi+1 to the negative class)
the binary feature f < v is built; f ≥ v otherwise.
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Algorithm 1 GenerateBinaryFeatures (D+,D−,F)

B = ∅
for f ∈ F do
V+ = set of values of f appearing in the samples in D+

V− = set of values of f appearing in the samples in D−
if A is discrete then

for v ∈ V+ do B = B ∪ {f = v}
for v ∈ V− do B = B ∪ {f 6= v}

end
if A is numerical then
V = sort(V+ ∪ V−)
for i ∈ {1, · · · , |V| − 1} do

v = (vi + vi+1)/2
if vi ∈ V+ and vi+1 ∈ V− then B = B ∪ {f < v}
if vi ∈ V− and vi+1 ∈ V+ then B = B ∪ {f ≥ v}

end
end

end
return B

Missing values. By definition, covering tables contain true and false values only.
However, the original features, especially in real datasets, may contain missing values too.
There are several strategies to deal with missing values. Here, we report the three main
families: i) delete strategy: it removes all records containing at least one missing value
with a consequent reduction of the training data; default value strategy: it replaces
missing values with a default value that can be True, False or a special value; iii) guess
value strategy: it replaces missing values either with the most common value (usually
the mean or mode) or with the value predicted by a classifier separately trained for each
feature (more complex strategies can eventually output a distribution of values). These
approaches have all their advantages and disadvantages, whose discussion is out of the
scope of this work. Multiple strategies can eventually be used together.

2.3.2 Rule Construction

The rule learning process is an optimization problem where the goal is to find the best
rule(s) according to a given quality measure, by traversing a search space, also known as
hypothesis space, made of all the possible rules (Mitchell, 1982).

In Algorithm 2, we summarize the main steps of a general algorithm to learn the
best rule from a set of positive and negative training samples (D+,D−), characterized
by a set of binary features B, according to a given quality measure computed within
EvaluateRule. LearnBestRule starts with one or more candidate rules that are
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Algorithm 2 LearnBestRule (D+,D−,B)

rbest = InitializeRule(D+,D−)
hbest = EvaluateRule(rbest)
R = {rbest}
while R 6= ∅ do
Rcand = SelectCandidateRules(R,D+,D−)
R = R \Rcand
for r ∈ Rcand do

ρ(r) ∈ RefineRule(r,D+,D−)
for r′ ∈ ρ(r) do

if RuleStopCondition (r′,D+,D−) then
continue

end
h′ = EvaluateRule(r′)
R = InsertSort(r′,R)
if h’>h’ then

hbest = h′

rbest = r′

end
end

end
R = FilterRules(R,D+,D−)

end
return rbest

stored in R, in ascending order according to the chosen quality metrics. At each iteration,
a subset of the candidate rules is selected and slightly modified with a RefineRule

operator that can, for example, add or remove conditions, or perform random operations.
Every time a rule is changed, it is evaluated and inserted into the sorted set R. Most
of the algorithms also use a stop condition preventing the rule to be further modified.
Between consecutive operations, we can eventually apply FilterRules to reduce the
size of R. At the end of the process, the best rule rbest is returned.

The rule induction step of many rule-based models proposed in the literature can be
described with Algorithm 2: they mainly differ in the implementation of the internal
functions (in upper case). InitializeRule and RefineRule define the search strategy,
SelectCandidateRules and FilterRules the search algorithm, and EvaluateRule

characterizes the search heuristic; RuleStopCondition is usually used to avoid overfit-
ting. We will analyze each of the following sub-modules in the next paragraphs.

Search Strategies. A search strategy defines how the search space is traversed to
learn a new rule. Intuitively, we might start, for instance, with an empty rule, considered
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as the most general rule, and add conditions to make it more specific, such that it can
cover as many positive samples and as few negative samples as possible. We might also
follow the opposite strategy, that is to say to start from a very specific rule and make it
more general. A more formal definition of these concepts is given below:

Definition 2.3.1. Let r′ and r′′ be two rules. If r′ covers all the samples covered by r′′,
we say that r′ is more general than r′′ and r′′ is more specific than r′.

We navigate the search space by applying the so called refinement operators, already
encountered in the previous section. We can therefore implement different search
strategies by using suitable rule initializers and refinement operators. Each of the
following strategies has its own advantages and disadvantages that will be discussed in
more detail in Section 2.4.1.

• Top-down strategy. Also known as general-to-specific strategy. InitializeRule

returns one or more empty rules, whereas RefineRule implements a specialization
operator. In the easiest case, the specialization operator adds a new condition to
the antecedent, but more complex operations are possible. aq (Michalski et al.,
1986), prism (Cendrowska, 1987), cn2 (Clark and Niblett, 1989), foil (Quinlan
and Cameron-Jones, 1993), and ripper (Cohen, 1995) are examples of widely used
top-down learners.

• Bottom-up strategy. Also known as specific-to-general strategy. InitializeRule

returns one or more randomly selected samples in the covering table (also called
seed samples) belonging to the target label, whereas RefineRule implements a
generalization operator. In the easiest case, the generalization operator removes a
condition from the antecedent, but, again, more complex operations are possible.
Popular bottom-up learners are golem (Muggleton and Feng, 1990) and modlem

(Grzymala-busse and Stefanowski, 2001).

• Mixed strategy. Also known as bidirectional search. InitializeRule can return
an empty rule, a seed sample, or a randomly generated rule. In other words, the
rule induction process can start from any point of the search space. RefineRule

can perform either a specialization or a generalization operation, or eventually
both. Popular representatives of this strategy are jojo (Fensel and Wiese, 1993)
and atris (Mladenic, 1993)

Search Algorithms. A naive algorithm to implement LearnBestRule enumerates
all possible rules, evaluates them, and returns the best solution according to a given
evaluation measure. Although the ordering of the search space may allow to reduce
the number of candidate rules and, consequently, the research time, exhaustive search
algorithms are very inefficient: they might still be used when constrained to output rules
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with a small maximum rule length (Rivest, 1987). That is why the vast majority of rule
learning methods use heuristics, eventually with a randomness component, to prune the
search space, aiming to find a trade-off between performance and simplicity, instead of
learning the best rule ever. Several works (Webb, 1993; Quinlan and Cameron-Jones,
1995; Janssen and Fürnkranz, 2009) verified that heuristic search, especially in datasets
with noise, is less prone to overfitting and usually better than exhaustive search that
suffers from the so called over-searching problem.

• Exhaustive search. Exhaustive search algorithms explore the whole search space
to discover the best rule. In practice, they look for rules up to a given length
and often employ stop conditions to prune the search space. There are three
main approaches: best-first, ordered, and level-wise. Best-first approaches like
progol (Muggleton, 1995) select the best candidate rule and try all possible
refinements, without applying any FilterRules operator. Ordered approaches
like opus (Webb, 1995) assume a natural or artificial order in the search space
(features are sorted according to their ability to discriminate the target concept)
and traverse it by being sure to visit every rule once. Level-wise approaches like
apriori (Agrawal and Srikant, 1994) generate all possible rules (feature sets) with
a given feature length before considering the following length.

• Heuristic search. Hill-climbing is a popular method in this family: in Algorithm 2,
only the output of the best refinement operator proceeds to the next iteration.
Although hill-climbing is highly efficient, it suffers from myopia. To overcome this
problem, multiple refinement steps might be applied before selecting the best rule,
like done in atris (Mladenic, 1993). Other methods like aq (Michalski et al., 1986)
and cn2 (Clark and Niblett, 1989) follow a beam search strategy, considering a
beam of candidate solutions, instead of a single candidate, at each iteration.

• Stochastic search. In stochastic search algorithms, RefineRule is allowed to
perform random operations that move the learning process in a completely different
area of the search space. In this category, we find simulated annealing (Kirkpatrick
et al., 1983) and genetic algorithms-based (Goldberg, 1989) approaches.

2.3.3 Rule Evaluation

Rule evaluation metrics measure the quality of a rule and guide the rule learning process
by selecting or discarding candidate rules. Intuitively, a good evaluation measure should
prefer rules with high number of positive covered samples P̂ (completeness) and negative
uncovered samples N̄ (consistency), as defined in Section 2.2. This is equivalent to
minimizing N̂ . Most widely used evaluation measures define a linear (or nonlinear)
combination of P̂ and N̂ .
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Measure Formula

PositiveCoverage = P̂

NegativeCoverage = N̄ = N − N̂

Sensitivity (Recall, TruePositiveRate) = P̂
P = π̂

Specificity (TrueNegativeRate) = N̄
N = ν̄

Support = P̂
P+N

Coverage = P̂+N̂
P+N

CoverageDifference = P̂ − N̂

Accuracy = P̂+N̄
P+N

RateDifference = π̂ − ν̂

LinearCost = a · P̂ − b · N̂

RelativeLinearCost = a · P̂P − b ·
N̂
N = a · π̂ − b · ν̂

Precision (Confidence) = P̂
P̂+N̂

Exclusiveness = π̂
π̂+ν̄

InformationContent = − log P̂
P̂+N̂

Entropy −( P̂
P̂+N̂

· log P̂
P̂+N̂

+ N̂
P̂+N̂

· log N̂
P̂+N̂

)

FMeasure = (β2+1)·Precision·Recall
β2·Precision+Recall

Table 2.1: Popular predictive performance rule evaluation metrics.

Predictive performance metrics. Given a dataset with P positive and N negative
samples, predictive performance metrics are defined in terms of P̂ and N̄ . The goal is to
maximize P̂ and N̄ . In Table 2.1, we report some of the most known and used metrics.
A full review can be found in Fürnkranz et al. (2014). We can distinguish among:

• Elementary metrics. They are defined in terms of either P̂ or N̂ (or equivalently
N̄). In this list, we find positive coverage, negative coverage, their corresponding
ratios – sensitivity and specificity, also known in association rule discovery as positive
and negative local support respectively – and support. Support and sensitivity are
equivalent, they only differ in the normalization constant.

• Linear metrics. They are linear combinations of elementary metrics. Examples
of linear metrics are: coverage, coverage difference, accuracy, rate difference; linear
cost and relative linear cost generalize coverage difference and rate difference.
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Theory for positive class Theory for negative class

if condition11 if not(condition11)

or condition21 and not(condition21)

or condition31 and not(condition31)

then positive class then negative class

else negative class else positive class

Figure 2.3: From dnf to cnf by applying De Morgan’s laws.

• Nonlinear metrics. They are defined as a nonlinear combination of elementary
metrics. The most popular ones are precision, exclusiveness, information content,
entropy, and FMeasure that controls the trade-off between precision and recall.

A good evaluation measure should also care about the complexity of a rule, often defined
in terms of the number of conditions in its antecedent (rule length), such that short
rules are preferred. In practice, we aim at finding rules with a good trade-off between
predictive performance and complexity.

2.3.4 Hypothesis Construction

In Section 2.2, we defined a rule as a set of Boolean conditions connected through
the Boolean and operator, also known as conjunction. It is clear that an hypothesis
description language with a single rule is not expressive enough to fully characterize most
of the target concepts, even the easiest ones (Fürnkranz et al., 2014, Section 8.1).

A way to increase the power of the hypothesis language is to allow disjunctions. In
other words, we can describe a target concept with a disjunction of conjunction also
called disjunctive normal form (dnf). A dnf is equivalent to a rule set where rules are
connected through the Boolean or operator.

In a binary classification problem, a dnf characterizes the target positive concept. A
sample that is not covered by any rule is automatically classified as negative. It means
that we can negate the dnf to obtain an equivalent Boolean representation for the
negative class. By applying the De Morgan’s laws (look example in Figure 2.3), the
dnf becomes a conjuctive normal form (cnf) where each term and Boolean operator is
negated. Some algorithms like De Raedt (1992) can learn both dnf and cnf theories.

As an alternative to rule sets, it is also possible to learn rule lists (or decision lists), where
consecutive rules are connected with an if-elseif-. . . -elseif-else structure. Unlike rule
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Algorithm 3 LearnRuleSet (D+,D−,B)
R = ∅
Dcur+ ,Dcur− = D+,D−
while Dcur+ 6= ∅ do

r = LearnBestRule(Dcur+ ,Dcur− ,B)
if TheoryStopCondition (R,D+,D−) then

break
end
R = R∪ r
Dcur+ ,Dcur− = UpdateData(R,Dcur+ ,Dcur− )

end
R = PostProcessRules(R,D+,D−)
return R

sets, where each rule is applied independently from the others, in a decision list every
rule depends on the previous ones. For this reason, decision lists are less interpretable
than rule sets (Lakkaraju et al., 2016). In this work, we will focus on rule sets.

The separate-and-conquer algorithm. Looking at a dnf as a set of independent
rules not only increases the interpretability of the hypothesis language, but it also
simplifies the learning process by transforming rule learning in the task of learning
multiple rules (conjunctions) instead of a unique more complex rule. The simplest and
most popular algorithm to learn a set of dnf rules is described in Algorithm 3: it is
known as separate-and-conquer or covering algorithm.

While there are positive samples to be covered, LearnRuleSet runs the LearnBe-

stRule procedure, whose implementation is widely discussed in Section 2.3.2, to learn
the best rule given the current set of positive and negative samples D+,D−. The new
rule is included in the rule set and the set of positive and negative samples is updated
by the UpdateData procedure. UpdateData can update either D+ or D−, or both,
by removing the positive and negative records covered by r, or by assigning a different
weight to the covered samples such that covered samples will have a smaller impact on
the subsequent rules (W. Cohen and Singer, 1999; Gamberger and Lavrac, 2000; Weiss
and Indurkhya, 2000). The algorithm can be eventually interrupted by a stop criterion,
mainly to avoid overfitting. In many practical implementations, the final rule set is
post-processed by applying some filtering and/or rule refinement before being returned.

Learning directly a rule set. Instead of learning multiple rules and combining them
into a single dnf expression, it is also possible to learn directly a rule set.

If we extend the search space to the whole set of possible rule sets, we can in principle
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design a general framework to discover dnf formulas. Unfortunately, such space is much
bigger than the rule space and additional constrains on both rule and rule set size must
be fixed to make the rule set learning problem tractable (Smyth and Goodman, 1992;
Rijnbeek and Kors, 2010; Su et al., 2016; Dash et al., 2018). Alternatively, other methods
(Rückert and Kramer, 2003; Rückert and Raedt, 2008) resort to stochastic search to deal
with the computational complexity of the search problem.

Another family of approaches comes from the instance learning world: all the samples
belonging to the target class can be considered as single rules combined into an initial
rule set that is consecutively generalized. Examples of these methods are near (Salzberg,
1991), rise (Domingos, 1996), bracid (Napierala, 2012).

The easiest approach consists in mapping a decision tree to a rule set. Indeed, every
path from the root to the leaves of the tree can be seen as a conjunction and converted
to a rule. Depending on the depth of the tree, a simple conversion would probably
lead to complex and unreadable rules. That is why specific algorithms (Quinlan, 1987a;
Chiang et al., 2001) have been designed to simplify the extracted rules by applying a
post-processing step: the resulting rule set is not only simpler but also more accurate
then the original tree.

From local patterns to global rule sets. The antecedent of a rule is, by definition,
a Boolean expression that captures recurring patterns in the data and contains a portion
of the knowledge encoded within samples. We can use such local patterns as aggregate
Boolean features and use them to learn a global model. This is what lego approaches
(Knobbe et al., 2008; Bringmann et al., 2009; Duivesteijn et al., 2012) do: as the name
suggests, (a subset of) the patterns are put together to build more complex concepts.
In associative classification methods (Liu et al., 1998, 2000; Bayardo, 1997; Jovanoski
and Lavrac, 2001; Li et al., 2001; Yin and Han, 2003), local patterns are discovered
via standard data mining techniques like association rule discovery, that are usually
combined according to some heuristics. In recent years, there has been a new explosion
of lego approaches, with a more involved rule selection phase, often defining an integer
optimization problem, eventually relaxed, to learn the final global model (Chang et al.,
2012; Wang et al., 2015; Wang and Rudin, 2015; Lakkaraju et al., 2016; Wang et al.,
2017; Yang et al., 2017; Chen and Rudin, 2018; Angelino et al., 2018).

2.3.5 Overfitting and Pruning

All machine learning methods without exceptions face overfitting issues, approximating
the training set too closely and loosing their ability to generalize to unseen data. This
happens for several reasons: the chosen model might be too complex for the problem at
hand, the training set too small, not representative enough of the true data distribution,
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Algorithm 4 PostPruning (D, split_threshold)
D′,D′′ = SplitData(D, split_threshold)
R = LearnTheory(D′)
R = PruneTheory(D′′)
return R

or we might simply have a noisy dataset (Hawkins, 2004).

Rule learning commonly solve overfitting by applying pre-pruning and post-pruning
techniques: pre-pruning decides when a rule should not be specialized anymore during
the rule-induction process, post-pruning simplifies the final set of rules at the end of the
rule-induction process in order to increase their generalization power. Nobody prevents
us from using both techniques.

Pre-pruning. Pre-pruning is implemented via filtering/stopping criteria. We can
distinguish between rule stopping criteria and theory stopping criteria.

• Rule stopping criteria interrupt the specialization of a given rule (or remove
the rule) when some conditions are satisfied. They are implemented within the
RuleStopCondition method in Algorithm 2. Such conditions are often based
on one or more coverage/precision constraints: we might, for example, decide to
remove a rule that does not cover enough target samples, a rule whose accuracy is
below a given threshold (Pompe et al., 1993), or with too many conditions.

• Theory stopping criteria interrupt the rule learning process without covering all
possible target samples, preventing the discovery of a complete theory when some
conditions are satisfied. They are implemented within the TheoryStopCondition

method in Algorithm 3. In foil (Quinlan and Cameron-Jones, 1993), for example,
a theory is interrupted when the best rule is below a certain threshold.

Post-pruning. Post-pruning techniques consider overfitting as an independent problem.
They are widely used in decision tree algorithms (Breiman et al., 1984; Niblett and
Bratko, 1987; Quinlan, 1987b), but they are also popular in rule learning (Michalski et al.,
1986; Brunk and Pazzani, 1991; Bergadano, 1992). Most of the proposals in the literature
can be seen as a generalization of Algorithm 4 (Pagallo and Haussler, 1990), where rules
are first learned for a given subset of data and then generalized/filtered on a separate
subset of data. Generalizing an existing theory is not easy: it involves pruning operators
that remove conditions from one or more rules to increase the performance (according to
a selected measure) of the whole rule set. This process is more computationally expensive
than any pre-pruning technique, but it also ensures better performance. Depending on
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the implementation of PruneTheory, we might have reduced error pruning (Brunk
and Pazzani, 1991), reduced error regrowth (Cohen, 1993), and so on.

Other techniques to fight overfitting. Incremental reduced error pruning (Fürnkranz
and Widmer, 1994) integrates pre and post-pruning into a unique strategy that is both
effective and efficient, compensating the disadvantages of the individual techniques. Every
time a new rule is learned, it is immediately pruned. This can be seen as post-pruning
from the rule perspective, and pre-pruning at the theory level.

Alternatively to pruning, rule set can be post-processed by relearning individual rules
(Cohen, 1995) or selecting a subset of the rules after having ranked them. In ensemble
methods, it might also be useful to re-weight rules.

2.4 Discussion

In the previous sections we briefly summarized the main characteristics of rule-based
methods, identifying several building blocks that, applied one after the other, produce
a theory. Such theory consists of a set (or list) of rules that are used to classify new
samples; theories with a limited number of short rules are considered to be interpretable
and reflect the internal “reasoning” of the model in a compact way.

Unfortunately, not all rule-based methods are interpretable. Some approaches might
be more interpretable than others but, in general, interpretability does not come for
free: it has to be imposed during and/or after the rule learning process. Moreover, there
are other factors to consider when learning a theory. As already noted in Section 2.3.4,
rule set theories are known as disjunctions of conjunctions (Hauser et al., 2010; Wang
et al., 2015), where each disjunct represents a rule. We can distinguish between small
and large disjuncts depending on the number of correctly classified training samples.
In particular, small disjuncts are problematic since they have a much higher error rate
than the other disjuncts, with a direct impact on the accuracy of the learned theory
(Weiss and Hirsh, 2000). It has also been observed that rare cases (samples that occur
relatively infrequently in the training data) and imbalanced data (where the classes are
not represented equally) tend to cause small disjuncts (Weiss, 1995; Jo and Japkowicz,
2004). When this happens, data fragmentation and class overlaps, that are quite common
in most of the datasets, become more problematic, especially when they involve minority
classes and rare samples (Napierala, 2012).

We will now proceed with a critical review of the field, focusing on the topics highlighted
above, identifying open problems and interesting research directions.
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2.4.1 A Critical Review of Rule Learning Methods

In rule learning, interpretability has not always been at the core of the learning process.

Data mining solutions. Many seminal rule learning methods come from the data
mining community: cba and its extensions (Liu et al., 1998, 2000), apriori-c (Jovanoski
and Lavrac, 2001), cpar (Yin and Han, 2003) and cmar (Li et al., 2001), for example,
use mining to identify class association rules and then choose a subset of them according
to a ranking to implement the classifier. In practice, these methods suffer from a huge
number of rules, which negatively impacts interpretability.

Top-down vs. bottom-up learners. Another family of approaches includes methods
like aq (Michalski et al., 1986), prism (Cendrowska, 1987), cn2 (Clark and Niblett,
1989), foil (Quinlan and Cameron-Jones, 1993), and ripper (Cohen, 1995), whereby
top-down learners build rules by greedily adding the condition that best explains the
remaining data, according to some criteria. Top-down learners are well suited for noisy
data and are known to find general rules (Fürnkranz et al., 2014, Section 2.5.2). They
work well for the so called large disjuncts, but have difficulties to identify small-disjuncts
and rare examples (Holte et al., 1989), which are quite common in imbalanced settings.
In contrast, bottom-up learners like golem (Muggleton and Feng, 1990) and modlem

(Grzymala-busse and Stefanowski, 2001), start directly from very specific rules (the
examples themselves) and generalize them until a given criteria is met. Such methods
are susceptible to noise, and tend to induce a very high number of specific rules, but are
better suited for cases where only few examples characterize the target class (Fürnkranz
et al., 2014, Section 2.5.2).

Hybrid approaches. Hybrid approaches such as near (Salzberg, 1991), rise (Domin-
gos, 1996), and bracid (Napierala, 2012) combine rule learning and instance-based
learning in a hybrid classification strategy: input samples are used to learn a set of
rules, but every training sample is also seen as a maximally-specific rule that covers by
definition only that sample. Thus, they achieve better generalization, also in imbalanced
settings, but still generate many rules, penalizing interpretability.

Alternative approaches. Issues caused by small disjuncts and rare examples have
been tackled acting at data-level – mainly doing data augmentation – and algorithmic-
level, relying on more appropriate rule evaluation measures to reduce the maximum-
generality bias, modifying the classification (Grzymala-Busse et al., 2000) or selection
(Nguyen and Ho, 2005) strategy to give more strength to minority rules, preferring rule
ensembles with special focus on minority classes (classes with few samples) (Blaszczynski
et al., 2010). Unfortunately, none of the previous methods can be considered interpretable.
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Modern solutions. Recent work focuses on marrying competitive predictive accuracy
with high interpretability. As noted in the last paragraph of Section 2.3.4, a popular
approach is to use the output of an association rule discovery algorithm, like fpgrowth

(Borgelt, 2005) or apriori (Agrawal and Srikant, 1994), and combine the discovered
patterns in a small and compact set (or list) of rules with high predictive performance
(lego approach). The combination process can be formalized either as an integer
optimization problem or solved heuristically, explicitly encoding interpretability needs in
the optimization function. Such approaches have been successfully applied to rule lists
(Klivans and Servedio, 2006; Chang et al., 2012; Wang and Rudin, 2015; Yang et al.,
2017; Chen and Rudin, 2018; Angelino et al., 2018) and rule sets (Wang et al., 2015;
Lakkaraju et al., 2016; Wang et al., 2017). Alternatively, rules can be directly learned
from the data through an integer optimization framework (Hauser et al., 2010; Malioutov
and Varshney, 2013; Goh and Rudin, 2014; Su et al., 2016; Dash et al., 2018).

2.4.2 Challenges and Opportunities

Despite the high volume of work on rule learning, many historical problems are still
challenging to solve and new ones have arisen due to interpretability constraints.

In particular, both heuristic and integer-optimization based lego approaches under-
estimate the complexity and importance of finding good candidate rules (or patterns),
and become expensive when the input dimensionality increases, unless some constraints
are imposed on the size and support of the rules. Although such constraints favour
interpretability, they have a negative impact on the predictive performance of the model.
Additionally, these methods do not explicitly consider class imbalance issues: i) they take
the pattern discovery process for granted and have no guarantees that the discovered
patterns will be useful to generate rules that characterize the minority classes. Our novel
solution to these historical problems will be proposed in the next chapter.

Other issues emerge when rule-learning models process streams of data that change
with time. In this case, rules are continuously learned, removed, adapted according to
several criteria as done in stagger (Schlimmer and Granger, 1986), flora (Widmer
and Kubat, 1996) and more modern systems such as rudolf (Milo et al., 2018) and
goldrush (Jarovsky et al., 2018). Discussing in detail about incremental rule learning
is out of the scope of this work, but we think it might become a trending topic in the
next few years.



CHAPTER

THREE

LEARNING INTERPRETABLE BOOLEAN RULE ENSEMBLES

For a long time, it has been thought that rule learning, and in general interpretable
models are less accurate than the so called black-box models: “interpretability comes
at the cost of predictive performance” is a recurrent sentence in many publications.
While this is actually true for some fields like computer vision, where black-box models
(especially neural networks) attain overwhelming performance, even superior to humans,
the difference in performance might be negligible, if not absent, for many other data
types, like structured data. However, rule learners have many critical issues too, ranging
from the NP-hard computational complexity to the ability of managing minority target
classes. We present libre, a novel ensemble method to learn an interpretable rule-based
classifier that overcomes the aforementioned limitations. libre efficiently strikes the
right balance between prediction accuracy, which is competitive with black-box methods,
and interpretability, which is often superior to alternative methods from the literature.

3.1 Overview

We can refine the rule learning concept defined in the previous chapter by putting
interpretability as an explicit constraint. According to this view, the goal of rule learning
is to learn a set of rules from the training set that i) effectively predicts a given target, ii)
generalizes to unseen data, iii) is interpretable, i.e., it consists in a small number of short
rules. The first objective is particularly difficult to meet in presence of imbalanced data.
In this case, most rule learners (and in general many machine learning methods) fail at
characterizing the minority class, that is usually of primary interest. As anticipated in
Section 2.4, imbalanced data often leads to additional issues that hinder the application
of rule-based methods (Weiss, 2004): data fragmentation (especially in case of small-
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disjuncts (Holte et al., 1989)), overlaps between imbalanced classes, and presence of rare
examples. The challenge is to satisfy all these requirements at the same time.

The key idea in our work is to exploit the known advantages of bottom-up learners in
imbalanced settings, and improve their generalization and noise-tolerance through an
ensembling technique that does not sacrifice interpretability. As a result, we produce a
rule-based method that is (i) versatile and effective in dealing with both balanced and
imbalanced data, (ii) interpretable, as it produces small and compact rule sets, and (iii)
scalable to big datasets.

Outline of the chapter. In Section 3.2, we present a real, industrial problem that
motivated us to opt for rule-based methods first, and to design then a new proposal that
could overcome the practical limitations we experienced with state-of-the-art approaches.
In Section 3.3, we introduce background knowledge and definitions about Boolean
functions, monotone Boolean functions and their main properties. This allows us to
redefine the binary classification problem as the problem of finding a boundary within
a “special” binary lattice space, a partially ordered set. Section 3.4 is the core of the
chapter: first, we describe the algorithm that implements a bottom-up learner, inspired
by Muselli and Quarati (2005), but with a dramatically lower computational complexity.
Such algorithm, based on monotone Boolean function synthesis, is designed to learn a
small number of compact binary strings, that are naturally mapped to Boolean rules.
Then, we analyze the properties of this baseline algorithm, and design a new algorithm
that overcomes its limitations. We finally propose libre, a novel ensemble method
that, unlike other ensemble proposals in the literature (W. Cohen and Singer, 1999;
Friedman and Popescu, 2008; Dembczyński et al., 2010), is interpretable. Each weak
learner uses our baseline, and candidate rules are combined with a simple union, to obtain
a final interpretable rule set. The idea of ensembling is crucial to improve generalization,
while using bottom-up weak learners allows to generate meaningful rules even when
the target class has few available samples. In Section 3.5, we perform an extensive
experimental validation indicating that libre scales to large datasets, has competitive
predictive performance compared to state-of-the-art approaches (even black-box models),
and produces few and simple rules, often outperforming existing interpretable models.
Section 3.6 concludes the chapter with a critical analysis of libre, and in general rule-base
methods, and some interesting future work.

3.2 A real industrial use case

The rule-based model we are going to detail in the next sections is the result of a real need
we had while facing an industrial use case. Describing this project and its requirements,
highlighting the challenges we faced, is functional to our discussion.
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3.2.1 Context and objectives

sap is a software corporation that develops enterprise software to manage business
operations and customer relations. The project we were involved in is placed within the
broad context of data-driven predictive maintenance of it services, and, in particular, in
the context of one of the major offering of sap services, the in-memory storage solution
called sap hana.

General context. sap periodically collects relevant information about the monitored
sap hana database systems and stores them into a data lake. Collected data is hetero-
geneous in nature: it includes time series information about services and hosts, such as
cpu utilization, ram availability, disk and network utilization, database and table sizes;
tabular data regarding configuration settings and parameters; textual data containing
notes from the sap personnel dedicated to predictive maintenance and optimization
of services, and so on. sap provides a diagnostic service to his sap hana users. Such
service, called Early-Watch Alert (ewa), monitors the database systems, processes their
data, and produces one report per system. Each report can be interpreted as the status
of the system that, for the sake of simplicity, can be summarized as “anomalous” or
“normal”. sap engineers analyze these reports to identify and solve eventual problems.

Objectives and requirements. ewa is a monolithic, centralized anomaly detection
system, that encodes years of sap knowledge about database services maintenance into a
huge piece of code, written in abap, a sap proprietary language. Modifications to ewa,
mostly related to the creation and or updated of checks to detect new anomalies, imply
a manual intervention on the existing code. Clearly, the more changes you do, the higher
is the risk of generating bugs. Moreover, ewa is unique for every customer and system.
This is a consequence of the limitations above: in practice, it is not feasible to write
customer-specific code snippets, as it would not scale to the thousands of sap customers.

sap aims at substituting ewa, with a machine learning-based ewa, trained to learn the
precious knowledge encoded into the monitoring data and reports. Machine learning
systems have the advantage of automatically learning from data; it also becomes possible
to have separate models for separate customers. Furthermore, machine learning models
can be designed to adapt to data changes, reducing the effort of manual intervention in
the system (although some human operations are still required).

Additionally, sap requires for the machine learning model to be understandable by the
personnel. Indeed, ewa is an important component of the maintenance life cycle: it
should detect the presence of anomalies, but also help the personnel to figure out why
anomalies have been detected, simplifying the search for a solution.
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3.2.2 Proposed solution

This sap project entails evident challenges. The first issue is related to input data:
reporting the details is out of the scope of this thesis, although we made a great effort
to structure the huge amount of data into a format that could be used by different
machine learning models. Preliminary data analysis highlighted the second, expected
problem: anomalies represented only a small percentage of data. Last, but not least,
interpretability was an explicit and indispensable requirement.

After several meetings with the sap personnel, rule-based models emerged as a possible
practical solution: rules are intuitive to understand and can be seen as a preliminary
explanation of the reasons behind anomalies. Unfortunately, the results of several rule-
based and transparent state-of-the-art models were unsatisfactory, both in terms of
interpretability and predictive performance (especially compared to black-box models).
Further analysis highlighted criticalities already known in the literature: top-down
methods were usually able to learn general and compact rules, but faced issues to cover
minority subgroups of anomalies; bottom-up methods were having the opposite problem.
We report experimental results, later in the chapter, in Section 3.5.

Having found no satisfactory answers in the existing literature led us to design a new
method that could provide high predictive performance, be interpretable and applicable
to strongly imbalanced settings.

3.3 Preliminaries

Our methodology targets binary classification, although it can be extended to multi-class
settings. For the sake of building interpretable models, we focus on Boolean functions for
the mapping between inputs and labels, which are amenable to a simple interpretation.

Boolean functions can be used as a model for binary classifiers f(x) = y, where x ∈
{0, 1}d, y ∈ {0, 1}. The function f induces a separation of {0, 1}d in two subsets N and
P, where N = {x ∈ {0, 1}d : f(x) = 0} and P = {x ∈ {0, 1}d : f(x) = 1}. We call such
subsets positive and negative subsets, respectively. Clearly, N ∪P = {0, 1}d corresponds
to the full truth table of the classification problem. We restrict the input space {0, 1}d

to be a partially ordered set (poset): a Boolean lattice on which we impose a partial
ordering relation, as defined next.

Definition 3.3.1. Let
∧
,
∨
, ¬ be the and, or, and not logic operators respectively.

A Boolean lattice is a 5 tuple ({0, 1}d,
∧
,
∨
, 0, 1). The lack of the ¬ operator implies

that a lattice is not a Boolean algebra. Let ≤ be a partial order relation such that
x ≤ x′ ⇐⇒ x

∨
x′ = x′. Then, ({0, 1}d,≤) is a poset, a set on which a partial order

relation has been imposed.
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The theory of Boolean algebra ensures that the class Bd of Boolean functions f : {0, 1}d →
{0, 1} can be realized in terms of

∧
,
∨
, and ¬. Nevertheless, if {0, 1}d is a Boolean lattice,

¬ is not allowed and only a subsetMd of Bd can be realized. The classMd coincides with
the collection of monotone Boolean functions. The lack of the ¬ operator may limit the
family of functions we can reconstruct. However, by applying a suitable transformation
of the input space, we can enforce the monotonicity constraint (Muselli, 2005). Then, it
is possible to find a function f̃ ∈Md that approximates f ∈ Bd arbitrarily well.

Definition 3.3.2. Let (X ,≤) and (Y,≤) be two posets. Then, f : X → Y is called
monotone if x ≤ x′ implies f(x) ≤ f(x′).

Definition 3.3.3. Given x ∈ {0, 1}d, let Im be the set of the first m positive integers
{1, . . . ,m}. T (x) = {i ∈ Im : x(i) = 1}. The inverse of T is denoted as t(T (x,m)) = x.

Theorem 1. (Wegener, 1987) Let f̃ ∈Md be a monotone Boolean function. Then, it
exists a partially ordered set A such that f̃ can be written as: f̃(x) =

∨
a∈A

∧
j∈T (a) x(j).

The monotone Boolean function f̃ is specified in disjunctive normal form (dnf), and is
univocally determined by the set A and its elements. Thus, given N and P, learning
f̃ amounts to finding a particular set of lattice elements A defining the boundary
separating positive from negative samples. More formally:

Definition 3.3.4. Given a ∈ {0, 1}d = P ∪ N , if a ≤ x for some x ∈ P, and @y ∈ N :

a ≤ y, and ∃y ∈ N : b ≤ y ,∀b < a, then a is a boundary point for (P,N ). The set A
of boundary points defines the separation boundary. If a′ � a′′ and a′′ � a′ , ∀a′,a′′ ∈
A,a′ 6= a′′, then the separation boundary is irredundant.

In other words, a boundary point is a lattice element that is smaller than or equal to at
least one positive element in P, but larger than all negative elements N . In practical
applications, however, we usually have access to a subset of the whole space, a training
set of positive and negative samples, D+ ⊆ P and D− ⊆ N respectively. The goal of the
algorithms we present next is to approximate the boundaryA, given D+ and D−. We show
that boundary points, and binary samples in general, naturally translate into classification
rules. Indeed, let R be the set of rules corresponding to the discovered boundary. R(·)
represents a binary classifier: R(x) = {1 if ∃r ∈ R : r(x) = 1; 0 otherwise}. Then, x is
classified as positive if there is at least one rule in R that is true for it.

3.4 Boolean Rule Sets

We presented a theoretical framework that casts binary classification as the problem of
finding the boundary points for D+ ⊆ P and D− ⊆ N . Next, we use such framework to
design our interpretable classifier.
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In Section 3.4.1, we first clarify some required assumptions on the input data and how
to satisfy them. In Section 3.4.2, we describe a base, bottom-up method – which will be
used as a weak learner later – that illustrates how to move inside the Boolean lattice to
find boundary points. However, the base method does not scale to large datasets, and
tends to overfit. Thus, in Section 3.4.3, we present libre, an ensemble classifier that
overcomes such limitations by running on randomly selected subset of features. libre is
interpretable as it combines the output of an ensemble of weak learners with a simple
union operation. Finally, in Section 3.4.4, we illustrate a procedure to select a subset of
the generated points – the ones with the best predictive performance – and reduce the
complexity of the boundary.

3.4.1 Assumptions on the Input Data

We assume that the input dataset is a poset and that the function we want to reconstruct is
monotone. This is ensured by applying inverse-one-hot-encoding on discretized features,
and concatenating the resulting binary features, as done in Muselli (2006). Given
z ∈ Im = {1, ...,m}, inverse-on-hot encoding produces a binary string b of length m,
where b(i) = 1 for i 6= z, b(i) = 0 for i = z. More details can be found in Appendix A.1.

Example 3.4.1. Consider a dataset with two continuous features, f1 and f2, both
taking values in the domain [0, 100]. Suppose that, a discretization algorithm out-
puts the following discretization ranges for the two features: [[0, 40), [40, 100]] and
[[0, 30), [30, 60), [60, 100]] respectively. Once all records are discretized, we apply inverse
one-hot encoding, as previously defined. For example, f1 = 33.1, f2 = 44.7 is first
discretized as f ′1 = 1, f ′2 = 2, and then binarized as 01 101. In other words, each feature
of a record is encoded with a number of bits equal to its discretized domain, and can
have only one bit set to zero.

3.4.2 The Base, Bottom-up Method

We develop an approximate algorithm that learns the set A for (D+,D−). The algorithm
strives to find lattice elements such that both |A| and |T (a)| ,∀a ∈ A are small, translating
in a small number of sparse boundary points (short rules).

Algorithm Design. In order to proceed with the presentation of our algorithm, we
need the following definitions:

Definition 3.4.1. Given two lattice elements x,x′ ∈ {0, 1}d, we say that x′ covers x, if
and only if x′ ≤ x, according to the standard ordering in the Boolean lattice.

Definition 3.4.2. Given a lattice element x ∈ {0, 1}d, flipping off the k-th element of
x produces an element z such that z(i) = x(i) for i 6= k and z(i) = 0 for i = k.
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Algorithm 5 FindBoundary (D+,D−)

Set A = ∅ and S = D+

while S 6= ∅ do
Choose x ∈ S
Set I = P(x), J = ∅
FindBoundaryPoint(A,D+,D−,S, I,J )
Remove from S the elements covered by a, ∀a ∈ A

end

Definition 3.4.3. Given a positive binary sample x ∈ D+, we say that a flip-off
operation produces a conflict if the lattice element z resulting from the flip-off is such
that ∃x′ ∈ D− : z ≤ x′.

Then, a boundary point is a lattice element that covers at least one positive sample, and
for which a flip-off operation would produce a conflict, as defined above.

Algorithm 5 presents the main steps of our algorithm, where A is the boundary set,
enlarged progressively, and S = {s ∈ D+ : @a ∈ A,a ≤ s} is the set of elements in D+

that are not covered by a boundary point in A. I is the set of indexes of the components
of the current positive sample x that can be flipped-off, and J is the set of indexes that
generate a conflict with D− if they are flipped-off. The role of I and J will be clear
later in Algorithm 6. Until S is not empty, an element x is picked from S. Then, the
procedure FindBoundaryPoint generates one or more boundary points by flipping-off
the candidate bits of x. According to Definition 3.4.2, a boundary point is generated
when an additional flip-off would lead to a conflict, given Definition 3.4.3. When the
FindBoundaryPoint procedure completes its operation, both A and S are updated.

Example 3.4.2. Let D+ = {11001} and D− = {01101, 01101}. Take the positive
sample 11001, for which I = {1, 2, 5} and J = ∅ at the beginning. Suppose that
FindBoundaryPoint flips-off the bits in I from left to right. Flipping-off the first bit
generates 01001 ≤ 01101 ∈ D−. The first bit is moved to J and kept to 1. Flipping-off
the second bit generates 10001 ≤ 10101 ∈ D−. Also the second bit is moved to J . We
finally flip-off the last bit and obtain 11000 that is not in conflict with any element in
D−. 11000 is therefore a boundary point for (D+,D−).

If we think about binary samples in terms of rules – the process to translate binary
samples into rules is explained at the end of this section – a positive sample can be
seen as a maximally-specific rule that covers by definition only that particular sample.
Flipping-off bits is nothing more than generalizing that rule. Our goal is to do as many
flip-off operations as possible before running into a conflict.

Retrieving the complete set of boundary points requires an exhaustive search, which is
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expensive, restricting its application to small, low-dimensional datasets. It is easy to
show that the computational complexity of the exhaustive approach is O(n22d), where
n is the number of distinct training samples, and d is the dimension of the Boolean
lattice. Efficient procedures to synthetize monotone boolean functions exist in interactive
learning environments (Kovalerchuk et al., 1996; Torvik and Triantaphyllou, 2002), where
we are allowed to access an oracle to which we can present specific samples and get the
correct label. Unfortunately, this is not the case. In this work, we propose an approximate
heuristic for the FindBoundaryPoint procedure.

Finding Boundary Points. The key idea is to find a subset of all possible boundary
points, steering their selection through a measure of their quality. A boundary point is
considered to be “good” if it contributes to decreasing the complexity of the resulting
boundary set, which is measured in terms of its cardinality |A| and the total number
of positive bits

∑
a∈A |T (a)|. In practice, |A| can be decreased by choosing boundary

points that cover the largest number of elements in S. To do this, we iteratively select
the best candidate index i ∈ I according to a measure of potential coverage. Decreasing∑

a∈A |T (a)| implies finding boundary points with low number of 1s.

Before proceeding, we define a notion of distance between lattice elements:

Definition 3.4.4. Given x,x′ ∈ {0, 1}d, the distance dl(x,x
′) between x and x′ is

defined as: dl(x,x
′) =

∑d
i=1 |x(i) − x′(i)|+, where | · |+ is equal to 1 if (·) ≥ 0, 0

otherwise.

Definition 3.4.5. In the same way, we can define the distance between a lattice element
x and a set V as: dl(x,V) = minx′∈V dl(x,x

′).

Every boundary point a for (D+,D−) has distance dl(a,D−) = 1; in fact, boundary
points are all lattice elements for which a flip-off would generate a conflict. In the
iterative selection process of the best index i ∈ I to be flipped-off, indexes having high
dl(t(I ∪ J ),D−0

i ) are preferred, where D−0
i = {x ∈ D− : x(i) = 0}, since they are the

ones that contribute most to reduce the number of 1s of a potential boundary point.

Algorithm 6 illustrates our approximate procedure, where S0
i = {s ∈ S : s(i) = 0} and

D+
0
i = {p ∈ D+ : p(i) = 0} are proxies for the potential coverage of flipping-off a given

bit i. The first step of the algorithm computes, for each index i ∈ I, the terms |S0
i |

and |D+
0
i | indicating its potential coverage, and dl(t(I ∪ J ),D−0

i ). Until the set I is
not empty, indexes inducing a unit distance to D− are moved to J . Then, we choose
the best index ibest among the remaining indices in I, using our greedy heuristics: we
can chose to optimize either for the tuple H1 = (|S0

i |, |D+
0
i |, dl(t(I ∪J ),D−0

i )) or for the
tuple H2 = (dl(t(I ∪ J ),D−0

i ), |S0
i |, |D+

0
i |) in lexicographic order. H1 prioritizes a lower

number of boundary points, while H2 tends to generate boundary points with fewer 1s.
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Algorithm 6 FindBoundaryPoint (A,D+,D−,S, I,J )

For each i ∈ I compute |S0
i |, |D+

0
i |, dl(t(I ∪ J ),D−0

i )
while I 6= ∅ do

Move from I to J all i with dl(t(I ∪ J ),D−0
i ) = 1

if I = ∅ then
break

end
Choose the best index i ∈ I
Remove i from I
foreach i ∈ I do

update dl(t(I ∪ J ),D−0
i )

end
end
if there is no a ∈ A : t(J ) ≥ a then

Set A = A ∪ t(J )
end

When I is empty, t(J ) is added to the boundary set A if it does not contain already an
element covering t(J ). Note that, in Algorithm 6, the distance is computed only once,
and updated at each iteration. This is because only one bit is selected and removed from
I; then, t(I ∪J )new = t((I ∪J )old \ {i}). Formally, we apply Definition 3.4.4 exclusively
for i = ibest.

Example 3.4.3. Let D+ = {10101, 01101, 01110} and D− = {10110, 11010}. We
describe the procedure for few steps and only for the first positive sample 10101. Suppose
to optimize the tuple (|S0

i |, |D+
0
i |, dl(t(I ∪ J ))). For 10101 we have I = {1, 3, 5}

and J = ∅. At the beginning S = D+. |D+
0
1| = 2, |D+

0
3| = 0, |D+

0
5| = 1. D−0

1 =

∅,D−0
3 = {11010},D−0

5 = {10110, 11010}. Consequently: dl(t(I∪J ),D−0
1) = undefined,

dl(t(I ∪ J ),D−0
3) = 2, dl(t(I ∪ J ),D−0

5) = 1. Bit 5 is moved to J . Bit 1 has the higher
value of |D+

0
i | and is selected as best candidate to be flipped-off. The distance is

recalculated and the procedure continues until the set of candidate bits I is empty.

The time complexity of Algorithm 5, when it runs Algorithm 6, is O(n2d2). This is faster
than the exhaustive algorithm, and better than the O(n2d3) complexity of Muselli and
Quarati (2005) (the difference between our proposal and Muselli and Quarati (2005) is
detailed in Appendix A.1). We also point out that most sequential-covering algorithms
repeatedly remove the samples covered by the new rules, forcing the induction phase
to work in a more partitioned space with less data, especially affecting minority rules,
which already rely on few samples. The problem is mitigated in our solution: despite S
cannot avoid this behavior, our heuristics keep a global and constant view of both D−,
in the conflict detection, and D+, in the discrimination of the best bits to flip.
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From boundary set to rules. Each element a of the boundary setA can be practically
seen as the antecedent of an if-then rule having as target the positive class. When a
binary sample x is presented to a, the rule outputs 1 only if x has a 1 in all positions
where a has value 1, that is if a ≤ x. Then, the antecedent of the rule is expressed as a
function of the input features in the original domain.

Example 3.4.4. Consider a dataset with two continuous features, f1 and f2, dis-
cretized as follows: [[0, 40), [40, 100]] and [[0, 30), [30, 60), [60, 100]] respectively. We also
apply inverse-one-hot encoding as explained in Section 3.4.1 and obtain a dataset of
6-dimensional binary strings. Assuming that our algorithm outputs a boundary set
A = {01 100}, we obtain, from the boundary point, a rule as follows: the first two bits
referring to feature f1 – 01 – are mapped to “if f1 ∈ [0, 40)”, while the bits referring to
f2 – 100 – are mapped to “if f2 ∈ [30, 100]”, where the two consecutive intervals have
been combined. The zeros determine the ranges in the if conditions. The final rule is
therefore “if f1 ∈ [0, 40) and f2 ∈ [30, 100] then label = 1”.

3.4.3 The libre Method

The base approach generates boundary points by generalizing input samples, i.e., by
flipping-off positive bits if no conflict with negative samples is encountered. The hypoth-
esis underlying this procedure is that when no conflicts are found, a boundary point
induces a valid rule. However, such rule might be violated when used with unseen data.
Stopping the flipping-off procedure as soon as a single conflict is found has two main
effects: i) we obtain very specific rules, that might be simplified if the approach could
tolerate a limited number of conflicts; ii) the rules cover no negative samples in the
training set and tend to overfit.

To address these issues, a simple method would be to introduce a measure for the number
of conflicts and use it as an additional heuristic in the learning process. However, this
would dramatically increase the complexity of the algorithm.

A more natural way to overcome such challenges is to make the algorithm directly work
on (random) subsets of features; in this way, the learning process produces more general
rules by construction. Randomization is a well-known technique to implement ensemble
methods that provide superior classification accuracy, as demonstrated, for example, in
random forests (Ho, 1998; Breiman, 2001). By using randomization, we can directly
use the methodology described in the previous sections, without modifying the search
procedure. The new approach – libre – is an interpretable ensemble of rules that
operates on a randomized subset of features.

Formally, let E be the number of classifiers in the ensemble. For each classifier j ∈
{1, . . . , E}, we randomly sample kj features of the original space and run Algorithm 5 to
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produce a boundary set Aj for the reduced input space. Aj can be generated in parallel,
since weak learners are independent from each other. At this point, to make the ensemble
interpretable, we crucially do not apply a voting (or aggregation) mechanism to produce
the final class prediction, we do a simple union instead, such that A =

⋃E
j=1Aj .

We note that libre addresses the problems outlined above, as we show experimentally.
By training an ensemble of weak learners that operate on a small subset of features,
we artificially inflate the probability of finding negative examples. Each weak learner is
constrained to run on less features not only reducing the impact of d on the execution
time, but also having an immediate effect on the interpretability of the model that is
forced to generate simpler rules, exactly because it operates on fewer input features.

Note that there are no guarantees that elements of Aj will actually be boundary points
in the full feature space: weak learners have only a partial view of the full input space
and might generate rules that are not globally true. Thus, it is crucial to filter out the
points that are clearly far from the boundary by using the selection procedure described
in the next section.

3.4.4 Producing the Final Boundary

The model learned by our greedy heuristic materializes as a set A, which may contain a
large number of elements and, in case of libre, it might also contain elements that cover
many negative samples. In this section, we explain how to produce a boundary set A∗

with a good trade-off between complexity and predictive performance. This can be cast
as a weighted set cover problem. Since exploring all possible subsets of elements in A can
be computationally demanding, we use a standard greedy weighted set cover algorithm.

Each element a ∈ A is initially assigned a weight w(a) = α|D̂+(a)| − (1 − α)|D̂−(a)|
that is proportional to the number of positive and negative covered samples, |D̂+(a)|
and |D̂−(a)| respectively. The importance of the two contributions is governed by a
parameter α. At each iteration, the element a with the highest weight is selected; if there
is more than one, the element with the highest number of zeros is preferred. All samples
that are covered by the selected element are removed, and the weights are recalculated.
The process continues until either all samples are covered or a stopping condition is met.
In imbalanced settings, α will be close to 1 to increase the strength of minority rules.

Before running the selection procedure, with the aim of speeding up execution times,
we eventually apply a filtering procedure to reduce the size of the initial set to a small
number of good candidates: as proposed by Gu et al. (2003), we select the top K rules
according to exclusiveness and local support (defined in Table 2.1), that are more sensible
than confidence and support for imbalanced settings. Then, the final boundary set is
naturally mapped to a set of rules, as explained in the previous section. Figure 3.1 shows
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if mean_corpuscular_volume ∈ [90, 96)

or gamma_glutamyl_transpeptidase ∈ [20,max]

then liver_disorder = True

else liver_disorder = False

Figure 3.1: Example of rule set learned by libre for liver.

an example of compact rule set learned by libre for the uci dataset liver. Other rule
sets can be found in Appendix A.5.

3.5 Experiments

We evaluate libre in terms of predictive performance, interpretability, and scalability,
and compare it with other rule-based and black-box methods.

3.5.1 Experimental Settings

Datasets. We report the results for thirteen publicly available datasets from the uci

repository (Dua and Graff, 2017) and two real industrial it datasets – proprietary of sap.
These datasets cover several domains, have different imbalance ratios, number of records
and features, as summarized in Table 3.1. Some of these datasets have been used to
evaluate methods for class imbalance (Van Hulse et al., 2007) and present characteristics
that make them difficult to learn: overlapping classes, noisy and rare examples. All
datasets have, or were transformed to have, a binary class. The sap datasets consist of
monitoring data collected across sap hana database systems. They have 45 features,
hand-crafted by domain experts based on low-level system metrics. sap runs a predictive
maintenance system on this data and notifies customers who confirm or discard the
warnings: we use these as binary labels. sap-c is the clean version of sap-f, where we
removed records with one missing value or more.

Comparison with other methods. We compare libre with two recent works: Scal-
able Bayesian Rule Lists (s-brl) (Yang et al., 2017) and Bayesian Rule Sets (brs) (Wang
et al., 2017). We also report the results for a weka (Hall et al., 2009) implementation
of ripper (Cohen, 1995) and modlem (Grzymala-busse and Stefanowski, 2001) – as
representative of top-down and bottom-up approaches – and scikit-learn (Pedregosa
et al., 2011) implementations of Decision Tree (dt) (Breiman et al., 1984), Support
Vector Machine with RBF kernel (rbf-svm) (Cortes and Vapnik, 1995)), and random
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Dataset #records #features imbalance_ratio target_class

adult 48’842 14 .23 >50k

australian 690 14 .44 2

balance 625 4 .08 B

bank 45’211 17 .12 yes

haberman 306 3 .26 died

heart 270 13 .51 presence

ilpd 583 10 .28 liver patient

liver 345 5 .51 drinks>2

pima 768 8 .35 1

sonar 208 60 .53 R

tictactoe 958 9 .65 positive

transfusion 748 5 .24 yes

wisconsin 699 9 .34 malignant

sap-c 287’031 45 .01 crash

sap-f 1’554’227 45 .01 crash

Table 3.1: Characteristics of evaluated datasets.

forests (rf) (Breiman, 2001). rbf-svm and rf are selected as popular black-box models;
rf is also a representative ensemble method. Other relevant methods are not publicly
available (cg (Dash et al., 2018)), are only partially implemented (bracid (Napierala,
2012)), or the implementation provided by the authors does not work properly most
probably because of some programming errors (ids (Lakkaraju et al., 2016)).

Data preprocessing. Before running rbf-svm, we apply the scikit-learn standard
scaler to the input data to get better results. The remaining methods have no benefits
from standardization in our experiments. For s-brl and libre, we apply ChiMerge
discretization algorithm Kerber (1992) with three discretization threshold: 4, 4.6, 6;
in brs, discretization is instead controlled by an internal parameter. In both cases,
discretization is optimized during training. The remaining algorithms have no explicit
need for discretization. For the methods requiring binarization, we apply one-hot encoding,
except for libre that uses inverse one-hot encoding.

Parameter tuning. The initial set of candidate rules for s-brl and brs is generated
by running fpgrowth with a minimum support of 1 and a maximum mining length of 5.
We also optimize brs and s-brl’s prior hyper-parameters by cross validation. For brs, we
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run 2 chains of 500 iterations. For ripper, we change the number of optimization steps
between 1 and 5, and activate pruning. For modlem, we try all available classification
strategies and condition measures. For rbf-svm, we optimize C and γ. For dt and
rf, we optimize the maximum depth in {5, 10, 20, None}, we try all possible options for
max_features and use a number of trees in {20, 50, 100} for rf. For libre, we vary the
number of weak learners in E ∈ {5, 20, 50}. Each weak learner uses up to 5 features.
Additionally, we try the two heuristics H1 and H2, as defined in Section 3.4.2, to generate
rules and vary α in {.5, .7, .9} for weighted set cover. Parameters not reported above are
all fixed to recommended or default values.

Evaluation metrics. All results refer to nested 5-fold cross validation, where the same
splits are used for all methods. We use F1-score to compare the predictive performance
of the classifiers, as it is well-suited to evaluate the capability to characterize the target
class both in balanced and imbalanced settings. For rule-based methods, we use standard
metrics from the literature to evaluate the interpretability of the rule sets, namely the
number of rules that implement a model, and the average number of atoms per rule.
For dt, we extract the rules following the paths from root to leaves: this captures the
perception of a user who looks at the tree to understand the output of the model. For
s-brl, the number of atoms in a rule is equal to the sum of the atoms in the previous
rules, highlighting the fact that a user has to go through all the rules up to the one
that returns the label. For all rule-based methods, we change inequalities (<,≤, >,≥)
to ranges to have a fair comparison. For example, f1 ≥ 3 is converted to f1 ∈ [3,max].

3.5.2 Experimental Results

Predictive performance evaluation. Table 3.2 shows the means and standard
deviations of the F1-score for the tested algorithms (best results in bold) and the rank
of their average performance. We additionally report the results for libre when it is
constrained to generate at most 3 rules (libre 3).

If we look at the average rank, libre emerges as the best method, beating both rbf-svm

and rf, demonstrating its versatility in both balanced and imbalanced settings. libre 3
is better than the other rule-based competitors, despite being constrained to generate at
most 3 rules. dt, modlem, s-brl and ripper show similar performance, even though
modlem is usually worse for balanced settings. brs is the worst method.

If we focus more on the single datasets, we notice that, except for australian, heart,
and sonar, libre obtains consistently the highest F1-score. In bank, ilpd, and
transfusion the gap between libre and the closest competitor is significant; the gap is
even larger in comparison to alternative rule learners. For the remaining datasets, the
differences with the competitors are less pronounced but still significant. In particular,
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Dataset rbf-svm rf dt ripper modlem s-brl brs libre libre 3

adult .62(.01) .68(.01) .68(.01) .59(.02) .66(.01) .68(.01) .61(.01) .70(.01) .62(.01)

australian .83(.02) .86(.02) .84(.02) .85(.02) .68(.28) .82(.03) .83(.03) .84(.03) .84(.03)

balance .03(.07) .00(.00) .01(.03) .00(.00) .16(.04) .00(.00) .00(.00) .16(.08) .14(.06)

bank .46(.01) .50(.01) .50(.01) .44(.04) .50(.03) .50(.02) .32(.05) .55(.01) .44(.01)

haberman .24(.10) .26(.07) .36(.08) .38(.07) .40(.07) .17(.21) .07(.06) .41(.04) .41(.04)

heart .78(.06) .79(.07) .71(.01) .73(.09) .39(.31) .74(.05) .70(.09) .77(.06) .75(.02)

ilpd .47(.02) .44(.08) .42(.10) .20(.11) .48(.08) .14(.13) .09(.08) .54(.06) .52(.04)

liver .58(.08) .58(.07) .56(.10) .59(.04) .58(.07) .54(.03) .61(.05) .60(.07) .63(.06)

pima .61(.04) .63(.04) .60(.01) .60(.03) .38(.18) .61(.07) .03(.03) .64(.05) ..64(.05)

sonar .81(.04) .83(.05) .75(.05) .77(.08) .70(.06) .76(.05) .69(.06) .79(.03) .76(.04)

tictactoe .99(.01) .99(.01) .97(.01) .98(.01) .55(.10) .99(.01) .99(.01) 1.0(.00) .68(.04)

transfusion .41(.07) .35(.06) .35(.05) .42(.10) .42(.08) .05(.10) .04(.05) .49(.12) .49(.12)

wisconsin .95(.02) .95(.01) .91(.04) .94(.02) .95(.01) .94(.02) .88(.03) .95(.01) .93(.02)

sap-c .93(.02) .93(.01) .85(.03) .86(.02) .88(.01) .90(.01) .68(.03) .95(.02) .72(.03)

sap-f - - - - - .81(.02) - .89(.03) .68(.04)

Avg Rank 4.0(1.8) 3.1(1.9) 5.5(1.9) 5.3(1.7) 5.0(2.8) 5.3(2.3) 7.3(2.5) 1.5(0.9) 4.0(2.6)

Table 3.2: F1-score (st. dev. in parenthesis).

balance seems to be problematic for most of the tested methods: only the bottom-up
learners modlem and libre discover useful patterns. Additionally, ripper, brs and s-

brl do not learn anything helpful to predict the positive class in ilpd; modlem performs
considerably better. From a deeper analysis, it emerges that ilpd is an imbalanced
dataset with overlapping classes: rules learned by libre have an error rate close to 50%
on the training set, which is a consequence of the class imbalance. ripper does not
learn these rules, whereas brs and s-brl does not include such rules in the final set even
when they are in the set of candidate mined rules. With sap-c, libre 3 performs better
than brs but limiting the number of rules to 3 causes a significant drop in F1-score
w.r.t. libre. The situation is different for sap-f, the version of the dataset with missing
values. From Table 3.1, sap-f is more than five times bigger than sap-c, indicating
that missing values are not a negligible problem in real scenarios. A method that runs
without additional pre-processing is thus truly desirable. Only libre and s-brl fit this
requirement automatically treating missing values as special values, while ripper, brs,
and modlem natively manage missing values for categorical features only, but require an
additional pre-processing for continuous features. Despite the huge number of missing
values, results for libre are comparable to other rule learners when executed on sap-c.
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Dataset dt ripper modlem s-brl brs libre libre 3

adult 287.8(6.5) 21.4(5.2) 4957.8(36.3) 71.4(2.1) 10.0(3.3) 14.0(2.1) 3.0(0.0)

australian 4.0(0.0) 3.8(1.2) 86.6(3.2) 5.8(0.7) 1.8(0.4) 2.4(1.4) 2.2(0.7)

balance 48.0(12.5) 0.0(0.0) 76.5(4.6) 0.0(0.0) 1.0(0.0) 9.0(3.0) 1.0(0.0)

bank 545.4(18.3) 9.0(1.8) 3722.6(25.5) 61.2(5.5) 4.8(1.2) 15.0(1.1) 2.0(0.6)

haberman 37.4(4.13) 1.0(0.0) 73.6(2.9) 5.4(1.9) 1.0(0.0) 1.6(0.8) 1.6(0.8)

heart 45.6(9.1) 2.8(0.7) 50.6(2.9) 5.8(0.7) 2.4(0.5) 10.6(3.0) 2.8(0.4)

ilpd 80.6(30.2) 1.0(0.6) 128.2(7.8) 4.8(0.7) 1.0(0.0) 4.4(2.3) 2.2(0.4)

liver 84.4(15.2) 1.4(0.8) 98.4(1.6) 4.0(0.6) 1.0(0.0) 3.4(1.9) 2.8(0.4)

pima 84.8(43.1) 2.4(2.4) 151.8(7.6) 8.4(0.5) 1.0(0.0) 1.6(1.0) 1.6(1.0)

sonar 15.0(9.3) 3.6(1.4) 48.8(1.6) 3.2(0.7) 1.0(0.0) 6.6(1.2) 1.1(0.2)

tictactoe 60.4(5.2) 10.6(1.6) 25.8(1.6) 12.2(1.2) 9.0(1.1) 9.0(1.1) 3.0(0.0)

transfusion 100.2(48.4) 1.8(0.4) 125.8(6.1) 4.4(0.8) 1.0(0.0) 1.2(0.4) 1.2(0.4)

wisconsin 31.4(5.5) 5.0(0.6) 29.2(1.9) 7.0(1.1) 5.0(0.6) 4.2(0.7) 3.0(0.0)

sap-c 622.4(51.9) 19.3(3.6) 3944.5(18.8) 47.7(4.4) 20.2(3.5) 13.0(2.4) 3.0(0.0)

sap-f - - - 56.4(4.6) - 17.5(5.2) 3.0(0.0)

Avg Rank 5.9(0.9) 3.3(1.3) 6.5(0.9) 4.8(0.8) 1.7(1.1) 3.1(1.1) 1.7(0.8)

Table 3.3: #rules (st. dev. in parenthesis).

Dataset dt ripper modlem s-brl brs libre libre 3

adult 9.3(0.0) 4.4(0.3) 4.3(0.1) 87.0(3.2) 3.3(0.1) 7.8(1.0) 6.5(0.7)

australian 2.0(0.0) 2.4(0.3) 2.3(0.1) 7.1(1.0) 3.5(0.3) 4.4(1.8) 4.4(1.3)

balance 4.4(2.9) 0.0(0.0) 3.5(0.0) 0.0(0.0) 4.0(0.0) 2.1(0.0) 2.1(0.0)

bank 9.5(0.0) 3.0(0.2) 3.0(0.0) 89.0(7.8) 3.2(0.4) 4.7(0.5) 2.0(0.1)

haberman 4.6(3.3) 1.8(0.4) 2.2(0.1) 3.7(1.0) 3.2(0.7) 2.1(0.3) 2.1(0.3)

heart 6.2(0.3) 2.1(0.3) 2.3(0.1) 8.1(1.3) 3.3(0.2) 7.7(0.7) 6.1(2.7)

ilpd 8.5(1.6) 2.1(1.3) 2.1(0.0) 4.4(0.4) 2.8(0.4) 3.3(1.5) 3.0(0.6)

liver 8.7(1.0) 1.3(0.4) 2.1(0.1) 3.0(0.3) 3.4(0.5) 2.5(1.0) 1.3(0.4)

pima 6.9(2.5) 2.4(0.5) 2.1(0.1) 6.3(0.8) 3.6(0.5) 2.5(0.7) 2.5(0.7)

sonar 3.8(1.5) 2.1(0.2) 1.4(0.0) 8.2(2.1) 4.0(0.0) 3.7(1.0) 2.2(0.8)

tictactoe 6.7(0.1) 2.1(0.2) 3.5(0.0) 21.8(1.6) 3.5(0.1) 3.8(0.8) 3.0(0.0)

transfusion 6.9(2.5) 2.8(0.4) 2.3(0.0) 3.8(0.6) 3.0(0.6) 2.8(0.7) 2.8(0.7)

wisconsin 6.1(0.4) 2.0(0.2) 2.2(0.1) 5.9(1.0) 3.3(0.3) 3.2(1.0) 2.8(1.0)

sap-c 15.2(1.0) 3.8(0.3) 3.4(0.1) 75.4(4.0) 3.9(0.4) 3.3(0.2) 3.0(0.1)

sap-f - - - 85.6(9.7) - 4.7(0.3) 4.2(0.2)

Rank 5.8(1.6) 2.3(1.4) 2.3(1.0) 6.2(1.0) 4.2(1.3) 3.7(1.5) 2.5(1.7)

Table 3.4: #atom (st. dev. in parenthesis).
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Interpretability evaluation. Next, using Tables 3.3 and 3.4, we perform a function
level evaluation as defined in Section 1.3.4, and measure interpretability in terms of
quantity and size of the rules: models with a low number of short rules are simple, hence
more interpretable. Rules have been manually checked and their interpretability assessed
by human experts only for the industrial sap datasets. In our analysis, we also refer to
Table 3.2, to measure the trade-off that exists between interpretability and predictive
performance. We highlight in bold the most interpretable results.

On average, in terms of number of rules, libre is better than ripper, a top-down
learner that is known to generate very general rules. libre overcomes the limitations
of bottom-up learners like modlem, that is, by contrast, the worst method together
with dt. s-brl is competitive for small datasets, but the number of rules increases
considerably for bigger datasets like adult, bank, and sap. Overall, brs generates
compact rule sets, with only one rule for half of the tested datasets. However, we should
also notice that, except for liver, these are the same datasets that give F1-score close
to zero. libre 3 outperforms other methods and produces the most compact rule sets
for the three larger datasets, with a small impact on predictive performance.

Table 3.4 shows that all the tested methods have a similar average number of atoms.
Only s-brl has issues when the number of rules is significant (like in adult, bank, and
sap datasets): as a matter of fact, in rule lists every rule depends on the previous ones,
and the number of atoms easily explodes. libre 3 is the second best method; libre

comes immediately after with an average rule size of 3.7 atoms.

F1-score vs Interpretability. From the previous analysis, libre, brs and ripper

emerge as the most interpretable rule-based methods. When libre is constrained to
output at most 3 rules, it can keep up with the competitors without a significant drop in
performance in most of the tested datasets. In this section, we explicitly show that libre

can generate more compact rule sets than the competitors, still giving superior predictive
performance. We compare the rule sets leading to the best F1-scores for ripper and brs

(we also report s-brl) with a few configurations for libre: as a general rule of thumb,
libre learns both interpretable and accurate rule sets when it is trained with as many
estimators as possible, with few input features per estimator.

In Figure 3.2, we report the average number of rules as a function of the F1-score:
points at the bottom-right side of each plot are preferable since they correspond to
compact and high predictive rule sets. Results refer to four datasets: ilpd, liver,
pima and transfusion. The plots on the remaining datasets can be found in the
Appendix A.4. As we see, libre can be tuned to score higher than the competitors with
a complexity that is same if not lower. This is mainly done by varying the maximum
allowed number of rules, but other parameters have a considerable impact on the final
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Figure 3.2: Interpretable rule sets for ilpd, liver, pima and transfusion.

performance too. In Figure 3.2, we observe that rule sets with the same number of rules
have different performance, precisely because they contain different rules, learned with
different parameters.

Scalability evaluation. Table 3.5 shows the training time for libre and three rep-
resentative rule-based competitors – ripper, modlem, brs – on synthetic balanced
datasets with 10 features and a varying number of records: from 10’000 to 1’000’000.
For each configuration, we randomly generate the dataset 3 times and report the average
training time and standard deviation. All methods are tested with their default parame-
ters and run sequentially. For libre, the time refers to one weak learner, which is also a
good approximation for the computing time of E parallel weak learners. The symbol
“-” identifies out-of-memory errors. In Appendix A.3, we also analyze the impact of the
number of features and the class imbalance ratio on the training time.

modlem and brs fail with an out-of-memory error with 500’000 and 1’000’000 records
datasets. They also show much higher run times for smaller datasets w.r.t. ripper

and libre, that are instead able to complete their training in a few minutes also for
the large datasets. Note that each weak learner in libre works with D+ and D− that
consist of distinct records: although the original dataset has millions of entries, the
number of binary records processed by the algorithm is much lower, especially when the
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#records ripper modlem brs libre

10’000 1(0) 14(0) 144(1) 5(0)

100’000 7(3) 2457(89) 2994(304) 44(5)

500’000 39(25) - - 209(7)

1’000’000 101(31) - - 399(8)

Table 3.5: Average training time in seconds (st. dev. in parenthesis).

number of input features of each weak learner is relatively low. We also point out that,
for practical applications where interpretability is needed, it is convenient to limit the
number of features and train a bigger ensemble with more learners to quickly generate
understandable rules.

3.6 Conclusion

Model interpretability has recently become of primary importance in many applications.
In this work, we focused on the task of learning a set of rules which specify, using Boolean
expressions, the classification model. We devised a practical method based on monotone
Boolean function synthesis to learn rules from data. Our approach uses an ensemble of
bottom-up learners that generalizes better than traditional bottom-up methods, and that
works well for both balanced and imbalanced scenarios: the bottom-up weak learners
learn rules that are specific enough to cover samples from the minority class, but also
short and general by construction, because they operate on different small subsets of
features. Discovered rules are combined with a simple union to produce an interpretable
rule-set. Interpretability needs are also easily encoded in the rule generation and selection
procedure that produces short and compact rule sets.

Our experiments show that libre strikes the right balance between predictive performance
and interpretability, often outperforming alternative approaches from the literature.





CHAPTER

FOUR

DISENTANGLED REPRESENTATION LEARNING

In the previous chapters, we focused on the interpretability of machine learning models.
We implicitly assumed that input data and, more specifically, the features taken as input
by the models are interpretable. When this is not true, even the simplest transparent
model can be incomprehensible. In view of the considerations above, interpretability of
data representations becomes central in our discussion on machine learning interpretability.
In some cases, it is feasible to rely on feature engineering techniques and human experts
to hand-craft understandable and useful features. In other cases, it might be more
difficult, if not impossible, owing to the complexity and high-dimensionality of the data,
lack of experts, resources, or any other reason. Ideally, we would like to have some tools
to automatically learn features from data, to which we can assign easily interpretable
meanings. This is, in short, the goal of disentangled representation learning. Disentangled
representations are not only meaningful, but also permit to use simpler models to solve
downstream tasks, for the benefit of the whole predictive chain.

4.1 Overview

Disentangled representation learning is located within the immense field of representation
learning (also known as feature learning), that replaces the traditional, manual feature
engineering for complex data-types, such as images and video, where it is usually hard
to define specific features.

The discussion about what constitutes a good representation has lead to a series of
properties, summarized in Bengio et al. (2013), on which many researchers and practi-
tioners seem to agree. All these properties, including interpretability, are satisfied by
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disentangled representations, that permit us to extend our work on interpretable machine
learning from models to data representations. We remind the reader that transparency,
as defined in Section 1.3.3, is strongly dependent on the input data.

Many approaches aimed at learning disentangled representations rely on generative
models to learn a representation of the input observations that reflects the true gener-
ative, statistically independent ground-truth factors. Those factors, corresponding to
semantically meaningful, hence interpretable, concepts, are assumed to generate the
observations.

Recent works have made precious theoretical contributions to formally define disentangled
representations, creating a connection with symmetry transformation in physics (Higgins
et al., 2018a), and identifying consistency and restrictiveness as building blocks of
disentanglement (Shu et al., 2020). This is essential to solve several controversial points
and accelerate the progress on disentangled representation learning.

Outline of the chapter. Section 4.2 is a short introduction to representation learning.
It is useful to motivate the work on disentangled representations. In Section 4.3, we
present the two most complete and general theoretical framework available today to
define disentangled representations, together with popular approaches and measures
to evaluate the quality of learned representations in terms of disentanglement. In
Section 4.4 we report many applications that benefit from disentangled representation.
Section 4.5 concludes the chapter with a discussion on the current status of the research
on disentangled representation learning and introduces the next chapter.

4.2 Representation Learning in a Nutshell

The performance of machine learning algorithms strongly depends on data representation.
Feature engineering techniques have always been used not only as a solution to the curse
of dimensionality problem, but also to build better data representations, by incorporating
human and prior knowledge into the model learning process. However, these approaches
are time consuming and expensive, as they often require the intervention of experts
on the target topics. Representation learning is the answer to the real need to make
machine learning models less dependent on the input data representation, such that they
can learn useful features by themselves. More formally, representation learning aims at
“learning data representations such that it is easier to extract useful information when
building classifiers or other predictive tasks” (Bengio et al., 2013).

Barlow et al. (1989) advocate, probably for the first time, the utility of learning data
representations consisting of statistically independent factors. They denote this concept
as factorial code discovery. According to their intuition, representations where each
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dimension is independent of any of the others would have lead to significant benefits in
terms of downstream tasks. Along this line of work, we also mention the contributions
on independent component analysis (ica) (Comon, 1994; Hyvärinen and Pajunen, 1999).
Deep learning approaches, in particular generative models, such as generative adversarial
networks (Goodfellow et al., 2014) and auto-encoders (Kingma andWelling, 2014; Rezende
et al., 2014), are other suitable choices to automatically learn representations from data.
Despite statistical independence is recognized by many as a desirable property of good
representations, there are other interesting characteristics at the core of disentangled
representations, that will be investigated in the next sections.

4.2.1 What Makes a Representation Good

Theoretically, any representation that is useful to simplify subsequent downstream tasks
can be considered a good representation. Bengio et al. (2013) identify a list of additional
properties that good representations should satisfy.

• Expressiveness. A representation is expressive if, given a reasonable size, it
allows to distinguish among a high number of different input configurations. For
example, a one-hot encoding representation of size N encodes N configurations at
most; a representation of the same size, learned by an auto-encoder, encodes many
more configurations and it is therefore more expressive.

• Abstractness. A representation is abstract if it captures high-level concepts.
Deep architectures and, in general, models that build features through composition
of functions are known to learn more abstract concepts than flat architectures
(Mahendran and Vedaldi, 2015).

• Invariance. Abstract representations also ensure another important property:
they are invariant to local changes. For example, a representation that successfully
encodes in its dimensions the identity of the corresponding observations should be
invariant to rotations, or any other transformation that do not change the identity
of the object.

• Interpretability. A representation is interpretable if we can i) easily assign
semantically meaningful concepts to its dimensions, ii) understand how changes in
one or more dimensions are reflected by the corresponding observation.

4.2.2 Disentangling Factors of Variation

Disentangled representations satisfy all the above properties. Intuitively, a disentangled
representation is aligned to some independent, conceptually meaningful, factors of
variations, also known as ground-truth factors, that are assumed to generate the input
observations. Similarly to factorial analysis and ica, disentangled representations consider
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independence as a useful property. The ground-truth factors can be seen as high-level
features, invariant to local changes and interpretable. More precisely, a disentangled
representation is an optimal representation, in that it is the most compact, general, and
interpretable one.

To the best of our knowledge, the notion of disentangled representations has been
introduced for the first time in Bengio et al. (2013). Before that, several works, especially
from the computer vision community, tried to learn specific factors of variations from
data, without explicitly mentioning disentanglement. Only in the last few years, learning
disentangled representations has become one of the hottest topic in machine learning.

4.3 Defining and Evaluating Disentangled Representations

Disentangled representation learning is currently in its infancy, hence continuously
evolving. The first contributions to the topic were based on intuitive definitions of
disentanglement, some approaches explored paths that have been later proved to be
unsuccessful. Evaluating these models without necessarily having access to ground-truth
labels is still an open problem. The practical utility of disentangled representation has
to be fully proved, yet, although recent works show evidence of that.

In the following sections, we present one of the first attempts to formally define disentan-
gled representations. Higgins et al. (2018a) use group theory to show that there exists a
formal connection between symmetry transformation and disentangled representations.
We also make some references to the work of Shu et al. (2020) that, few years later,
propose a theoretical framework that defines disentangled representations in terms of
two distinct concepts: consistency and restrictiveness. We postpone the discussion about
whether and how disentangled representations can be learned to the next chapter.

4.3.1 Symmetry Transformations and Disentanglement

In physics, symmetry transformations, often described by means of group theory, are at
the basis of many fundamental theories that explain the world dynamics. Intuitively,
a symmetry of a physical system or object is a transformation that preserves certain
properties of the object. This is also the mathematical definition of invariance. If we
consider, for example, a general object such as a stone, we know that it maintains its
physical properties even if we move it from one point to another or rotate it; therefore,
we say that the stone is invariant with respect to translation and rotation. Equivalently,
translation and rotation are symmetries for the stone.

The importance of symmetries. The study and research on structure-preserving
transformations has lead to important findings in our history. In 1871, the chemist
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Figure 4.1: Example of a toy world, where an object moves vertically and horizontally
within a grid. The object can also change its size. It can be seen as a simplified version
of dsprites.

and inventor Dmitri Ivanovich Mendeleev, noting gaps within the periodic table of
chemical elements, predicted the properties of missing elements, that he named eka-
boron, eka-aluminium, eka-manganese, and eka-silicon. These properties emerged to be
good predictors of the properties of scandium, gallium, technetium, and germanium,
respectively. Symmetry transformations have been extended to many other domains,
demonstrating their utility and generalization power.

A toy world. Higgins et al. (2018a) are the first to relate symmetry transformations
with disentangled representations. In machine learning, we do not deal with physical
objects but with observations. We consider images as observations, as they allow a better
understanding of the covered topics. In Figure 4.1, we report an example of a toy world,
a simplified version of dsprites (Higgins et al., 2017a), where a circular object is allowed
to move vertically and horizontally within a grid, and change its size. The horizontal and
vertical position, together with the size, constitute a world state. Every change in at least
one of the three dimensions affects the world state. Clearly, when the size of the object
increases or decreases, it has no effects on the identity of the object, that remains a
circle, it does not even affect its position. The same happens if the horizontal or vertical
positions change. Those actions that modify a certain aspect of the world state, while
keeping the other fixed are called disentangled group actions. Disentangled group actions
can be further decomposed into disentagled sub-groups: in this case, horizontal position,
vertical position, and size.
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z1

z2

z3

Figure 4.2: Toy world example. Latent traversal of a representation that is disentangled
with respect to the following sub-group action decomposition: size (z1), horizontal position
(z2), vertical position (z3).

From world states to observations. Let assume that the toy world described above
is the result of a generative process that transforms world states into observations. At
this point, we can try to learn a representation of the world observations by training
a model, for example an auto-encoder. In certain circumstances, we might be able to
find a mapping from the observations to the learned representation, and vice-versa,
that preserves the original disentangled group actions. If the mapping exists, it gives a
disentangled representation.

Definition 4.3.1. (Higgins et al., 2018a) A vector representation is called a disentangled
representation with respect to a particular decomposition of a symmetry group into
sub-groups, if it decomposes into independent sub-spaces, where each subspace is affected
by the action of a single sub-group, and the actions of all other sub-groups leave the
subspace unaffected.

Definition 4.3.1 clarifies doubts emerged from previous work, where it was not clear how
many dimensions should encode a given sub-group. According to the definition above,
there is no constraint on the dimensionality of each sub-group. Nevertheless, although
disentanglement is linked to a specific sub-group decomposition, disentangled group
actions can generally be decomposed into different disentangled sub-groups, with different
degrees of utility depending on the target task. It can reasonably be assumed that there
exists a “natural” decomposition we are interested in, that can be discovered through
active perception. Then, we implicitly assume to search for a representation that is
aligned with such a natural sub-group decomposition. Figure 4.2 shows a representation
that is disentangled with respect to horizontal position, vertical position and size.

Even in the simplest setting where each dimension of the learned representation affects
only a specific property of the observations, it might be complex to describe how it
happens. We would like to increase, for example, the value of the dimension encoding
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the horizontal position of our toy world state and see the observation moving from left to
right. In general, we should be able to easily understand how changes in one sub-group
influence the resulting observation. This is possible if we impose a linearity constraint.

Definition 4.3.2. (Higgins et al., 2018a) A vector representation is called a linear
disentangled representation with respect to a particular decomposition of a symmetry
group into sub-groups, if it is a disentangled representation with respect to the same group
decomposition, and the actions of all the sub-groups on their corresponding sub-spaces
are linear.

4.3.2 Disentanglement and Group Theory

The previous section was an informal introduction to symmetry transformation and their
connection to disentangled representations. Here, we use group theory to provide a more
formal definition of the concepts seen above: disentangled group and sub-group actions,
disentangled and linear disentangled representations.

Disentangled group and sub-group action. Let us assume to have a group action
· : Γ×X → X, where X is the space of observations (world space) and Γ is the group
that acts on X. Any action changes the world state and generates a new object in the
same world space. Let us further assume that the group Γ can be decomposed into n
sub-groups Γi: Γ = Γ1 × · · · × Γn. The corresponding sub-group action is denoted by ·i.
Then, the action is disentangled with respect to the sub-group decomposition of Γ, if there
exists a decomposition X = X1 × · · · ×Xn and actions ·i : Γi ×Xi → Xi, i ∈ {1, · · · , n}
such that:

(γ1, · · · , γn) · (x1, · · · , xn) = (γ1 ·1 x1, · · · , γn ·n xn). (4.1)

In other words, every property i of the observation space is invariant to the action of
Γj , j 6= i, and it is affected only by the corresponding sub-group action Γi.

Disentangled representation. Let us denote by W the set of world states. Ob-
servations O are the result of a generative process g : W → O. An external agent
learns a representation Z through the mapping e : O → Z. Let f = e ◦ g represent the
composition of e and g, where we first obtain observations from world states through
g, and the agent learns its own representations from the observations through e. Let
us also consider a group of symmetry transformations associated with W via the group
action · : Γ×W →W . The goal is to find an equivalent group action · : Γ ·Z → Z. This
is possible if:

γ · f(w) = f(γ · w),∀γ ∈ Γ, w ∈W. (4.2)

The equation above means that applying the group action γ on the representation
learned by the model f(w) is equivalent to applying the same group action γ to the world
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state w first, and then applying the mapping f . Hence, f is an equivariant map. When
Equation 4.2 is satisfied, given a group decomposition into n sub-groups Γ = Γ1×· · ·×Γn,
the agent’s representation is disentangled with respect to this decomposition if the action
· on Z is disentangled according to Equation 4.1.

Linear disentangled representation. A group action that transforms the disen-
tangled sub-space linearly considerably increases the interpretability of the learned
representation and is beneficial for downstream tasks. In this case, we talk about linear
disentangled representations. The reasoning and definitions are similar as before, with the
only difference that i) both the group action and the sub-group actions in Equation 4.1
are assumed to be linear, and ii) the group action that acts on Z is linear, too.

4.3.3 Consistency, Restrictiveness, Disentanglement

An alternative theory on disentangled representation decomposes disentanglement into
two distinct concepts: consistency and restrictiveness (Shu et al., 2020). People who are
not familiar with group theory might find the next definitions more intuitive.

Let us refer to our toy world as in Figure 4.1 and let assume that a generative model
is trained to learn a representation that reflects the original world state. If the first
dimension z1 of the learned representation is disentangled with respect to the size, a
visual inspection of z1 would show the following: i) when z1 is fixed, the size of the
generated object does not change, ii) when z1 varies, only the size of the generated
object changes. According to Shu et al. (2020), these two properties are known as
generator consistency and generator restrictiveness. If this is true for the horizontal and
vertical position as well, then the generative model has learned a (fully) disentangled
representation. We point out that consistency and restrictiveness are aligned with the
mathematical definition of invariance that motivated the theory by Higgins et al. (2018a).

More formally, let us assume that target observations are the result of a true generative
model h∗ = (p∗(s), g∗, e∗), where p∗(s) represents the distribution over the ground-truth
factors s, g∗ is a generator function that maps the ground-truth factor state to the
observation space, e∗ is the encoder function that maps from the observation to the
ground-truth factor state space. The goal is to learn a model h = (p, g, e), whose learned
representation z disentangles the true ground-truth factor state of h∗.

Generator consistency. Let I denote a set of indices (\I is its complement) and pI
denote the generating process that consists in sampling zI ∼ p(zI) once, and conditionally
sampling z\I , z′\I ∼ p(z\I |zI) in a i.i.d. fashion. We say that zI is consistent with sI if:

EpId(e∗I ◦ g(zI , z\I), e
∗
I ◦ g(zI , z

′
\I)) = 0, (4.3)
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where e∗I is the encoder of h∗ restricted to the indices I, d(·, ·) is an appropriate distance
function, and ◦ is the function composition operator. Equation 4.3 states that, when zI
is fixed, the representation retrieved by the true encoder model e∗, restricted to indices
I, is invariant to changes in z\I .

Generator restrictiveness. Let I denote a set of indices (\I is its complement) and
p\I denote the generating process that consists in sampling z\I ∼ p(z\I) once, and
conditionally sampling zI , z′I ∼ p(zI |z\I) in a i.i.d. fashion. We say that zI is restricted
to sI if:

Ep\Id(e∗\I ◦ g(zI , z\I), e
∗
\I ◦ g(z′I , z\I)) = 0, (4.4)

where e∗\I is the encoder of h∗ restricted to the indices \I. Equation 4.4 states that,
when z\I is fixed, the representation retrieved by the true encoder model e∗, restricted
to indices \I, is invariant to changes in zI .

Generator disentanglement. Let I denote a set of indices, C(I) and R(I) are
Boolean functions representing consistency and restrictiveness for the set I, respectively.
We say that zI disentangles sI if:

D(I) = C(I) ∧R(I). (4.5)

Equations 4.3 to 4.5 can equivalently be expressed from the perspective of a learned
encoder. If we want z to disentangle s, Equation 4.5 has to be true for all the ground-
truth factors. It should be noted that, similarly to Higgins et al. (2018a), i) there is no
constraint on the number of dimensions assigned to each ground-truth factor; ii) all the
definitions above implicitly define consistency, restrictiveness and disentanglement with
respect to a “natural” set of ground-truth factors.

4.3.4 Evaluating Disentanglement

For many years, visual inspection has been the only way to evaluate disentangled
representations. Latent traversal used to be a popular technique to visualize the effects
that each portion of the learned representation has on the corresponding observation.
In the simplest settings, every dimension is varied, in turn, within a range of values,
keeping the others fixed. The purpose is to investigate whether the inspected dimension
disentangles one or more ground-truth factors. In Figure 4.3, we report an example of
latent traversal for a content-style disentanglement model (Kingma et al., 2014) that has
learned a representation that separately encodes class digit and writing style from mnist

observations. When the portion of the representation related to the content is varied,
the digit changes but the style remains coherent.
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Figure 4.3: Visual Inspection of a content-style disentanglement method (Kingma et al.,
2014) trained on mnist. If we move from left to right, we observe the effects that the
content portion of the learned representation has on the corresponding observation.

Even though visual inspection techniques provide a qualitative evaluation of disentangle-
ment methods, it is evident that they require human intervention to verify disentanglement
and suffer from scalability issues. These issues pushed the researchers to design practical
metrics to quantitatively measure disentanglement. Despite several attempts to propose
standard evaluation frameworks, there is not a globally accepted procedure yet. In this
section, we report some of the most popular disentanglement metrics, with a special
focus on their properties and limitations.

Beta score. The idea behind the beta score (Higgins et al., 2017a) is that a disentan-
gled representation should consist of latent dimensions that are both independent and
interpretable. Here, interpretability means that every latent can be easily associated to
one of the true, semantically meaningful factors that generate the input observations.
Assuming a full access to the generative process, the authors propose to fix a random
ground-truth factor k and sample two mini batches of observations from the correspond-
ing generative model. The encoder is then used to obtain a learned representation
from the observations (with the ground-truth factor k in common). The dimension-wise
absolute difference between the two representations is computed and a simple linear
classifier is used to predict the fixed ground-truth factor k. This is repeated batch_size
times and the accuracy of the predictor becomes the disentanglement metric score. In
a perfectly disentangled representation, a fixed factor of variation corresponds to an
absolute difference of zero: the linear classifier would then learn to map the index of the
zero value to the index of the ground-truth factor.
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Factor score. Despite being intuitive, the beta score has several weaknesses: i) it
uses a linear classifier that, by definition, can learn only a linear mapping between
multiple dimensions of the learned latent space and the single ground-truth factors, ii) it
is susceptible to hyper-parameter tuning of the linear classifier, iii) it returns a maximum
score even when only K− 1 out of the K ground-truth factors are disentangled. For such
reasons, Kim and Mnih (2018) suggest a few modifications to the beta score, ending up
with a new disentanglement measure: the factor score. The factor score uses a majority
vote classifier to predict the index of the fixed ground-truth factor based on the index
with the smallest variance. A majority vote classifier does not require any parameter
tuning; moreover, it assigns the lowest variance to a given factor, avoiding the failure
mode of the beta score. In a perfectly disentangled representation, the fixed factor of
variation corresponds to a variance of zero in the dimension encoding that factor.

SAP - Separated Attribute Predictability. With the beta score as a reference,
Kumar et al. (2018) design a new disentanglement measure that does not require any
additional parameter tuning for the classifier. They propose the Separated Attribute
Predictability – SAP score – that is computed from a score matrix, where each entry is
the linear regression or classification score (in case of discrete factors) of predicting a
given ground-truth factor with a given dimension of the learned representation. The
SAP score is the average difference of the prediction error of the two most predictive
learned dimensions for each factor. For regression, they use the R2 score obtained with
fitting a line minimizing the linear regression error. A high SAP score indicates that
each ground-truth factor is mostly captured by one latent dimension only.

MIG - Mutual Information Gap. The mutual information gap – MIG score – (Chen
et al., 2018) is computed as the average, normalized difference between the highest and
second highest mutual information of each ground-truth factor with the dimensions of
the learned representation. Similarly to the SAP score, the MIG score needs to know the
ground-truth factors, without having explicit access to the generative process. It reaches
its maximum when each latent dimension is informative of a single ground-truth factor.

DCI Disentanglement. Eastwood and Williams (2018) define three properties for
representations: disentanglement, completeness and informativeness. i) Each of the
K dimensions of the learned representation is assigned a disentanglement score Di =

1 − HK(Pi·), where HK(Pi·) = −
∑K−1

k=0 Pik logK Pik denotes the entropy and Pij =

Rij/
∑K−1

k=0 Rik denotes the probability that the latent dimension i is predictive about
ground-truth factor j; R is an importance matrix. Then, Di = 1 if dimension i is
significant to predict a single ground-truth factor; Di = 0 if it is equally important to
predict every ground-truth factor. ii) Each ground-truth factor is assigned a completeness
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score Cj = 1−HD(P·j), where HD(P·j) = −
∑D−1

d=0 Pdj logD Pij . Cj = 1 if ground-truth
factor j is predictable via a single dimension of the learned representation; Cj = 0

if it is equally predictable by any dimension of the learned representation. iii) The
informativeness score is computed for the whole representation and measures the amount
of information useful to capture the ground-truth factors: it is computed as the prediction
error of predicting the ground-truth factors from the learned representation.

Modularity and Explicitness. Similarly to Eastwood andWilliams (2018), Ridgeway
and Mozer (2018) identify three properties for representations: modularity, compactness,
and explicitness, corresponding to the previously defined disentanglement, completness,
and informativeness. However, they argue that compactness (completness) should not
characterize disentangled representations. A representation is modular if each dimension
of the learned representation depends on at most one ground-truth factor. Ridgeway and
Mozer (2018) propose to measure modularity as the average normalized squared difference
of the mutual information of the factor of variations with the highest and second-highest
mutual information with a dimension of the learned representation. A representation is
explicit if it is easy to predict a factor of variation. To compute explicitness, they train a
one-versus-rest logistic regression classifier to predict the ground-truth factor of variation
and measure its ROC-AUC.

Other measures. The work by Ridgeway and Mozer (2018) has been recently extended
by Do and Tran (2020), who suggest three relevant properties for disentangled repre-
sentations: informativeness, separability, and interpretability. A learned representation
is informative about the corresponding observation if their mutual information is high.
Two dimensions of the learned representation are separable if they do not share common
information about the corresponding input observation. A dimension of the learned space
is interpretable with respect to a given ground-truth factor if it only contains information
about it. Zhou et al. (2020) are the first to propose an unsupervised disentanglement
measure that does not require access to the ground-truth factors and exploits topological
similarity of conditional sub-manifolds in the learned representation.

4.4 Practical Applications

The value of disentangled representations is not only due to their interpretability. Learning
a representation that reflects the generative factors of input data offers several practical
advantages: many works argue that disentangled representations simplify downstream
tasks and improve training efficiency (Bengio et al., 2013; Locatello et al., 2019b, 2020b,
2019a; van Steenkiste et al., 2019; Locatello et al., 2020a); their benefits are also evident
in transfer learning (Higgins et al., 2017b, 2018b; Laversanne-Finot et al., 2018; Gondal
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et al., 2019; Dittadi et al., 2020), fair machine learning (Creager et al., 2019; Locatello
et al., 2019a), and many other tasks. Disentangled representations have also shown
superior robustness against adversarial attacks (Willetts et al., 2020).

4.4.1 Simplifying Downstream Tasks

Disentanglement has always been recognized as a desirable property in learned represen-
tations to solve downstream tasks (Bengio et al., 2013; Peters et al., 2017; Tschannen
et al., 2018; Locatello et al., 2019b, 2020b, 2019a; van Steenkiste et al., 2019; Locatello
et al., 2020a). Intuitively, a representation where ground-truth factors are encoded
into different dimensions should make subsequent tasks, which depend on those factors,
easier. Indeed, disentangled representations have been shown to be more sample-efficient
(Higgins et al., 2018b), less sensitive to nuisance variables (Lopez et al., 2018), and to
lead to better generalization performance (Higgins et al., 2017b; Eastwood and Williams,
2018; Steenbrugge et al., 2018).

In the easiest setting, most of the disentanglement metrics from the literature can
be seen as a proxy for the performance of a simple downstream task, i.e., matching
each latent dimension with the corresponding ground-truth factor. However, there is
relatively few work on their applicability to more difficult, real problems. Recently,
Barrett et al. (2018) have found out that standard deep neural network architectures
struggle to solve complex reasoning tasks. More specifically, the authors were focusing
on abstract reasoning, where the goal is to learn abstract relationships among multiple
objects (for example images, or objects within images), and generalize such knowledge
to new settings, a task that humans naturally do during their life. Motivated by those
findings, Steenbrugge et al. (2018) and van Steenkiste et al. (2019) showed that models
with high disentanglement scores lead to better downstream performance in less time
and with less samples, compared to models with the same architecture but specifically
trained to solve the abstract-reasoning tasks.

4.4.2 Transfer Learning

The goal of transfer learning is to exploit the knowledge learned while solving a given
problem, to solve a different, but related one. If a model learns a disentangled represen-
tation, we expect the transfer process to be easier and more effective: intuitively, the
ground-truth factors should be useful to solve many different tasks.

One of the first methods that tried to exploit disentangled representation for transfer
learning is darla (Higgins et al., 2017b), a reinforcement learning method where the
agent is able to deal with changes to the input distribution (domain adaptation) by
learning a disentangled, task-independent representation of the world. More recent works
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(Locatello et al., 2019b, 2020b) show experimental evidence that, at least for synthetic
datasets, models with high disentanglement scores are better suited for transfer learning.
Gondal et al. (2019); Dittadi et al. (2020) focus on more realistic settings by proposing
both a synthetic and realistic dataset: those works show that model’s parameters learned
from a simulated dataset are effective in the real dataset, although a direct transfer of
representations does not seem to work.

4.4.3 Increasing Fairness in Predictions

When machine learning is applied to solve specific tasks, sensitive protected attributes
like race, gender, skin color and so on, can have undesirable impacts in many different
ways. The algorithm design might cause discrimination towards protected groups, the
data itself might be biased either because the collection process is biased or simply
because society is unfair. The goal of fair machine learning is to learn a predictor that
solves a given task without being biased by some sensitive factors. Every time a sensitive
factor has a negative impact, in terms of discrimination, for the target task solved by a
machine learning model, we say that such model is not fair with respect to that sensitive
factor. In the literature, we have several notions of fairness: demographic parity (Calders
et al., 2009), individual fairness (Dwork et al., 2012), equal opportunity (Hardt et al.,
2016), and causal reasoning concepts (Kilbertus et al., 2017).

Locatello et al. (2019b) suggest a possible connection between disentangled representations
and fair machine learning. Disentanglement methods learn representations with low
mutual information among different dimensions encoding the ground-truth factors; this
should encourage the downstream predictor to look only at the dimensions that are
directly linked to the target task, discarding information coming from sensitive factors.
Locatello et al. (2019a) propose a theorem asserting that even a perfect classifier might
be unfair (in terms of demographic parity), when sensitive and non-sensitive factors
are entangled. Then, they show empirically that general purpose representations are
highly unfair; there is rather a strong correlation between disentanglement and fairness
on downstream tasks for a wide range of datasets. Creager et al. (2019) propose a
flexibly-fair version of vae, where sensitive attributes are encoded into independent
portions of the latent space. Again, they show that such representations lead to more
fair results, in terms of demographic parity.

4.4.4 Higher Robustness against Adversarial Attacks

Deep learning models are subjected to adversarial attacks. In short, the attacker’s
goal is to apply the smallest amount of distortion (often not perceivable by humans)
to input observations, attempting to fool the model to return a different output from
what it is expected. Unfortunately, generative models are vulnerable to adversarial
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attacks too (Tabacof et al., 2016; Gondim-Ribeiro et al., 2018; Kos et al., 2018): the most
effective attack mode consists in distorting the input such that its latent representation
is reconstructed in a different target. This attack is problematic in applications where
the latent representation is used to perform one or more downstream tasks.

We expect disentangled representations to be more robust to this kind of attacks: indeed,
the imperceptible distortions applied by the attacker on the input observations can be
seen as small local changes that should not have a considerable impact on the latent
representation, if it is disentangled. Willetts et al. (2020) is the first work who finds a
strict relation between disentanglement and robustness. They first show that β-tcvae is
more robust to adversarial attacks than a standard vae. Besides, the authors introduce
a hierarchical version of β-tcvae that further increases robustness.

4.4.5 Other Applications

A large body of work on disentanglement originates from the computer vision community,
where the purpose is to disentangle content from pose in images (Tenenbaum and Freeman,
2000; Hinton et al., 2011; Zhu et al., 2014; Reed et al., 2014; Kulkarni et al., 2015; Yang
et al., 2015), and pose from motion in videos (Goroshin et al., 2015; Denton and Birodkar,
2017; Villegas et al., 2017; Hsieh et al., 2018; Li and Mandt, 2018) in order to better
solve specific tasks like segmentation and classification. Such kind of data allows visual
inspection of the latent space and a direct understanding of the impact of each dimension
of the learned representation, in the absence of appropriate disentanglement metrics.
In this context, full disentanglement of all possible ground-truth factors has not been
considered of primary importance.

4.5 Discussion

The concept of interpretable representations opened a whole research field, of which
disentangled representations are only a part. In this chapter, we discussed the status of
theoretical formalization of disentangled representations, evaluation methods and appli-
cations. We have not gone into detail about how to obtain disentangled representations,
yet, but it is already clear that there is huge space for improvements and contributions.

If we focus on the problem statement, we realize that the definition itself of disentangled
representations is immature: assuming that observations are the result of a transformation
of independent ground-truth factors might be unrealistic. In practical scenarios, it is
usually more convenient to consider a certain degree of causal relation among ground-
truth factors and design new frameworks that support causal disentanglement. Let
consider the example in Figure 4.4, where a swinging pendulum generates a shadow when
hit by a light source. Clearly, the position and size of the shadow are not independent, as
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Figure 4.4: A swinging pendulum that creates a shadow when hit by a light source.

they are affected by both the pendulum angle and light position. We expect the definition
of disentangled representations to evolve in the next years. Causal disentanglement
would be a natural extension, considering that there are already works that relax the
independence assumption and try to learn causal relations among ground-truth factors
(Yang et al., 2020). This would necessarily lead to alternative evaluation measures that
are coherent with the new definitions.

There is also a lot to investigate about the benefits of disentanglement. Most of the
experiments that justify the employment of disentangled representations to solve down-
stream tasks, simplify transfer learning, and so on, are carried out either for simple,
synthetic datasets where the generative process is known, or realistic datasets with well-
defined ground-truth factors. Results are promising, but there is room for improvements.



CHAPTER

FIVE

AN IDENTIFIABLE DOUBLE VAE FOR DISENTANGLED
REPRESENTATIONS

A large part of the literature on disentangled representation learning focuses on variational
autoencoders (vae). Recent developments demonstrate that disentanglement cannot be
obtained in a fully unsupervised setting without inductive biases on models and data.
However, Khemakhem et al. (2020) suggest that employing a particular form of factorized
prior, conditionally dependent on auxiliary variables complementing input observations,
can be one such bias, resulting in an identifiable model with guarantees on disentanglement.
Working along this line, we propose a novel vae-based generative model with theoretical
guarantees on identifiability. We obtain our conditional prior over the latents by learning
an optimal representation, which imposes an additional strength on their regularization.
We also extend our method to semi-supervised settings. Experimental results indicate
superior performance with respect to state-of-the-art approaches, according to several
established metrics proposed in the literature on disentanglement.

5.1 Overview

In disentangled representation learning, the main assumption is that high-dimensional
observations x are the result of a transformation, possibly nonlinear, applied to a low
dimensional latent variable of independent generative factors, called ground-truth factors,
capturing semantically meaningful concepts. Input observations can be thought of as
the result of a probabilistic generative process, where latent variables z are first sampled
from a prior distribution p(z), and then the observations x are sampled from p(x|z).
The goal is to learn a representation of the data that captures the generative factors. As
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defined in Section 4.3, multiple dimensions of the learned representation can theoretically
be mapped to a single factor. Nevertheless, in the simplest settings each dimension of a
disentangled representation refers to a single factor of variation.

We closely examine deep generative models to learn disentangled representations, and in
particular those based on variational autoencoders (vae). A well known theoretical result
asserts that disentanglement is essentially impossible in a fully unsupervised setting,
without inductive biases on models and data (Locatello et al., 2019b). However, inducing
a disentangled structure into the latent space where z lies is feasible by incorporating
auxiliary information u about the ground-truth factors in the model. The type and
amount of supervision define different families of disentanglement methods, often classified
as supervised, semi-supervised, and weakly-supervised. In most of these methods, the
auxiliary variables u become an integral part of the latent space. However, recent
work (Khemakhem et al., 2020) indicates that there are alternative strategies to benefit
from auxiliary information, such as using it to impose a structure on the latent space. In
their proposal, this is done by learning a prior distribution on the latent space, where
the crucial aspect is that this is conditioned on auxiliary information u that is coupled
with every input observations. Under mild assumptions, it is possible to show that such
form of conditioning implies model identifiability, allowing one to recover the original
ground-truth factors and therefore providing principled disentanglement.

In this work, we propose a novel generative model that, like Khemakhem et al. (2020),
uses a conditional prior and has theoretical identifiability guarantees. We show that
our method naturally imposes an optimality constraint, in information theoretic terms,
on the conditional prior: this improves the regularization on the function that maps
input observations to latent variables, which translates in tangible improvements of
disentanglement in practice. Since assuming to have access to auxiliary variables for
each input observations, both at training and testing time, is not practical in many
applications, we also propose a semi-supervised variant of our method.

Outline of the chapter In Section 5.2, we give background on model identifiabiliy
and disentanglement; then, in Section 5.3, we report a detailed overview of vae-based
disentanglement methods using a unified notation. Our focus is on the role of the
regularization term. We introduce a distinction between direct matching approaches,
in which ground-truth factors are directly matched to the latent space, and indirect
matching approaches, where a prior distribution over the latents is used to structure the
learned latent space. In Section 5.4, we propose a new method to learn disentangled
representations – that we call Identifiable Double vae (idvae) since its ELBO can be
seen as a combination of two variational autoencoders – that is identifiabile, in theory,
and that learns an optimal conditional prior, which is truly desirable in practice. We
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additionally propose a semi-supervised version of idvae to make our method applicable
also when auxiliary information is available for a subset of the input observations
only. In Section 5.5, we design an experimental protocol that uses four well-known
datasets, and established disentanglement metrics. Finally, by comparing our method to
several several state-of-the-art competitors, we demonstrate that idvae achieves superior
disentanglement performance across most experiments.

5.2 Preliminaries

5.2.1 Model Identifiability and Disentanglement

Let x ∈ Rn be some input observations, which are the result of a transformation of
independent latent ground-truth factors z ∈ Rd through a function f : Rd → Rn. Then,
we have that x = f(z) + ε, where ε is a Gaussian noise term: ε ∼ N (0,Σ), and
independent of z. Let consider the following generative model:

pθ(x, z) = pθ(x|z)pθ(z), (5.1)

where θ ∈ Θ is a vector of model parameters, pθ(z) =
∏d
i=1 pθ(zi) represents the

factorized prior probability distribution over the latents and pθ(x|z) is the conditional
distribution to recover x from z. The decoder function f(z) (plus the noise ε) determines
the way z is transformed into x within pθ(x|z).

Assume to observe some dataD = {x(1), · · · ,x(N)} generated by pθ∗(x, z) = pθ∗(x|z)pθ∗(z),
where θ∗ are the true, but unknown parameters. The goal is to learn θ ∈ Θ such that:

pθ(x, z) = pθ∗(x, z). (5.2)

When Equation 5.2 holds, it is then possible to recover the generative ground-truth
factors. Unfortunately, by observing x alone, we can estimate the marginal density
pθ(x) ≈ pθ∗(x), but there are no guarantees about learning the true generative model
pθ∗(x, z). This is only feasible for models satisfying the following implication:

∀(θ,θ′) : pθ(x) = pθ′(x) =⇒ θ = θ′. (5.3)

When Equation 5.3 holds, the estimated and the true marginal distribution match, and
their parameters match too. Then, the model is identifiable (Khemakhem et al., 2020)
and, as a consequence, it allows one to recover the latent ground-truth factors and obtain
a disentangled representation:

pθ(x) = pθ′(x) =⇒ pθ(x, z) = pθ′(x, z). (5.4)
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A practical goal is to aim for model identifiability up to trivial transformations, such as
permutation and scaling; as long as ground-truth factors can be identified, their order
and scale is irrelevant.

5.2.2 Connections with Independent Component Analysis (ica)

In the traditional formulation of both linear and nonlinear ica, the goal is to recover
the ground-truth factors (more commonly called sources or components in this context)
from a set of observations. The independent components (except perhaps one) must be
non-Gaussian. The function f , called mixing function, that maps sources to observations,
is usually deterministic, although noisy formulations are also possible.

Linear ica In linear ica, the mixing function f is invertible and linear, that is
each observation is a linear combination of the sources. Thus, the generative model
in Equation 5.2 is an under-specified linear system. For simplicity, the number of
observations and components is often assumed to be the same: f is then a square mixing
matrix and finding f−1 is equivalent to find its inverse. A known result of linear ica

(Comon, 1994) is that the statistical independence of the sources is a sufficient condition
for identifiability (or in alternative terminology the “sources can be separated”) up to a
permutation and scaling of the sources (Hyvärinen and Oja, 2000).

Nonlinear ica When the mixing function f is nonlinear, we talk about nonlinear ica.
Although the remaining settings and final goal are the same, nonlinear ica is much more
complicated than linear ica: the statistical independence of the sources is no longer a
sufficient condition to recover them. For the first time, Hyvärinen and Pajunen (1999)
demonstrate that i) when the space of mixing functions is not limited and ii) observations
are i.i.d., there exists an infinity of solutions, and indeterminacies are not trivial as in
the linear case. Thus, additional constraints are needed to resolve these ambiguities.

The first attempts towards identifiability used to put strong, often unrealistic, constraints
on f . More successful approaches rely on the relaxation of i.i.d. hypothesis: a relevant
amount of work focuses on time-series, where it is possible to exploit the temporal
structure of the data (Harmeling et al., 2003; Sprekeler et al., 2014; Hyvärinen and
Morioka, 2016, 2017). Practical solutions for non-temporal data are also proposed (Tan
et al., 2001; Harmeling et al., 2003; Almeida, 2004) but principled and more general
approaches are pretty recent (Hyvärinen et al., 2019; Khemakhem et al., 2020).

5.3 vae-based Disentanglement Methods

A large body of work on disentangled representations is based on generative models,
especially vae-based approaches (Kingma and Welling, 2014; Rezende et al., 2014).
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5.3.1 Unsupervised Disentanglement Learning

A standard vae learns the parameters of Equation 5.1 by introducing an inference model
qφ(z|x) to derive an ELBO as follows:

Lvae = Eqφ(z|x)[log pθ(x|z)]−KL(qφ(z|x)||p(z)), (5.5)

where, by abuse of notation, we write x in place of x(i). This avoids clutter in the
presentation of vae-based models, but, clearly, the marginal log-likelihood is composed
of a sum of such ELBO terms, one for each observation x(i) (Kingma and Welling, 2014).

The distribution pθ(x|z) has the role of a decoder, whereas qφ(z|x) can be seen as
an encoder, and it is generally assumed to be a factorized Gaussian with a diagonal
covariance matrix. Both distributions are parameterized with neural networks, with
parameters θ and variational parameters φ. The prior p(z) is generally a factorized,
isotropic unit Gaussian.

The first term of Equation 5.5 relates to the reconstruction of the input data using
latent variables sampled from the variational approximation of the true posterior. The
second one is a regularization term, which pushes the approximate posterior qφ(z|x)

to match the prior on the latent space. Maximizing Equation 5.5 across observations
implies learning the parameters such that the reconstruction performance is high, and
the regularization term is small. In other words, a vae learns a latent representation
z ∼ qφ(z|x) that efficiently transmit information about the input observations x, such
that the x can be reconstructed from z.

Since both terms that appear in the regularization of Equation 5.5 are factorized Gaussians
with diagonal covariance, one way to interpret the individual components zi of the latent
space is to view them as independent white noise Gaussian channels (Burgess et al.,
2017). Clearly, when the KL term is zero, the latent channels zi have zero capacity
(µi = 0, σi = 1) because they do not transmit useful information for the reconstruction
task: this happens when the approximate posterior qφ(z|x) matches exactly the prior
pθ(z). Figure 5.1 shows that broad posterior distributions with close means (close to
zero) decrease the KL diverge with the prior. Nevertheless, a sample x̃ from distribution
q(z2|x2) is more likely to be confused with a sample from q(z1|x1), with a consequent
increase of the cost in terms of log likelihood. In order to increase the capacity of the
latent channels and improve the reconstruction quality, the approximate posterior must
deviate from the isotropic unit Gaussian prior by decreasing the overlap between channels,
and reducing their variances.

The above understanding of the regularization term is at the basis of many variants of
the original vae model, that strive to increase the pressure on the regularization term, or
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Figure 5.1: Minimizing the KL divergence increases the posterior overlaps (Burgess
et al., 2017).

elements thereof, to achieve disentanglement, without sacrificing reconstruction properties
too much. For example, Higgins et al. (2017a) propose β-vae, which modifies Equation 5.5
by introducing a hyper-parameter β to gauge the pressure on the regularization term
throughout the learning process:

Lβ−vae = Eqφ(z|x)[log pθ(x|z)]− βKL(qφ(z|x)||p(z)). (5.6)

When β > 1, the encoder distribution qφ(z|x) is pushed towards the unit Gaussian
prior p(z). In light of the discussion above, the strong penalization of the KL term in
β-vae affects the latent channel distribution, by reducing the spread of their means, and
increasing their variances.

Many methods build on β-vae (Burgess et al., 2017; Kim and Mnih, 2018; Kumar et al.,
2018; Chen et al., 2018; Zhao et al., 2019; Esmaeili et al., 2020), rewriting the ELBO
in slightly different ways. A generalization of the KL term decomposition proposed
by Hoffman and Johnson (2016); Makhzani and Frey (2017) is the following (Chen et al.,
2018):

Ex[KL(qφ(z|x)||p(z))] = I(x; z) + KL(q(z)||
∏
j

q(zj))) +
∑
j

KL(q(zj)||p(zj)) (5.7)

where q(z) is the aggregated posterior and I(x; z) is the mutual information between
x and z. Penalizing I(x; z) can be harmful to reconstruction purposes, but enforcing
a factorized aggregated posterior encourages independence across the dimensions of
z, favouring disentanglement. The dimensional independence in the latent space is
encouraged by the second term, known as total correlation (TC). The third term is a
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further regularization, preventing the aggregate posterior to deviate too much from the
factorized prior.

Note that unsupervised vae-based approaches approximate the data marginal distribution
pθ(x), but there are no guarantees to recover the true joint probability distribution
pθ(x, z), having access to the input observations x only (Khemakhem et al., 2020).
Pushing the model to learn a representation with statistically independent dimensions is
not sufficient to obtain full disentanglement. These considerations have been recently
formalized in the impossibility result (Locatello et al., 2019b), but they were already
known in the nonlinear ica literature (Comon, 1994; Hyvärinen and Pajunen, 1999).

5.3.2 Auxiliary Variables and Disentanglement

In order to overcome the above limitations, a key idea is to incorporate an inductive
bias in the model. The choice of the variational family and prior distribution can be
one of such bias (Mathieu et al., 2019; Kumar and Poole, 2020). Alternatively, it is
possible to rely on additional information about the ground-truth factors, which we
indicate as u ∈ Rm. When auxiliary observed variables u are available, they can be
used jointly with z to reconstruct the original input x. These methods are usually
classified under the semi/weakly supervised family. More specifically Shu et al. (2020)
identify three commonly used forms of weak supervision: restricted labeling (Kingma
et al., 2014; Cheung et al., 2015; Siddharth et al., 2017; Klys et al., 2018), match/group
pairing (Bouchacourt et al., 2018; Hosoya, 2019; Locatello et al., 2020a), and rank
pairing (Chen and Batmanghelich, 2020a,b). When all ground-truth factors are known
for all the input samples, we label them as supervised disentanglement methods.

As for unsupervised counterpart, methods relying on auxiliary observed variables u differ
in how the regularization term(s) are designed. Some approaches use a “supervised”
regularization term to directly match z and the available ground-truth factors u: we
refer to this form of regularization as direct matching. An example is what here we call
fullvae method (Locatello et al., 2020b), which optimizes the following ELBO:

Lfullvae = Lβ-vae − γRs(qφ(z|x),u), (5.8)

where Rs(·) is a loss function between the latent and the ground-truth factors (in the
original implementation it is a binary cross entropy loss). Other approaches employ a
KL divergence term between the posterior and the prior over the latents: we refer to this
form of regularization as indirect matching. In other words, direct matching methods
require explicit knowledge of one or more ground-truth factors, whereas indirect matching
can also use weak information about them. Shu et al. (2020) have demonstrated that
indirect matching methods can enforce some properties in the latent space, leading to
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what they define as consistency and restrictiveness (see Section 4.3.3). To obtain full
disentanglement, a method must satisfy both properties on all the latent dimensions.

A recent work by Khemakhem et al. (2020) establishes a theoretical framework to obtain
model identifiability, which is related to disentanglement. They propose a new generative
model called ivae, that learns a disentangled representation using a factorized prior
from the exponential family, crucially conditioned on u. In practical applications, the
conditional prior is chosen to be a Gaussian location-scale family, where the mean and
variance of each latent dimension zi are expressed as a function of u. Hence, it is possible
to derive the following ELBO for the ivae model:

Livae = Eqφ(z|x,u)[log pθ(x|z)]− βKL(qφ(z|x,u)||pθ(z|u)). (5.9)

In Equation 5.9, we recognize the usual structure of a reconstruction, and a regularization
term. A remarkable advancement of ivae relates to its identifiability properties: next,
we present a new identifiable model to learn disentangled representations, by using an
optimal factorized prior, conditionally dependent on auxiliary information. We also
extend our method to deal with more realistic semi-supervised settings.

5.4 idvae - Identifiable Double vae

Let x ∈ Rn, and u ∈ Rm be two observed random variables, and z ∈ Rd a low-dimensional
latent variable, with d ≤ n. Then, consider the following generative models:

pθ(x, z|u) = pf (x|z)pT,η(z|u), (5.10)

pf (x|z) = pε(x− f(z)), (5.11)

pT,η(z|u) =
∏
i

hi(zi)gi(u) exp
[
Ti(zi)

>ηi(u)
]
, (5.12)

and
pϑ(z,u) = pϑ(u|z)p(z), (5.13)

where θ = (f ,T,η) and ϑ are model parameters. Equation 5.10 corresponds to the
process of generating x given the latents z. Equation 5.11 implies that x = f(z) + ε,
with ε ∼ N (0,Σ). We approximate the injective function f with a neural network.
Equation 5.12 is an exponential conditionally factorial distribution (Bishop, 2006), where
hi is the base measure, gi(u) is the normalizing constant, Ti = [Ti,1, · · · , Ti,k]> are the
sufficient statistics, and ηi(u) = [ηi,1, · · · , ηi,k]> are the corresponding parameters. The
dimension of each sufficient statistic k is fixed. Equation 5.13 formalizes the additional
process to obtain u given z through pϑ(u|z), where p(z) is a prior over the latents,
usually a factorized, isotropic unit Gaussian.
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Given a dataset D = {(x(1),u(1)), · · · , (x(N),u(N))} of observations generated according
to Equations 5.10 to 5.13, we are interested in finding a variational bound L for the
marginal data log-likelihood p(x,u), which we derive as follows:

log p(x,u) = KL(qφ(z|x,u)||pθ(z|x,u)) + L(θ,φ),

where, by abuse of notation, we write x and u in place of x(i) and u(i), which we do
hereafter as well.

Since the KL term is non-negative, we have the following variational lower bound:
log p(x,u) ≥ L(θ,φ). Now, we can write the ELBO, which resembles that of Equation 5.9,
but includes an additional term:

L(θ,φ) = Eqφ(z|x,u)[log pf (x|z)]− βKL(qφ(z|x,u)||pT,η(z|u)) + log p(u), (5.14)

where we introduce the parameter β to gauge the pressure on the KL term. Next,
focusing on the generative model in Equation 5.13, we derive the following variational
lower bound for log p(u) in Equation 5.14, log p(u) ≥ Lprior(ϑ,ψ):

Lprior(ϑ,ψ) = Eqψ(z|u)[log pϑ(u|z)]−KL(qψ(z|u)||p(z)), (5.15)

By combining Equation 5.14 and Equation 5.15, we obtain:

Lidvae(θ,φ,ϑ,ψ) = Eqφ(z|x,u)[log pf (x|z)]− βKL(qφ(z|x,u)||pT,η(z|u))︸ ︷︷ ︸
1

+ Eqψ(z|u)[log pϑ(u|z)]−KL(qψ(z|u)||p(z))︸ ︷︷ ︸
2

. (5.16)

We refer the reader to Appendix B.1 for the full derivation of Equations 5.14 to 5.16. We
call our method idvae, Identifiable Double vae, because it can be seen as the combination
of two variational autoencoders 1 and 2 , with independent parameters. In principle,
when we optimize the ELBO by summing across all datapoints, e.g. using a doubly
stochastic approach (Titsias and Lázaro-Gredilla, 2014) and automatic differentiation,
we could treat the two parts separately. However, nothing would prevent pT,η(z|u) and
qψ(z|u) to converge to different distributions. Thus, we further make the modeling
assumption of constraining the conditional prior in 1 to be exactly the variational
approximation learned in 2 , which belongs to the exponential family: in our current
implementation, they are both Gaussian distributions, hence we can simply do moment-
matching. idvae is trained by alternating optimization of Equation 5.16, where we
update part 2 , then use the conditional prior to update the part 1 , and loop.
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5.4.1 Identifiability Properties

Next, we set up notations and definitions for a general theory of identifiability of generative
models (Khemakhem et al., 2020), and show that idvae, under mild conditions, is
identifiable.

Notation. Concerning the exponential conditionally factorial distribution in Equa-
tion 5.12, we denote by T(z) the vector of concatenated sufficient statistics defined as
follows: T(z) = [T1(z1)>, · · · ,Td(zd)

>]> ∈ Rdk. We denote by η(u) the vector of its
parameters defined as follows: η(u) = [η1(u)>, · · · ,ηd(u)>]> ∈ Rdk.

Definition 5.4.1. Let ∼ be an equivalence relation on the parameter space Θ. We say
that Equation 5.1 is ∼-identifiable if pθ(x) = pθ∗(x) =⇒ θ ∼ θ∗.

Definition 5.4.2. Let ∼ be the equivalence relation on Θ defined as follows: (f ,T,η) ∼
(f ′,T′,η′)⇔ ∃A, c : T(f−1(x)) = AT′(f ′−1(x))+c, ∀x ∈ X , where A is a dk×dk matrix
and c is a vector of dimension dk. If A is invertible, we denote this relation by ∼A.

Definition 5.4.2 establishes a specific equivalence relation that allows to recover the
sufficient statistics of our model up to a linear matrix multiplication.

Theorem 2. (Khemakhem et al., 2020) Assume we observe data sampled from pθ(x, z|u) =

pf (x|z)pT,η(z|u), where pf (x|z) as in Equation 5.11 and pT,η(z|u) as in Equation 5.12,
with parameters θ = (f ,T,η). Assume the following holds:

i The set {x ∈ X : φε(x) = 0} has measure zero, where φε is the characteristic function
of the density pε defined in pf (x|z) = pε(x− f(z)).

ii The function f is injective.

iii The sufficient statistics Ti,j in Equation 5.12 are differentiable almost everywhere,
and linearly independent on any subset of X of measure greater than zero.

iv Being k the dimensionality of the sufficient statistics Ti in Equation 5.12 and d the
dimensionality of z, there exist dk+ 1 distinct points u0, ...,udk such that the dk×dk
matrix E defined as follows is invertible:

E = (η(u1)− η(u0); · · · ;η(udk)− η(u0)) (5.17)

Then the parameters θ = (f ,T,η) are ∼A-identifiable.

Theorem 2 (proof in Appendix B.3) guarantees a general form of identifiability for
idvae. Under more restrictive conditions on f and T, following the same reasoning of
Khemakhem et al. (2020), it is also possible to reduce A to a permutation matrix.

Note that, in practice, all the vae-based methods we discuss in this work are approximate.
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When using a simple, synthetic dataset, where the generative process is controlled, full
disentanglement can be verified experimentally (Khemakhem et al., 2020). However,
in a realistic setting, the modeling choice for both qφ(z|x,u) and qψ(z|u) can have an
impact on disentanglement. Even when recognition models have enough capacity to fit
the data (in our experiments they are Gaussian with diagonal covariance), theoretical
guarantees might still fall short, despite the availability of auxiliary variables for all
input observations. This could be due to, for example, suboptimal solutions found by
the optimization algorithm or to the finite data regime.

5.4.2 Learning an Optimal Conditional Prior

In this work, we advocate for a particular form of a conditional prior, that is the result
of learning an optimal representation z, of auxiliary, observed variables u.

In general, an optimal representation, for a generic task y (in our case, we aim at
reconstructing u) is defined in terms of sufficiency and minimality: z is sufficient for
the task y if I(u; y) = I(z; y), where I(·; ·) is the mutual information; z is minimal if it
compresses the input such that it discards all variability that is not relevant for the task
(Achille and Soatto, 2016). As shown in (Tishby et al., 1999), the so called Information
Bottleneck (IB) can be used to learn an optimal representation z for the task y, which
amounts to optimizing the following Lagrangian:

LIB = H(y|u) + βI(u; z), (5.18)

where we denote the entropy byH(·), with the constant β controlling the trade-off between
sufficiency and minimality. It is easy to show that Equation 5.18 and Equation 5.15 are
equivalent (with β = 1) when the task is reconstruction (Achille and Soatto, 2016).

In idvae, we learn the conditional prior qψ(z|u) in part 2 of Equation 5.16, and use it
in part 1 by setting pT,η(z|u) = qψ(z|u). In light of above discussion, this is equivalent
to imposing an additional constraint on the conditional prior such that it can learn an
optimal representation z from u; the KL term of part 1 pushes qφ(z|x,u) toward the
optimal conditional prior, which results in superior regularization quality.

Note that Theorem 2 requires auxiliary variables u to be expressive enough to recover all
the independent factors through the parameters η(u). In information theoretic terms, u

must be sufficient to recover the ground-truth factors, but there is no explicit need for the
extra optimality constraint on pT,η(z|u). While Theorem 2 remains valid for an optimal
conditional prior, we experimentally demonstrate that, when variational approximations,
sub-optimal solutions, or finite data size spoil theoretical results, learning an optimal
conditional prior is truly desirable.
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5.4.3 A Semi-supervised Variant of idvae

So far, we have worked under the assumption that the auxiliary information u is
consistently available for every x. In real scenarios, it is more likely to observe u for
a subset of the input observations. Thus, we propose a variation of idvae for a semi-
supervised setting. We consider a new objective that consists of two terms (Kingma
et al., 2014):

Lss-idvae =
∑

(x,u)∼pl

Ll(x,u) +
∑
x∼pu

Lu(x) + αE(x,u)∼pl [log qζ(u|x)], (5.19)

Ll(x,u) = Lidvae(x,u), (5.20)

Lu(x) = Eqζ(u|x)[Ll(x,u)] +H(qζ(u|x)), (5.21)

where Ll and Lu are the labeled and unlabeled terms respectively; qζ(u|x) in Equation 5.21
is used to derive u from x when u is not provided as input. In Equation 5.19 we include
a third term – αE(x,u)∼pl [log qζ(u|x)], where α controls the relative weight between
generative and purely discriminative learning – such that the distribution qζ(u|x) can
learn also from labeled data. Clearly, this method also applies to the work from
Khemakhem et al. (2020). In our experiments, we set α = 0.1N .

5.5 Experiments

5.5.1 Experimental Settings

Methods. We compare idvae with three disentanglement methods: β-vae, fullvae,
ivae. β-vae (Higgins et al., 2017a) is a baseline for indirect matching methods where no
ground-truth factor is known at training time and the only way to enforce a disentangled
representation is by increasing the strength of the regularization term through the hyper-
parameter β. fullvae (Locatello et al., 2020b) is the representative of direct matching
methods: it can be considered as a standard β-vae with an additional regularization
term, weighted by an hyper-parameter γ, to match the latent space to the target
ground-truth factors. As done in the original implementation, we use a binary cross
entropy loss for fullvae, where the targets are normalized in [0, 1]; we also set β = 1,
to measure the impact of the supervised loss term only. ivae (Khemakhem et al.,
2020) is another indirect matching method where the regularization term, weighted
again by β, involves a conditional prior. We additionally report the results for the
semi-supervised versions of fullvae, ivae, and idvae, which we denote as ss-fullvae,
ss-ivae1, ss-idvae, respectively. Variational approximations, and the conditional priors,

1The original work (Khemakhem et al., 2020) is not semi-supervised. We extended it for our
comparative analysis.
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Dataset Size Ground-truth factors (distinct values)

dsprites 737’280 shape(3), scale(6), orientation(40), x(32), y(32)

cars3d 17’568 elevation(4), azimuth(24), object type (183)

shapes3d 480’000 floor color(10), wall color(10), object color(8), object size(8), object type(4),
azimuth(15)

smallnorb 24’300 category(5), elevation(9), azimuth(18), light(6)

Table 5.1: Main characteristics of the datasets.

are Gaussian distributions with diagonal covariance. All methods have been implemented
in PyTorch (Paszke et al., 2019).

Datasets. We consider four common datasets in the disentanglement literature, where
observations are images built as a deterministic function of known generative factors:
dsprites (Higgins et al., 2017a), shapes3d (Kim and Mnih, 2018), cars3d (Reed et al.,
2015) and smallnorb (LeCun et al., 2004). We have full control on the generative
process and explicit access to the ground-truth factors. All ground-truth factors are
normalized in the range [0, 1]; for discrete factors, we implicitly assume an ordering before
applying normalization. All images are reshaped to a 64×64 size. A short description of
the datasets is reported in Table 5.1. Implementations of the generative process for each
dataset are based on the code provided by Locatello et al. (2019b).

Disentanglement metrics. In the literature, several metrics have been proposed to
measure disentanglement, with known advantages and disadvantages, and ability to
capture different aspects of disentanglement. We report the results for some of the most
popular metrics: beta score (Higgins et al., 2017a), MIG (Chen et al., 2018), SAP (Kumar
et al., 2018), modularity and explicitness (Ridgeway and Mozer, 2018), all with values
between 0 and 1. The implementation of the metrics is based on Locatello et al. (2019b).
We refer the reader to Appendix B.5 for further details.

Experimental protocol. In order to fairly evaluate the impact of the regularization
terms, we rely on a solid experimental protocol where all models are trained with the
same convolutional architecture, optimizer, hyper-parameters of the optimizer and batch
size, that are empirically known to be good for the datasets we tested. The latent
dimension z is fixed to the true number of ground-truth factors. The conditional prior in
ivae is a MLP network; in idvae we use a simple MLP vae. The same architecture is
taken for the conditional prior of the semi-supervised counterparts. Moreover, qζ(u|x) is
implemented by a convolutional neural network. Refer to Appendix B.4 for more details.
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Figure 5.2: Latent traversal of idvae model trained on dsprites.

We tried six different values of regularization strength associated to the target regu-
larization term of each method – β for β-vae, ivae and idvae, and γ for fullvae:
[1, 2, 4, 6, 8, 16]. These are recurring values in the disentanglement literature. For each
model configuration and dataset, we run the training procedure with 10 random seeds,
given that all methods are susceptible to initialization values. After 300’000 training
iterations, every model is evaluated according to the disentanglement metrics described
above. For fullvae, ivae and idvae, all ground-truth factors are provided as input,
although ivae and idvae work with a subset of them (or with any other additionally
observed variable) as well. We apply the same protocol for the semi-supervised experi-
ments too, where we provide, at training time, all the ground-truth factors for a subset
of the input observations only, 1% and 10% respectively. At testing time, u is instead
estimated from qζ(u|x).

5.5.2 Experimental Results

Qualitative Evaluation. Latent traversal is a simple approach to visualize disentan-
gled representations, by plotting the effects that each latent dimension of a randomly
selected sample has on the reconstructed output. In Figure 5.2, we evaluate a con-
figuration (single seed) of our idvae model trained on dsprites (other datasets in
Appendix B.6). Every row of the figure represents a latent dimension we vary in the
range [−3, 3], while keeping the other dimensions fixed. We can see that z1 has learned
orientation reasonably well; z2 is responsible of the object scale; z4 and z5 reflect changes
on the vertical and horizontal axis, respectively. z3 tried to learn, without success,
shape changes. This means that idvae has the capability of learning an interpretable
disentangled representation, where every dimension of the latent variable z not only is
independent from the others, but also corresponds to a true, semantically meaningful
ground-truth factor. Next, we rely on disentanglement metrics to make a quantitative
comparison among the tested methods.
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Figure 5.3: Beta score and explicitness (the higher the better). 1=β-vae, 2=ss-idvae
(1%), 3=ss-idvae (10%), 4=idvae, 5=ss-ivae (1%), 6=ss-ivae (10%), 7=ivae, 8=ss-
fullvae (1%), 9=ss-fullvae (10%), 10=fullvae. Percentage of labeled samples in
parenthesis.

Disentanglement Evaluation. In Figure 5.3, we report, for each method and for each
dataset, the ranges of the beta score and explicitness values with a box-plot. The variance
of the box-plots is due to the random seeds and regularization strengths, which are the
only parameters we vary. Furthermore, Figure 5.3 includes the results for ss-idvae,
ss-ivae and ss-fullvae (trained with 1% and 10% labeled samples), with different
shades of green, blue, and red, respectively. The remaining evaluation metrics can be
found in Appendix B.6, but they are essentially all correlated, as also noted in Locatello
et al. (2019b).

Overall, we observe, as expected, that β-vae is often the worst method. Indeed, it has
no access to any additional information at training time except the data itself. Despite
this, β-vae disentanglement performance is surprisingly not that far from fullvae that
directly matches the latent space with the ground-truth factors. In some cases, β-vae

obtains very high beta scores (see outliers), such as for dsprites and cars3d datasets,
confirming the sensitivity to random initialization of unsupervised methods (Locatello
et al., 2019b). Note also that fullvae exhibits inconsistent performance across the four
datasets.

idvae turns out to be the best method across several disentanglement metrics, except
for smallnorb, where fullvae’s beta score is slightly better. For this specific dataset
and metric, there are no considerable differences among methods, since most of the
box-plots overlap. We note that idvae outperforms ivae: considering that the two
methods differ for the way the conditional prior is learned, our experiments show that an
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Figure 5.4: Beta score and explicitness median (the higher the better) as a function of
the regularization strength.

optimal conditional prior, as we propose in this work, offers substantial benefits in terms
of disentanglement and it is the only reason for idvae superiority. Finally, although both
ivae and idvae have theoretical guarantees on disentanglement and use the full set of
ground-truth factors as input, they do not always obtain the maximum evaluation score,
in practice. This is in line with the considerations in Section 5.4.1.

The analysis above remains valid if we consider the semi-supervised versions of the
tested methods, too. We observe that, with the exception of smallnorb, ss-idvae’s
disentanglement performance coherently increases when it observes more labeled instances.
The same trend is generally followed by ss-ivae. ss-fullvae, instead, seems to be less
susceptible to the number of labeled instances. In general, even a small percentage of
labeled instances (1%) is enough for ss-idvae to outperform β-vae and to keep up with
fullvae that is, however, a fully supervised method. This suggests that ss-idvae is a
valid choice for applications where collecting additional information about the training
data is difficult or expensive.

Impact of the regularization strength. The disentanglement performance of each
method might change drastically as a function of the regularization strength: some
approaches might work significantly better in some ranges and very badly in others. In
Figure 5.4, we plot, for each method and for each dataset, the median of the beta score
and explicitness evaluation values as a function of the regularization strength. This is
also useful to see if there are methods that consistently dominate others. In this case, we
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do not report the results for ss-idvae, ss-ivae, and ss-fullvae to make the plots more
easily readable. Additional disentanglement score results, including the semi-supervised
versions, can be found in Appendix B.6.

Across all the datasets, idvae achieves the best median scores for a wide range of
regularization strengths. In dsprites, cars3d, and shapes3d, idvae dominates all the
other methods (idvae is largely dominant also considering the remaining evaluations
metrics). The performance of ivae and fullvae can match that of idvae in some
datasets, but the behavior is not consistent: if we focus on beta score, ivae is the
second best method in cars3d and shapes3d, whereas in dsprites and smallnorb,
performance drops when we increase the regularization strength – even β-vae performs
better; fullvae behaves well for dsprites and smallnorb, but it is on pair only with
β-vae in cars3d and shapes3d.

By observing the evolution of the disentanglement scores, it appears that there is no clear
strategy to choose the regularization strength. For idvae, in datasets such as dsprites

and cars3d, the regularization strength does not significantly affect the beta score; in
shapes3d and smallnorb, we note instead a decreasing monotonic trend. The situation
is similar if we look at the explicitness, but it differs if we consider other disentanglement
metrics. It is plausible to deduce that the regularization strength is both model and data
specific, and it also depends on the disentanglement metric.

5.5.3 Limitations

In our experimental campaign we use the same convolutional architecture for all the
methods we compare. We do not vary the optimization hyper-parameters and the
dimension of the latent variables. Hence, we cannot ensure that every method runs in its
best conditions. Nevertheless, our experimental protocol is in line with the standards in
the literature of disentangled representation learning, makes our analysis independent of
method-specific optimizations, and has the benefit of reducing training times.

We use the whole set of ground-truth factors as auxiliary variables, in the semi-supervised
settings too, whereas it is possible to study the impact of only a subset of the factors to
be available. Moreover, idvae and ivae can use any kind of auxiliary variables, as long
as they are informative about the ground-truth factors: they are not restricted to using,
e.g., labels corresponding to input data, as we (and several studies) do.

Finally, we do not study the implications and benefits of disentanglement for solving
complex downstream tasks, which is an interesting task we leave for future work. It
should be noted, however, that most of the disentanglement metrics can be seen as
a proxy for the performance of a simple downstream task, i.e., matching each latent
dimension with the corresponding ground-truth factor.
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5.6 Conclusion

In this work, we went a step further in the design of identifiable generative models
to learn disentangled representations. idvae uses a prior that encodes ground-truth
factor information captured by auxiliary observed variables. The key idea was to learn
an optimal representation of the latent space, defined by an inference network on the
posterior of the latent variables, given the auxiliary variables. Such posterior is then
used as a prior on the latent variables of a second generative model, whose inference
network learns a mapping between input observations and latents. We also proposed
a semi-supervised version of idvae that can be applied when auxiliary variables are
available for a subset of the input observations only. Experimental results offer evidence
that idvae and ss-idvae often outperforms existing alternatives to learn disentangled
representations, according to several established metrics.



CHAPTER

SIX

CONCLUSIONS

Interpretable machine learning unifies under one umbrella many research fields that,
despite being profoundly different, share the same goal: making machine learning
understandable and accessible to humans. This is a difficult challenge that we have to
win in order to proceed our road toward explainable ai. We conclude this thesis with a
summary of the main themes and contributions presented in the previous chapters, with
a special focus on future work directions.

6.1 Themes and Contributions

We summarize the main themes and contributions of this work as follows:

Overview of interpretable machine learning. The main challenge when approach-
ing old and continuously evolving fields like interpretable machine learning is to find the
way through the huge amount of work, often coming from different research communities,
and using inconsistent notations to refer to the same concepts. In the first chapter
of the thesis, we gave a unified view of the main approaches to interpretable machine
learning, with a shared notation and a common taxonomy. It was a huge effort, con-
sidering also that relevant old work did not make explicit reference to “interpretability”
or “explainability” in the title. In Chapter 1, aside from the standard categorization
between transparent models and post-hoc interpretability techniques, we studied inter-
pretable machine learning from two points of view: interpretability of the models and
interpretability of the data representations.
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A unified and critical view of rule learning approaches. Regarding the inter-
pretability of machine learning models, predictive rule learning belongs to the family of
transparent models and aims at discovering interesting and highly predictive patterns
in the data in the form of if-then-else rules. The rule learning process consists of
distinct steps, each with its own challenges: feature construction, rule construction,
hypothesis construction, and eventually post-pruning. Different implementations of these
building blocks result in different methods, that we analyzed in Chapter 2 to highlight
their criticalities, mainly related to computational complexity, small disjuncts, predictive
performance-interpretability tradeoff.

A novel method to learn interpretable rule sets. In Chapter 3, we proposed
an ensemble of bottom-up learners – libre – that is: i) versatile and effective with
both balanced and imbalanced data, ii) interpretable, iii) scalable to high-dimensional
datasets. The key intuition was to exploit the known advantages of bottom-up learners in
imbalanced settings, and improve their generalization capabilities through an interpretable
ensembling technique that, in our case, is simply a union. Our experimental campaign
shows the superiority of libre, in terms of predictive performance, interpretability and
scalability, when compared to state-of-the-art competitors and black-box models.

A unified and critical view of disentanglement methods. Regarding the inter-
pretability of data representations, disentangled representation learning is a branch of
representation learning that has the goal of learning representations that are aligned with
a series of statistically independent and semantically meaningful ground-truth factors
that are assumed to generate the input observations. In Chapter 4, we presented the
most recent theoretical frameworks to define and evaluate disentangled representations,
reporting applications were disentangled representations ensure practical benefits.

A novel method to learn disentangled representations. In Chapter 5, we fol-
lowed the formalization of disentanglement presented in the previous chapter to review
the state-of-the-art of vae-based disentanglement methods, highlighting the role of the
regularization term and inductive biases on disentanglement. We studied the connection
between model identifiability and disentanglement, and proposed idvae, a method that
exploits a factorized prior, conditionally dependent on auxiliary variables complementing
input observations, to improve the regularization quality on the learned representation,
and obtain theoretical guarantees on model identifiability, hence disentanglement. idvae,
and its semi-supervised version, outperforms related state-of-the-art-methods according
to several well-established disentanglement metrics.
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6.2 Future Work

It is not an exaggeration to say that, at this moment, interpretable machine learning has
an edge over any other machine learning field. While I am writing this thesis, there is an
uncountable number of remarkable works that would deserve to be discussed. All this
to say that interpretable machine learning is a “work-in-progress”. In this section, we
list interesting directions for future research we believe to be relevant to the theoretical
community and practical aspects of interpretable machine learning, with a focus on
rule learning and disentangled representation learning. We remind the reader that
an extensive discussion about challenges and future work can be found at the end of
Chapters 1, 2 and 4.

Interpretable machine learning. The gap between human explanations and ai

explanations is significant which is why we should work to reduce it. We suppose that
transparent models are the future of interpretable machine learning, and might help
to avoid all the issues derived from post-hoc interpretability techniques, as discussed
in Section 1.5. We are aware that defining interpretability for specific domains and
methods is difficult: for instance, the number and size of rules are standard proxies for
interpretability in rule-based methods, but it is not equally clear how to encode and
measure interpretability in computer vision methods (although there have been already
successful results (Chen et al., 2019)). In this context, also disentangled representation
learning is a way to natively incorporate interpretability constraints in the development
of generative models.

Rule learning. Rule learning is a mature field with known advantages and historical
problems investigated throughout this work that we tried to solve by proposing libre.
The optimization problem of discovering rules, eventually including interpretability
constraints, is known to be computationally hard. Solving it, or providing approximate
solutions, by leveraging new theoretical techniques and advances in hardware is still an
open problem. Dealing with class imbalance problems is another fundamental challenge
of machine learning that always calls for new approaches. Incremental rule learning
(Schlimmer and Granger, 1986) and Bayesian rule learning (Wang et al., 2017; Yang
et al., 2017) are two other interesting future directions that aim at extending rule learning
to data streams and probabilistic settings.

Disentangled representation learning. Learning disentangled representations is
hard even in the easiest formulation with independent ground-truth factors. Despite
non-negligible advancements, recent methods usually do not work well for real datasets.
There have been attempts to learn disentangled representations for multiple objects
(Greff et al., 2019), hierarchical representations (Singh et al., 2019), and representations
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with causal relation among ground-truth factors (Yang et al., 2020). Nevertheless, before
considering more complicated formulations, we believe it is crucial to i) obtain consistent
results for toy settings first, ii) investigate alternative methods that lead to general
theoretical guarantees on disentanglement, not necessarily valid in the limit of infinite
data only, iii) design new disentanglement evaluation measures, well aligned with the
corresponding theoretical definition of disentanglement and that do not require (a full)
apriori knowledge on the generative process or ground-truth factors.
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APPENDIX

A

ADDITIONAL DETAILS AND RESULTS ABOUT LIBRE

A.1 The Base Method Step-by-step

In this section, we detail the main steps of the base algorithm, by using a concrete
example. Consider the scenario of forecasting the failure condition of an it system from
two values representing the cpu and main memory (mem) utilization, as depicted in the
first two columns of Table A.1. We assume that cpu and mem are continuous features
with values in the domain [0, 100]. The state of the system is described by a binary Label,
where 1 represents a system failure. The example reports eight records, two of which are
failures.

id cpu mem r1 r2 String Label

χ1 95 10 3 1 110 01 1

χ2 80 10 1 1 011 01 0

χ3 81 85 2 2 101 10 1

χ4 10 85 1 2 011 10 0

χ5 10 10 1 1 011 01 0

χ6 82 10 2 1 101 01 0

χ7 85 10 2 1 101 01 0

χ8 81 10 2 1 101 01 0

Table A.1: Original values from cpu and mem, their mappings to discrete ranges
(r1, r2), binary encoding, and binary label.

Discretization and binarization. The first operation to do is discretization. Assume
the discretization algorithm identifies three intervals for cpu and two intervals for mem,
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as follows. cpu: [0, 81), [81, 95), [95,max]. mem: [0, 85), [85,max]. We can now map the
original values to integer values over the ranges (1, 2, 3) and (1, 2), as shown in columns
r1, r2, respectively. The resulting discretized records are then mapped to (inverse one-hot
encoded) binary strings of five bits, as recorded in the String column. We also define
a partial order relation between binary records, such that x ≤ x′ ⇐⇒ x

∧
x′ = x′.

Moreover, the application of inverse one-hot encoding ensures that the relation between
input features and labels is monotone, according to Definition 3.3.2 in Chapter 3. We
can give you an intuition through a simple example: consider two binary strings 011 and
110; we see that 011 � 110 and 110 � 011, so the relation always holds, independently
from the label.

Learning the boundary. Consider the first positive sample χ1 with string 110 01.
An exhaustive search strategy would explore all possible flipping alternatives for the
most general conflict-free binary strings. If, for example, we flip-off the first bit we obtain
010 01 <= χ2: hence, we have a conflict. If, for example, we keep the first bit at 1 and
flip-off the second bit, we obtain 100 01, which is in conflict with χ6 − χ8. Finally, if we
flip-off the last bit, we obtain 110 00, which has no conflict: this is a candidate boundary
point. If we repeat the same procedure for χ3, after flipping-off the third bit, we get
another boundary point 100 10.

χ1: 110 01+ χ3: 101 10+ χ6 − χ8: 101 01− ...

010 01− 100 01− 110 00+ 001 10− 100 10+ 101 00−

000 01− 100 00−

Figure A.1: Partially ordered set created from the records in Table A.1.

Figure A.1 shows the partially ordered set corresponding to Table A.1. At the beginning,
the nodes at the top are the ones for which we know the label represented with a
superscript symbol + and − for positive and negative, respectively. They can be seen
as maximally-specific rules. If we take as target the positive class, we move inside the
Boolean lattice by flipping-off positive bits, starting from the positive binary samples,
and go down to find binary elements – located on the boundary – that divide positive and
negative samples. While we navigate the Boolean lattice, nodes are labelled according to
the cover test against the negative samples. As soon as a conflict is found, we can avoid
going down from that node, but there is still the possibility to explore that path from
another binary sample. This recursive procedure corresponds to up-and-down movements
in the lattice. However, if at each iteration we are able to select the best candidate bit
and to avoid conflicts, we only allow steps down in the Boolean lattice. We use the
heuristic described in Section 3.4.2 to choose the best candidate bit to flip-off.
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A practical example. Consider again the example in Table A.1. Since at the be-
ginning S = D+, we will only report |D+

0
i |. For the first positive record χ1 = 110 01,

we have: D−0
1 = {01101, 01110}, D−0

2 = {10101}, D−0
5 = {01110}. We have therefore:

dl(χ1,D−0
1) = 1, dl(χ1,D−0

2) = 1, dl(χ1,D−0
5) = 2. We already know that flipping-off

either the first or the second bit to 0 would lead to a conflict: thus, we directly flip-off
the fifth bit to obtain the boundary point 110 00, independently from the value of |D+

0
5|.

Element 110 00 is added in the set of boundary points A.

For the second positive record χ3 = 101 10, we have: D−0
1 = {01101, 01110}, D−0

3 = ∅,
D−0

5 = {01110}. We have therefore: dl(χ1,D−0
1) = 1, dl(χ1,D−0

3) = undefined, and
dl(χ1,D−0

4) = 1. Although i = 3 induces a distance from an empty set, since we know
that flipping-off other indexes generates conflicts, we can immediately label 100 10 as
boundary point and add it to A.

From boundary set to rules. At the end of the previous phase, we obtain the
boundary set A = {11000, 10010}. In this case, each boundary point covers only one
distinct positive sample, therefore the union of the two points covers all the set of positive
samples and both points are kept after the regularization. Suppose to follow a positive
set cover strategy, without early stopping condition. Then, the boundary set can be
immediately mapped to the rule set shown in Figure A.2.

if cpu ∈ [95,max]

or cpu ∈ [81,max] and mem ∈ [85,max]

then Label = 1

else Label = 0

Figure A.2: Rule set extracted from the boundary A.

Differences with Muselli and Quarati (2005). Our base method is similar to
Muselli and Quarati (2005) that we took as a reference since it presents interesting
properties: it is a bottom-up method, easily parallelizable, incorporating interpretability
goals in the induction process. To better analyze the differences with our proposal, we
refer to a technical report (Muselli and Quarati, 2004) where the authors provide more
details about their shadow clustering algorithm. Looking at the pseudo-code (Figure
4 of Muselli and Quarati (2004)) we can firstly notice that our heuristics H1 and H2

are 3-length tuples (instead of 4-length) where we avoid to compute what Muselli and
Quarati (2004) indicate as |B1

i | (we verified experimentally that it has no impact in
practice). The main improvement, however, is related to the computation of the distance
dl(t(I∪J),D−0

i ) which complexity is O(nd). In Muselli and Quarati (2004), such distance
is computed within a while loop (of length d in the worst case), for every candidate
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bit i ∈ I to flip. We instead compute the distance only once outside the while loop,
and update it iteratively for ibest only (the complexity of the update is O(n) instead of
O(nd)). Indeed, we flip one bit at a time and there is no need to re-compute the distance
from scratch for the other bits. Thus, we lower the total complexity from O(n2d3) to
O(n2d2).

A.2 Parallel and Distributed Implementation

libre is amenable to parallel and distributed implementations. Indeed, it processes one
positive sample at a time. An exhaustive version of the FindBoundaryPoint procedure
is embarrassingly parallel and it is easily parallelizable on multi-core architectures: it is
sufficient to spawn a UNIX process per positive sample, and exploit all available cores.

In contrast, the approximate procedure requires a slightly more involved approach.
Indeed, the approximate FindBoundaryPoint procedure processes positive records
that have not yet been covered by any boundary point. Hence, a global view on the set
S is required. We experimented with two alternatives. The first is to place S in a shared,
in-RAM datastore, as UNIX processes – unlike threads – do not have shared memory
access. The second alternative is to simply let each individual process to hold their own
version of S, thus sacrificing a global view. Our experiments indicate that the loss in
performance due to a local view only is negligible, and largely out-weighted by the gain
in performance, since the execution time decreases linearly with the number of spawned
UNIX processes. Moreover, both D+ and D− remain consistent throughout the whole
induction phase.

libre can be easily distributed such that it can run on a cluster of machines, using
for example a distributed computing framework such as Apache Spark (Zaharia et al.,
2016). This approach, called data parallelism, splits input data across machines, and
let each machine execute, independently, a weak learner. The data splitting operation
shuffles random subsets of the input features to each worker machine. Once each worker
finishes to generate the local rule sets, they are merged in the “driver” machine, which
eventually applies the filtering and executes the rule selection procedure to produce the
final boundary.

A.3 Scalability Evaluation

Here, we extensively test the scalability of libre. We use up to 50 features and investigate
also the impact of class imbalance on the execution time.
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Figure A.3: Run time on synthetic data.

Synthetic Dataset. For the scalability evaluation, we synthetically generate a dataset
with 1′000′000 records and 50 continuous features with randomly generated values in
the domain [0, 100]. Then, we randomly generate four sets of binary labels with a class
imbalance ratio of 0.001, 0.01, 0.1, and 0.5 respectively.

Settings. We vary the number of records (10’000, 100’000, 500’000, 1’000’000), features
(10, 20, 50), and class imbalance ratio (0.001, 0.01, 0.1, 0.5): for each dataset configuration,
libre runs up to 100 times with different randomly generated subsets of features of
size 10, 20, and 50; the average execution time in seconds is reported as a sum of two
contributions: rule generation and simplification times. Times refer to one weak learner
only: if N weak learners run in parallel, the reported time is still a good estimate. Before
executing libre, we discretize the dataset with a discretization threshold equal to 6,
that we empirically find out to be a good value. The simplification procedure runs on
the top 500 rules, if more are generated.

Results. As shown in Figure A.3, the execution time is dominated by the rule generation
term. Given a class imbalance ratio, execution time increases as long as we increase the
number of records and features. The generation time also depends on which features are
fed into the model for two main reasons: i) ChiMerge encodes bad predictive features with
bigger domains, increasing the search space; ii) the generation procedure will struggle
more to generate rules when it runs on features that are not that useful to predict the
target class. This explains the high variance in the results. Intuitively, as long as the
class imbalance ratio gets close to 0.5, the number of processed records increases, together
with the execution time. However, we experimentally verified that this effect is somehow
compensated by the higher number of negative records. We run the rule generation
procedure up to 50 features just for experimental purposes: for practical applications, if
interpretability is a need, it is more convenient to limit the number of features and train
an ensemble with more learners in order to generate compact rules in a reasonable time.
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A.4 Interpretable rule sets
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Figure A.4: F1-score vs number of rules.
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A.5 More Examples of Rule Sets learned by libre

In this section, we report additional examples for the medical UCI datasets described in
Table 3.11, for which it might be interesting to understand the relation between input
features and the predicted diseases.

if number_of_positive_axillary_nodes ∈ [2,max]

then died within 5 years

else survived 5 years or longer

Figure A.5: Example of rule set learned by libre for haberman.

if (slope_of_the_peak_exercise ∈ {flat, downsloping} and number_of_major_vessels ∈ [1, 3])

or (chest_pain_type ∈ {asymptomatic} and thal ∈ {reversable_defect})

or (sex ∈ {male} and fasting_blood_sugar_>120mg/dl ∈ {False} and

number_of_major_vessels ∈ [1, 3])

then class = presence

else class = absence

Figure A.6: Example of rule set learned by libre for heart.

if (TB ∈ [min, 2) and sgbp ∈ [min, 42))

or (TB ∈ [min, 2) and alkphos ∈ [min, 184))

or (age ∈ [35, 39), [56, 57) and sgbp ∈ [42, 148))

then class = liver patient

else class = no liver partient

Figure A.7: Example of rule set learned by libre for ilpd.

if mean_corpuscular_volume ∈ [90, 96)

or gamma_glutamyl_transpeptidase ∈ [20,max]

then liver_disorder = True

else liver_disorder = False

Figure A.8: Example of rule set learned by libre for liver.

1Different rule sets may be obtained depending on how folds are randomly built during cross validation.



Chapter A. Additional details and results about libre 128

if (glucose ∈ [158,max] and blood_pressure ∈ [56,max])

or (glucose ∈ [110, 158] and BMI ∈ [30.7,max])

or (pregnancies ∈ [4,max] and diabetes_predigree_func ∈ [0.529,max])

then diabetes = True

else diabetes = False

Figure A.9: Example of rule set learned by libre for pima.

if (months_since_last_donation ∈ [0, 8) and total_blood_donated ∈ [1250,max])

then transfusion = Yes

else transfusion = No

Figure A.10: Example of rule set learned by libre for transfusion.

if uniformity_of_cell_shape ∈ [5,max]

or (clump_thickness ∈ [2,max] and bare_nuclei ∈ [8,max])

or (clump_thickness ∈ [7,max] and marginal_adhesion ∈ [1, 2), [4,max])

then malignant = True

else malignant = False

Figure A.11: Example of rule set learned by libre for wisconsin.
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B

ADDITIONAL DETAILS AND RESULTS ABOUT IDVAE

B.1 ELBO derivation for idvae

log p(x,u) = log

∫
p(x,u, z)dz =

= log

∫
p(x|u, z)p(z|u)p(u)dz =

= log

∫
p(x|u, z)p(z|u)p(u)

q(z|x,u)
q(z|x,u)dz ≥

≥ Eq(z|x,u)[log
p(x|u, z)p(z|u)p(u)

q(z|x,u)
] =

= Eq(z|x,u)[log p(x|u, z)]−KL(q(z|x,u)||p(z|u)) + log p(u), (B.1)

where:

log p(u) = log

∫
p(u, z)dz ≥

≥ Eq(z|u)[log p(u|z)]−KL(q(z|u)||p(z)). (B.2)

B.2 ELBO derivation for ss-idvae

log p(x) = log

∫
p(x,u, z)dudz =

= log

∫
p(x|u, z)p(z|u)p(u)dudz =

129
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= log

∫
p(x|u, z)p(z|u)p(u)

q(u, z|x)
q(u, z|x)dudz ≥

≥ Eq(u,z|x)[log
p(x|u, z)p(z|u)p(u)

q(u, z|x)
] =

= Eq(z|x,u)q(u|x)[log
p(x|u, z)p(z|u)p(u)

q(z|x,u)q(u|x)
] =

= Eq(u|x)[Lidvae] +H(q(u|x)). (B.3)

By combining Equations B.1 to B.3 we obtain Lss-idvae, where it is clear that we use the
sum over the data samples instead of the expectation. As stated in the Section 5.4.3, we
add a term – E(x,u)∼pl [log q(u|x)] – such that it can learn also from labeled data.

B.3 Proof of Theorem 1

In this section, we report the proof of Theorem 1, following the same strategy of
Khemakhem et al. (2020). The proof consists of three main steps.

In the first step, we use assumption (i) to demonstrate that observed data distributions
are equal to noiseless distributions. Supposing to have two sets of parameters (f ,T,η)

and (f̃ , T̃, η̃), with a change of variable x̄ = f(z) = f̃(z), we show that:

p̃T,η,f ,u(x) = p̃T̃,η̃,f̃ ,ũ(x), (B.4)

where:
p̃T,η,f ,u(x) = pT,η(f−1(x)|u)|det Jf−1(x)|1X (x) (B.5)

In the second step, we use assumption (iv) to remove all the terms that are a function of
x or u. By substituting pT,η with its exponential conditionally factorial form, taking the
log of both sides of Equation B.5, we obtain dk + 1 equations. Then:

T(f−1(x)) = AT′(f ′−1(x)) + c. (B.6)

In the last step, assumptions (i) and (iii) are used to show that the linear transformation
is invertible and so (f ,T,η) ∼ (f̃ , T̃, η̃). This concludes the proof.

For further details, we point the reader to section B of the supplement in Khemakhem
et al. (2020), which holds also for our variant of the theorem.
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B.4 Model architectures and parameters

All the selected methods (including the semi-supervised variants) share the same convo-
lutional architecture. The conditional prior in ivae is a MLP network, in idvae we use a
simple MLP vae, both with leaky ReLU activation functions. The ground-truth factor
learner implementing qζ(u|x) in ss-idvae and ss-ivae is a cnn.

Encoder Decoder

Input: 64× 64× number of channels Input: Rd, where d is the number
of ground-truth factors

4× 4 conv, 32 ReLU, stride 2 FC, 256 ReLU

4× 4 conv, 32 ReLU, stride 2 FC, 4× 4× 64 ReLU

4× 4 conv, 64 ReLU, stride 2 4× 4 upconv, 64 ReLU, stride 2

4× 4 conv, 64 ReLU, stride 2 4× 4 upconv, 32 ReLU, stride 2

FC 256*, FC 2× d 4× 4 upconv, 32 ReLU, stride 2

4×4 upconv, number of channels,
stride 2

Table B.1: Main Encoder-Decoder architecture. In ivae and idvae, we give u as input
to the fully connected layer of the Encoder which size becomes 256 + d.

Conditional Prior Encoder Conditional Prior Decoder

FC, 1000 leaky ReLU FC, 1000 leaky ReLU

FC, 1000 leaky ReLU FC, 1000 leaky ReLU

FC, 1000 leaky ReLU FC, 1000 leaky ReLU

FC 2× d FC d

Table B.2: idvae Conditional Prior Encoder-Decoder architecture. ivae uses the
encoder only.
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Ground-truth Factor Learner

Input: 64× 64× number of channels. d is the number of ground-truth
factors.

4× 4 conv, 32 ReLU, stride 2

4× 4 conv, 32 ReLU, stride 2

4× 4 conv, 64 ReLU, stride 2

4× 4 conv, 64 ReLU, stride 2

FC 256, FC 2× d

Table B.3: Ground-truth factor learner implementing qζ(u|x) in ss-idvae and ss-ivae.

Parameters Values

batch_size 64

optimizer Adam

Adam: beta1 0.9

Adam: beta2 0.999

Adam: epsilon 1e-8

Adam: learning_rate 1e-4

training_steps 300’000

Table B.4: Common hyperparameters to each of the considered methods.

B.5 Implementation of disentanglement metrics

As explained in Section 5.5.1, the implementation of the selected disentanglement
evaluation metrics is based on Locatello et al. (2019b). We report the main parameters
in Table B.5.
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Disentanglement metrics Parameters

Beta score train_size=10’000, test_size=5’000, batch_size=64,
predictor=logistic_regression

MIG train_size=10’000, n_bins=20

Modularity and Explicitness train_size=10’000, test_size=5’000, batch_size=16,
n_bins=20

SAP score train_size=10’000, test_size=5’000, batch_size=16,
predictor=linearSVM, C=0.01

Table B.5: Disentanglement metrics and their parameters.

B.6 Full experiments

In this section, we illustrate the full set of experiments, including reconstructions and
latent traversals.
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(a) dsprites: original observations. (b) dsprites: reconstructions by idvae.

(c) cars3d: original observations. (d) cars3d: reconstructions by idvae.

(e) shapes3d: original observations. (f) shapes3d: reconstructions by idvae.

(g) smallnorb: original observations. (h) smallnorb: reconstructions by idvae.

Figure B.1: Original observations vs idvae reconstructions.
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(a) dsprites.

(b) cars3d.

(c) shapes3d.

(d) smallnorb.

Figure B.2: idvae latent traversals. Each row corresponds to a dimension of z, that we
vary in the range [−3, 3]. We can see that, in some cases, changing a dimension can affect
multiple ground-truth factors, meaning that idvae has not obtained full disentanglement.
(a) From top to bottom: orientation, scale, shape(?), posY, posX. (b) From top to
bottom: azimuth, elevation, object type. (c) From top to bottom: wall color, floor color,
object type, azimuth, object color, object size. (d) azimuth, elevation, lighting, category.
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Figure B.3: Beta score, MIG, Modularity, Explicitness, and SAP (the higher the better).
1=β-vae, 2=ss-idvae (1%), 3=ss-idvae (10%), 4=idvae, 5=ss-ivae (1%), 6=ss-ivae
(10%), 7=ivae, 8=ss-fullvae (1%), 9=ss-fullvae (10%), 10=fullvae. Percentage of
labeled samples in parenthesis.
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Figure B.4: Beta score, MIG, modularity, explicitness and SAP median (the higher
the better) as a function of the regularization strength, for each method on dsprites,
cars3d, shapes3d, smallnorb.
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