
Named Entity Recognition
as Graph Classification

Ismail Harrando and Raphaël Troncy

EURECOM, Sophia Antipolis, France
{ismail.harrando,raphael.troncy}@eurecom.fr

Abstract. Injecting real-world information (typically contained in Knowl-
edge Graphs) and human expertise into an end-to-end training pipeline
for Natural Language Processing models is an open challenge. In this
preliminary work, we propose to approach the task of Named Entity
Recognition, which is traditionally viewed as a Sequence Tagging prob-
lem, as a Graph Classification problem, where every word is represented
as a node in a graph. This allows to embed contextual information as
well as other external knowledge relevant to each token, such as gazetteer
mentions, morphological form, and linguistic tags. We experiment with a
variety of graph modeling techniques to represent words, their contexts,
and external knowledge, and we evaluate our approach on the standard
CoNLL-2003 dataset. We obtained promising results when integrating
external knowledge through the use of graph representation in compari-
son to the dominant end-to-end training paradigm.

Keywords: Named Entity Recognition · Knowledge Graph · Graph
Classification · Knowledge Injection.

1 Introduction

Transformer-based language models such as BERT [2] have tremendously im-
proved the state of the art on a variety of Natural Language Processing tasks
and beyond. While it is hard to argue against the performance of these lan-
guage models, taking them for granted as the fundamental building-block for
any NLP application stifles the horizon of finding new and interesting methods
and approaches to tackle quite an otherwise diverse set of unique challenges re-
lated to specific tasks. This is especially relevant for tasks that are known to be
dependent on real-world knowledge or domain-specific and task-specific exper-
tise. Although these pre-trained language models have been shown to internally
encode some real-world knowledge (by virtue of being trained on large and ency-
clopedic corpora such as Wikipedia), it is less clear which information is actually
learnt and how it is internalized, or how one can inject new (and specialized)
information into these models in a way that it does not require retraining them
from scratch, or how to retrain them when big volumes of data are not available.

In this work, we propose a novel method to tackle Named Entity Recognition,
a task that has the particularity of relying on both the linguistic understanding



2 Harrando and Troncy

of the sentence as well as some form of real-world information, as what makes a
Named Entity is the fact that it refers to an entity that is generally designated by
a proper name. Since graphs are one of the most generic structures to formally
represent knowledge (e.g. Knowledge Graphs), they constitute a promising rep-
resentation to model both the linguistic (arbitrarily long) context of a word as
well as any external knowledge that is deemed relevant for the task to perform.
Graph connections between words and their descriptions seems to intuitively
resemble how humans interpret words in a sentence context (how they relate to
preceding and following words, and how they relate external memorized knowl-
edge such as being a ”city name” or ”an adjective”). Hence, we propose to cast
Named Entity Recognition as a Graph Classification task, where the input of
our model is the representation of a graph that contains the word to classify, its
context, and other external knowledge modeled either as nodes themselves or as
node features. The output of the classification is a label corresponding to the
entity type of the word (Figure 1).

Fig. 1. Left: Traditional sequence tagging model. Right: Each word in a sentence be-
comes the central node of a graph, linked to the words from its context, as well as other
task-related features such as grammatical properties (e.g. ”Proper Noun”), gazetteers
mentions (e.g. ”Car Brand”) and task-specific features (e.g. ”Capitalized”). The graph
is then embedded which is passed to a classifier to predict an entity type.

2 Approach

In order to perform Named Entity Recognition as a Graph Classification task,
the ”word graph” needs to be transformed into a fixed-length vector representa-
tion, that is then fed to a classifier (Figure 1). This graph representation needs
to embed the word to classify (the central node), as well as its context – words
appearing before and after it – and its related tags (properties such as gazetteers
mention, grammatical role, etc). This formalization is interesting because it al-
lows to represent the entire context of the word (as graphs can be arbitrarily



Named Entity Recognition as Graph Classification 3

big), to explicitly model the left and the right context separately, and to embed
different descriptors to each word seamlessly (either as node features or as other
nodes in the graph) and thus help the model to leverage knowledge from outside
the sentence and the closed training process. This is a first difference with the
traditional sequence labeling methods that only consider a narrow window the
tokens to annotate. While we posit that this method can integrate any external
data in the form of new nodes or node features in the input graph, we focus on
the following properties that are known to be related to the NER task:

– Context: which is made of the words around the word we want to classify.
– Grammatical tags: we use the Part of Speech tags (POS) e.g. ‘Noun’, as

well as the shallow parsing tags (chunking) e.g. ‘Verbal Phrase’.
– Case: in English, capitalization is an important marker for entities. We thus

add tags such as: ‘Capitalized’ if the word starts with a capital letter, ‘All
Caps’ if the word is made of only uppercase letters, and so on.

– Gazetteers: we generate lists of words that are related to potential en-
tity types by querying Wikidata for labels and synonyms corresponding to
entities belonging to types of interest such as Family Name, Brand, etc.

The literature on Graph Representations shows a rich diversity in approaches
[1, 3], but for our early experiments, we choose one candidate from each of the
main representation families: a neural auto-encoder baseline, Node2Vec for node
embeddings, TransE for Entity Embeddings, and a Graph Convolutional Net-
work based on [3]. This is admittedly a small sample of the richness that can be
further explored in the future, both in terms of the models and the way the input
graph is constructed (how to model the context and the added knowledge).

3 Experiments and Results

To train each of the aforementioned models, we construct a dataset1 by going
through every word in every document from the CoNLL training dataset, and
build its graph (Figure 1). Each of these graphs is then turned into a fixed-
length vector (or embedding) that is fed to a neural classifier. For each of the
representations, we fine-tune the hyper-parameters (e.g. the embedding size)
using the ConLL validation (dev) set. We report the Micro-F1 and Macro-F1
scores for all trained models in Table 1 for both the validation and the test sets
together with the currently best performing approach from the state of the art2.

From these results, we observe a significant decrease in performance for all
models between the evaluation and test sets (with a varying intensity depending
on the choice of the model) that is probably due to the fact that the test set
contains a lot of out-of-vocabulary words that do not appear in the training
set. We also see that adding the external knowledge consistently improve the
performance of the graph models on both Micro- and Macro-F1 for all models

1 https://github.com/Siliam/graph_ner/tree/main/dataset/conll
2 See also http://nlpprogress.com/english/named_entity_recognition.html



4 Harrando and Troncy

considered. Finally, while the performance on the test set for all graph-only
models is still behind LUKE, the best performing state of the art NER model
on ConLL 2003, we observe that these models are significantly smaller and thus
faster to train (in matters of minutes once the graph embeddings are generated),
when using a simple 2-layers MLP as a classifier. These preliminary results show
promising directions and beg for additional investigations and improvements.

Method Dev m-F1 Dev M-F1 Test m-F1 Test M-F1

Auto-encoder 91.0 67.3 90.3 63.2
Auto-encoder+ 91.5 71.7 91.5 70.4

Node2Vec 93.3 81.6 90.0 68.3
Node2Vec+ 94.1 82.1 91.1 72.6

TransE 91.8 75.0 91.7 70.0
TransE+ 93.6 78.8 91.9 74.5

GCN 96.1 86.3 92.9 78.8
GCN+ 96.5 88.8 94.1 81.0

LUKE [4] 94.3

Table 1. NER results with different graph representations (CoNLL-2003 dev and test
sets). The entries marked with “+” represent the models with external knowledge
added to the words and their context.

4 Conclusion and Future work

While the method proposed in this paper shows some promising results, the
performance on the ConLL 2003 test set is still significantly lower than the best
state-of-the-art Transformer-based method as of today. However, we have made
multiple design choices to limit the models search space and we believe that addi-
tional work on the models themselves (different architectures, hyper-parameters
fine-tuning, adding attention, changing the classifier) can improve the results.
The drop of performance from the validation to the test set is probably due to
the lack of any external linguistic knowledge outside of the training set, which
can be overcome by enriching the nodes with linguistic features such as Word
Embeddings. We will test this method on other specialized datasets in order
to demonstrate the value of this approach for domain-specific applications (fine-
grained entity typing). To facilitate reproducibility, we published the code of our
experiments at https://github.com/Siliam/graph_ner.

References

1. Chami, I., Abu-El-Haija, S., Perozzi, B., Ré, C., Murphy, K.: Machine Learning on
Graphs: A Model and Comprehensive Taxonomy. arxiv 2005.03675 (2021)

2. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: Pre-training of Deep Bidi-
rectional Transformers for Language Understanding. In: NAACL-HLT (2019)

3. Hamilton, W.L., Ying, Z., Leskovec, J.: Inductive Representation Learning on Large
Graphs. In: NIPS (2017)

4. Yamada, I., Asai, A., Shindo, H., Takeda, H., Matsumoto, Y.: LUKE: Deep Con-
textualized Entity Representations with Entity-aware Self-attention. In: EMNLP
(2020)


