
IEEE TRANSACTIONS ON COMMUNICATIONS 1

Fundamental Limits of Stochastic Shared-Cache
Networks

Adeel Malik, Berksan Serbetci, Emanuele Parrinello, Petros Elia

Abstract—The work establishes the exact performance limits
of stochastic coded caching when users share a bounded number
of cache states, and when the association between users and
caches, is random. Under the premise that more balanced user-
to-cache associations perform better than unbalanced ones, our
work provides a statistical analysis of the average performance
of such networks, identifying in closed form, the exact optimal
average delivery time. To insightfully capture this delay, we
derive easy-to-compute closed-form analytical bounds that prove
tight in the limit of a large number Λ of cache states. In the
scenario where delivery involves K users, we conclude that the
multiplicative performance deterioration due to randomness —
as compared to the well-known deterministic uniform case — can
be unbounded and can scale as Θ

(
log Λ

log log Λ

)
at K = Θ (Λ), and

that this scaling vanishes when K = Ω (Λ log Λ). To alleviate this
adverse effect of cache-load imbalance, we consider various load-
balancing methods, and show that employing proximity-bounded
load balancing with an ability to choose from h neighboring
caches, the aforementioned scaling reduces to Θ

(
log(Λ/h)

log log(Λ/h)

)
,

while when the proximity constraint is removed, the scaling is of a
much slower order Θ (log log Λ). The above analysis is extensively
validated numerically.

Index Terms—Coded caching, shared-cache, load balancing,
heterogeneous networks, femtocaching.

I. INTRODUCTION

EVER-INCREASING volumes of mobile data traffic, have
brought to the fore the need for new solutions that can

serve a continuously increasing number of users, and do so
with a limited amount of network bandwidth resources. In this
context, cache-enabled wireless networks have emerged as a
promising solution that can transform the storage capability of
the nodes into a new and powerful network resource.

The potential of such cache-enabled wireless networks has
been dramatically elevated following the seminal publication
in [2] which introduced the concept of coded caching, and
which revealed that — in theory — an unbounded number
of users can be served even with a bounded amount of
network resources. This was a consequence of a novel cache
placement algorithm that enabled the delivery of independent
content to many users at a time. Since then, several extensions
of the basic coded caching setting have been studied. Such
works include the study of coded caching for arbitrary file
popularity distributions [3]–[5], various optimality results in
[6]–[8], results for various topology models [9]–[11], for
MIMO broadcast channels [12], [13], for PHY-based coded

The authors are with the Communication Systems Department at EU-
RECOM, Sophia Antipolis, 06410, France (email: malik@eurecom.fr, ser-
betci@eurecom.fr, parrinel@eurecom.fr, elia@eurecom.fr). The work is sup-
ported by the European Research Council under the EU Horizon 2020
research and innovation program / ERC grant agreement no. 725929 (project
DUALITY). This paper was presented in part at the 2020 IEEE Global
Communications (GLOBECOM) Conference [1].

User (K) Helper node(Λ) Cache(M) BS Broadcast link Library(N)

Fig. 1. An instance of a cache-aided heterogeneous network.

caching [11]–[19], for a variety of heterogeneous networks
(HetNets) [20], [21], D2D networks [22], and other settings
as well [23]–[27].
A. Coded caching networks with shared caches
Pivotal to the development of larger, realistic coded caching

networks is the so-called shared-cache setting, where different
users are forced to benefit from the same cache content. This
setting is of great importance because it reflects promising
scenarios as well as unavoidable constraints.

Such a promising scenario can be found in the context of
cache-enabled heterogeneous networks, where a central trans-
mitter (a base station) delivers content to a set of interfering
users, with the assistance of cache-enabled helper nodes that
serve as caches to the users. An instance of such a network is
illustrated in Figure 1. Such networks capture modern trends
that envision a central base-station covering a larger area, in
tandem with a multitude of smaller helper nodes each covering
smaller cells. In this scenario, any user that appears in a
particular small cell, can benefit from the cache-contents of
the single helper node covering that cell.

In the context of coded caching, an early work on this
scenario can be found in [20], which employed the uniform
user-to-cache association assumption where each helper node
is associated to an equal number of users. This assumption was
removed in [21], which — under the assumption that content
cache placement is uncoded as well as agnostic to the user-to-
cache association — identified the exact optimal worst-case
delivery time (i.e, the case of users’ demand vector which
requires the longest delivery time), as a function of the user-
to-cache association profile that describes the number of users
served by each cache. A similar setting was studied in [28] for
the case of non-distinct requests, as well as in [29]–[31] for

IEEE TRANSACTIONS ON COMMUNICATIONS 2

the topology-aware (non-agnostic) scenario, where the user-
to-cache association is known during cache placement. In this
context, the work in [29] proposed a novel coded placement
that exploits knowledge of the user-to-cache association, while
the work in [30] used this same knowledge, to modulate cache-
sizes across the different helper nodes as a function of how
many users they serve. Similarly, the work in [31] optimized
over the cache sizes, again as a function of the load of each
cache, and then proceeded to design a novel coded caching
scheme which substantially outperforms the optimal scheme
in [21]; the latter designed for the scenario where the cache
placement is oblivious to the user-to-cache association phase.
It is interesting to note that to a certain extent, this same
shared-cache setting also applies to the scenario where each
user requests multiple files (see for example [32]).

Very importantly, this same shared-cache setting is directly
related to the unavoidable subpacketization bottleneck because
this bottleneck can force the use of a reduced number of
distinct cache states that must be inevitably shared among the
many users1. This number of distinct cache states, henceforth
denoted as Λ, will be forced under most realistic assumptions,
to be substantially less than the total number of users, simply
because most known coded caching techniques require file
sizes that scale exponentially with Λ (see [12], [33]–[36]). In
a hypothetical scenario where coded caching is applied across
a city of, let’s say, one million mobile users, one would have
to assign each user with one of Λ cache states (Λ independent
caches), where Λ would probably be forced to be in the double
or perhaps triple digits [33].

As one can see, both of the above isomorphic settings imply
that during the content delivery that follows the allocation of
cache-states to each user, different broadcast sessions would
experience user populations that differently span the spectrum
of cache states. In the most fortunate of scenarios, a transmitter
would have to deliver to a set of K users that uniformly span
the Λ states (such that each cache state is found in exactly
K/Λ users), while in the most unfortunate of scenarios, a
transmitter would encounter K users that happen to have
an identical cache state. Both cases are rare instances of a
stochastic process, which we explore here in order to identify
the exact optimal performance of such systems.

Most of our results apply both to the heterogeneous
network scenario as well as the aforementioned related
subpacketization-constrained setting which was nicely studied
in [37]. This interesting work in [37] introduced the main
problem, and after providing upper bounds2, introduced the
challenge of identifying the fundamental limits of this same
problem. This is indeed the challenge that is resolved here,
where we are able to derive these fundamental limits of
performance, in their exact form. The problem for which
we are deriving these fundamental limits, is itself a crucial
problem in the context of coded caching. Based on our
analysis, and our new insight that indeed we can have an

1When adopting the cache placement strategy in [2] for Λ caches, we refer
the content to be placed in a single cache as a cache state.

2It is worth noting that the provided upper bounds in [37] can have a large
gap from the here-derived optimal.

unbounded “damage” from the stochastic nature of the user-to-
cache association, we proceed to provide simple and realistic
load-balancing techniques. Our analysis captures the benefits
of the techniques, in their exact form.

For ease of exposition, we will focus the wording of our
description to the first scenario corresponding to a heteroge-
neous network where Λ plays the role of the number of helper
nodes. All the results though of Section II certainly apply to
the latter setting as well.
B. Load balancing in mobile networks
As mentioned above, we will be focusing on heterogeneous

networks and will explore the statistical properties brought
about by the introduction of cache-aided helper nodes. We
have also suggested that performance generally suffers when
the different helper nodes are unevenly loaded. For this, it is
only natural that we look at basic load-balancing approaches,
which have long played a pivotal role in improving the statisti-
cal behavior of wireless networks. This role was highlighted in
the survey found in [38], which discussed why long-standing
assumptions about cellular networks need to be rethought in
the context of load balanced heterogeneous networks, and
showed that natural user association metrics like signal-to-
interference-plus-noise ratio (SINR) or received signal strength
indication (RSSI) can lead to a major imbalance. This work
gathered together the earlier works on load balancing in Het-
Nets and compared the primary technical approaches – such as
optimization, game theory and Markov decision processes – to
HetNet load balancing. In the same context, various algorithms
have also been proposed to optimize the traffic load by
analyzing user association to servers for cellular networks [39],
by providing a distributed α−optimal user association and
cell load-balancing algorithm for wireless networks [40], by
developing SINR-based flexible cell association policies in
heterogeneous networks [41], and even investigating traffic
load balancing in backhaul-constrained cache-enabled small
cell networks powered by hybrid energy sources [42].

In this paper, we build a bridge between load balancing
and coded caching, with the aim of improving the network
performance by balancing the user load placed on each cache.
We will show that the effect of load balancing can in fact be
unbounded in the limit of many caches.
C. Shared-cache setting & problem statement
We consider the shared-cache coded-caching setting where

a transmitter having access to a library of N equisized files,
delivers content via a broadcast link to K receiving users, with
the assistance of Λ cache-enabled helper nodes. Each helper
node λ ∈ [1, 2, . . . ,Λ] is equipped with a cache of storage
capacity equal to the size of M files, thus being able to store
a fraction γ , M

N ∈
[

1
Λ ,

2
Λ , . . . , 1

]
of the library. Each such

helper node, which will be henceforth referred to as a ‘cache’,
can assist in the delivery of content to any number of receiving
users.

The communication process consists of three phases; the
content placement phase, the user-to-cache association phase,
and the delivery phase. The first phase involves the placement
of library-content in the caches, and it is oblivious to the
outcome of the next two phases. The second phase is when
each user is assigned – independently of the placement phase

IEEE TRANSACTIONS ON COMMUNICATIONS 3

– to exactly one cache from which it can download content
at zero cost. This second phase is also oblivious of the other
two phases3. The final phase begins with users simultaneously
requesting one file each, and continues with the transmitter
delivering this content to the receivers. Naturally this phase is
aware of the content of the caches, as well as aware of which
cache assists each user.
User-to-cache association: For any cache λ ∈ [1, . . . ,Λ], we
denote by vλ the number of users that are assisted by it, and
we consider the cache population vector V = [v1, . . . , vΛ].
Additionally we consider the sorted version L = [l1, . . . , lΛ] =
sort(V), where sort(V) denotes the sorting of vector V in
descending order. We refer to L as a profile vector, and we note
that each entry lλ is simply the number of users assisted by
the λ-th most populous (most heavily loaded) cache. Figure 1
depicts an instance of our shared-cache setting where L =
[5, 4, 3, 2].
Delivery phase: The delivery phase commences with each user
k ∈ [1, . . . ,K] requesting a single library file that is indexed
by dk ∈ [1, . . . , N]. As is common in coded caching works,
we assume that each user requests a different file. Once the
transmitter is notified of the request vector d = [d1, . . . , dK],
it commences delivery over an error-free broadcast link of
bounded capacity per unit of time.
D. Metric of interest
As one can imagine, any given instance of the problem,
experiences a different user-to-cache association, and thus4 a
different V. Our measure of interest is thus the average delay

T (γ) , EV[T (V)] =
∑
V

P (V)T (V), (1)

where T (V) is the worst-case delivery time5 corresponding
to any cache population vector V, and where P (V) is the
probability that the user-to-cache association corresponds to
vector V.

More precisely, we use T (V,d,X) to define the delivery
time required by some generic caching-and-delivery scheme X
to satisfy request vector d when the user-to-cache association
is described by the vector V. Our aim here is to characterize
the optimal average delay

T
∗
(γ) = min

X
EV

[
max
d

T (V,d,X)

]
= min
X

EL

[
EVL

[
max
d

T (V,d,X)

]]
, (2)

where the minimization is over all possible caching and

3This assumption is directly motivated by the time-scales of the problem,
as well as by the fact that in the heterogeneous setting, the user-to-cache
association is a function of the geographical location of the user. Note that
users can only be associated to caches when users are within the coverage
of caches, and a dynamic user-to-cache association that requires continuous
communication between the users and the server may not be desirable as one
seeks to minimize the network load overhead and avoid the handover.

4We briefly note that focusing on V rather than the sets of users connected
to each cache, maintains all the pertinent information, as what matters for the
analysis is the number of users connected to each cache and not the index
(identity) of the users connected to that cache.

5This delay corresponds to the time needed to complete the delivery of
any file-request vector d, where the time scale is normalized such that a unit
of time corresponds to the optimal amount of time needed to send a single
file from the transmitter to the receiver, had there been no caching and no
interference.

delivery schemes X , and where EVL
denotes the expectation

over all vectors V whose sorted version is equal to some fixed
sort(V) = L. Consequently the metric of interest takes the
form

T (γ) = EL[T (L)] =
∑
L

P (L)T (L), (3)

where T (L) , EVL
[maxd T (V,d)], and where
P (L) ,

∑
V:sort(V)=L

P (V),

is simply the cumulative probability over all V for which
sort(V) = L.

We will consider here the uncoded cache placement scheme
in [2], and the delivery scheme in [21], [37], which will prove
to be optimal for our setting under the common assumption of
uncoded cache placement. This multi-round delivery scheme
introduces — for any V such that sort(V) = L — a worst-
case delivery time of

T (L) =

Λ−t∑
λ=1

lλ

(
Λ−λ
t

)(
Λ
t

) , (4)

where t = Λγ.
From equation (4) we can see that the minimum delay

corresponds to the case when L is uniform. When Λ divides
K, this minimum (uniform) delay takes the well-known form

Tmin =
K(1− γ)

1 + Λγ
, (5)

while for general K,Λ, it takes the form6

Tmin =
Λ− t
1 + t

(⌊
K

Λ

⌋
+ 1− f(K̂)

)
, (6)

where K̂ = K −
⌊
K
Λ

⌋
Λ, f(K̂) = 1 when K̂ = 0, f(K̂) = 0

when K̂ ≥ Λ− t, and f(K̂) =
∏K̂+t
i=t+1(Λ−i)∏K̂−1
j=0 (Λ−j)

when K̂ < Λ− t.
The proof of this is straightforward, but for completeness it can
be found in the longer version of this work [43, Appendix F].
The above Tmin is optimal under the assumption of uncoded
placement (cf. [21]).

On the other hand, for any other (now non-uniform) L,
the associated delay T (L) will exceed Tmin (see [21] for the
proof, and see Figure 2 for a few characteristic examples), and
thus so will the average delay
EL[T (L)] =

∑
L∈L

P (L)T (L)

=

Λ−t∑
λ=1

∑
L∈L

P (L)lλ

(
Λ−λ
t

)(
Λ
t

) =

Λ−t∑
λ=1

E[lλ]

(
Λ−λ
t

)(
Λ
t

) , (7)

where L describes the set of all possible profile vectors L
(where naturally

∑Λ
λ=1 lλ = K), and where E[lλ] is the

expected number of users in the λ-th most populous cache7.
E. Our contribution
In this work we assume that each user can appear in the

coverage area of any particular cache-enabled cell (i.e., can

6When K/Λ /∈ Z+, the best-case delay corresponds to having lλ =

bK/Λc + 1 for λ ∈
[
1, 2, · · · , K̂

]
and lλ = bK/Λc for λ ∈[

K̂+ 1, K̂+ 2, · · · ,Λ
]

, where K̂ = K − bK/ΛcΛ.
7It is straightforward to see that

∑
L∈L lλP (L) is equivalent to∑K

j=0 jP (lλ = j) = E[lλ], where P (lλ = j) =
∑

L∈L:L(λ)=j P (L).

IEEE TRANSACTIONS ON COMMUNICATIONS 4

1 2 3 4 5

5

10

15

20

25

30

35

Fig. 2. Delay T (L) for different profile vectors L, for K=40 and Λ=8.

be associated to any particular cache) with equal probability.
We will identify the optimal average delay T

∗
(γ) and the

corresponding (multiplicative) performance deterioration

G(γ) =
T
∗
(γ)

Tmin
(8)

experienced in this random setting. Our aim is to addi-
tionally provide expressions that can either be evaluated in
a numerically tractable way, or that can be asymptotically
approximated in order to yield clear insight. The following
are our contributions, step by step.

• In Section II-A, we characterize in closed form the
exact optimal average delay T

∗
(γ), optimized over all

placement and delivery schemes under the assumption of
uncoded cache placement and under the assumption that
each user can appear in the coverage area of any particular
cache-enabled cell with equal probability.

• To simplify the numerical interpretation of the above
expression, we propose in Section II-B analytical bounds
that can be calculated efficiently.

• In Section II-C, we characterize the exact scaling laws
of performance. It is interesting to see that the aforemen-
tioned multiplicative deterioration G(γ) = T

∗
(γ)

Tmin
can in

fact be unbounded, as Λ increases. For example, when
K = Θ (Λ) (i.e., when K matches the order of Λ), the
performance deterioration scales exactly as Θ

(
log Λ

log log Λ

)
,

whereas when K increases, this deterioration gradually
reduces, and ceases to scale when K = Ω (Λ log Λ).

• In Section III, we use two load-balancing approaches
to alleviate the effect of randomness. In the practical
scenario where we are given a choice to associate a
user to the least loaded cache from a randomly chosen
group of h neighboring helper nodes, the performance
deterioration stops scaling as early as K = Ω

(
Λ
h log Λ

h

)
.

An even more dramatic improvement can be seen when
the aforementioned neighboring/proximity constraint is
lifted. The above reveals that load balancing, when appli-
cable, can play a crucial role in significantly reducing the
performance deterioration due to random user-to-cache
association.

• In Section IV, we perform extensive numerical evalua-
tions that validate our analysis.

• In Section V, we extend our analysis to the scenario
where cache population intensities (i.e, probability that
a user can appear in the coverage area of any particular
cache-enabled cell) are following a non-uniform distribu-
tion.

F. Notations
Throughout this paper, we use the notation [x] , [1, 2, . . . , x],

and we use A/B to denote the difference set that consists
of all the elements of set A not in set B. Unless otherwise
stated, logarithms are assumed to have base 2. We use the
following asymptotic notation: i) f(x) = O(g(x)) means that
there exist constants a and c such that f(x) ≤ ag(x),∀x > c,
ii) f(x) = o(g(x)) means that limx→∞

f(x)
g(x) = 0, iii) f(x) =

Ω(g(x)) if g(x) = O(f(x)), iv) f(x) = ω(g(x)) means that
limx→∞

g(x)
f(x) = 0, v) f(x) = Θ(g(x)) if f(x) = O(g(x))

and f(x) = Ω(g(x)). We use the term polylog(x) to denote
the class of functions

⋃
k≥1O((log x)k) that are polynomial

in log x.
II. MAIN RESULTS

In this section we present our main results on the performance
of the K-user broadcast channel with Λ caches, each of
normalized size γ, and a uniformly random user-to-cache
association process. As noted, the analysis applies both to the
Λ-cell heterogeneous network, as well as to the isomorphic
subpacketization-constrained setting.
A. Exact characterization of the optimal average delay
We proceed to characterize the exact optimal average delay
T
∗
(γ). Crucial in this characterization will be the vector

BL =
[
b1, b2, . . . , b|BL|

]
, where each element bj ∈ BL

indicates the number of caches in a distinct group of caches in
which each cache has the same load8. Under the assumption
that each user can be associated to any particular cache
with equal probability, the optimal average delay T

∗
(γ) —

optimized over all coded caching strategies with uncoded
placement — is given by the following theorem.

Theorem 1. In the K-user, Λ-caches setting with normalized
cache size γ and a random user-to-cache association, the
average delay

T
∗
(γ) =

Λ−t∑
λ=1

∑
L∈L

K! t! (Λ− t)! lλ
(

Λ−λ
t

)
ΛK

∏Λ
i=1 li!

∏|BL|
j=1 bj !

(9)

is exactly optimal under the assumption of uncoded placement.

Proof: The proof can be found in Appendix A.
One can now easily see that when K

Λ ∈ Z+, the optimal
multiplicative deterioration G(γ) = T

∗
(γ)

Tmin
takes the form

G(γ) =

Λ−t∑
λ=1

∑
L∈L

(K − 1)! (Λ− t− 1)! (t+ 1)! lλ
(

Λ−λ
t

)
ΛK−1

∏Λ
i=1 li!

∏|BL|
j=1 bj !

.

(10)

Remark 1. Theorem 1 provides the exact optimal perfor-
mance in the random association setting, as well as a more

8For example, for a profile vector L = [5, 5, 3, 3, 3, 2, 1, 0, 0], there are
five distinct groups in terms of having the same load, then the corresponding
vector BL = [2, 3, 1, 1, 2], because two caches have a similar load of five
users, three caches have a similar load of three users, two caches have a
similar load of zero and all other caches have distinct number of users.

IEEE TRANSACTIONS ON COMMUNICATIONS 5

|L| |V|
K = 10 42 92378
K = 20 530 10015005
K = 30 3590 211915132
K = 40 16928 2.054455634× 109

K = 50 62740 1.2565671261× 1010

TABLE I
SIZE OF L AND V (Λ = 10)

efficient way to evaluate this performance compared to the
state of the art (SoA) (cf. [37, Theorem 1]). The worst-case
computational time complexity for calculating the exact opti-
mal average delay T

∗
(γ) is O (max(K, |L|Λ)) as compared

to the O (max(K, |V|Λ log Λ)) for the case of [37, Theorem
1]. This speedup is due to the averaging being over the much
smaller set L of all L, rather than over the set V of all V
(see Table I for a brief comparison). The time complexities
mentioned above do not include the cost of creating the sets
L and V . However, we note that the creation of V is a so-
called weak composition problem, whereas the creation of L
is an integer partition problem [44]. It is easy to verify that the
complexities of the algorithms for the integer partition problem
are significantly lower than the ones for the weak composition
problem [45]–[48].

Despite the aforementioned speedup, exact evaluation of (9)
can still be computationally expensive for large parameters.
This motivates our derivation of much-faster to evaluate ana-
lytical bounds on T

∗
(γ), which we provide next.

B. Computationally efficient bounds on the optimal perfor-
mance

The following theorem bounds the optimal average delay
T
∗
(γ).

Theorem 2. In the K-user, Λ-cache setting with normalized
cache size γ and a random user-to-cache association, the
optimal average delay T

∗
(γ) is bounded by

T
∗
(γ) ≤ KΛ−t

t+1
−

Λ−t∑
λ=1

(
Λ−λ
t

)(
Λ
t

) K−1∑
j=0

max

(
1−Λ

λ
(1−Pj), 0

)
,

(11)
and

T
∗
(γ) ≥ Λ−t

1+t

K
Λ

Λ−t−1

Λ−1
+

t

Λ−1

K−K−1∑
j=dKΛ e

Pj

 , (12)

where

Pj =

j∑
i=0

(
K

i

)(
1

Λ

)i(
1− 1

Λ

)K−i
. (13)

Proof: The proof is deferred to Appendix B.

Remark 2. The worst-case computational time complexity for
calculating the analytical bounds on the optimal performance
T
∗
(γ) based on Theorem 2 is O (max(K logK,KΛ)). This

is significantly better compared to the the complexity of
O (max(K, |L|Λ)) for the exact calculation (cf. Theorem 1)
The above bound is computationally efficient due to its de-
pendence only on the Pj (cf. (13)), which is the cumulative
distribution function (cdf) of a random variable that follows

200 400 600 800 1000 1200 1400

0

0.5

1

Fig. 3. Behavior of Pj for K = 106 and Λ = 103.

the binomial distribution with K independent trials and 1
Λ

success probability. To compute bounds, the value of Pj needs
to be calculated for all values of j ∈ [0,K−1], which can be
computationally expensive (i.e., O (K logK)). However, as is
known, there exists a j̃ ∈ [0,K − 1], where Pj ≈ 1. Since the
cdf is a non-decreasing function in j, it is clear9 that Pj ≈ 1
for j > j̃. An illustration for K = 106, and Λ = 103 is shown
in Figure 3, where it is evident that j̃ << K.

Directly from Theorem 2 and equation (5), we can conclude
that for K

Λ ∈ Z+, the performance deterioration G(γ) as
compared to the deterministic uniform case, is bounded as

G(γ) ≤ Λ− t+ 1

K−Kγ

Λ−t∑
λ=1

(
Λ−λ
t

)(
Λ
t

) K−1∑
j=0

max

(
1−Λ

λ
(1−Pj), 0

)
,

(14)
and

G(γ) ≥ Λ− t− 1

Λ− 1
+

Λ

K

t

Λ− 1

K − K−1∑
j=dKΛ e

Pj

 , (15)

where Pj is given in Theorem 2.
We now proceed to provide the exact scaling laws of

the fundamental limits of the performance in a simple and
insightful form.
C. Scaling laws of coded caching with random association
The following theorem provides the asymptotic analysis of the
optimal T

∗
(γ), in the limit of large Λ.

Theorem 3. In the K-user, Λ-caches setting with normalized
cache size γ and random user-to-cache association, the opti-
mal delay scales as

T
∗
(γ)=

{
Θ
(
TminΛ log Λ

K log Λ log Λ
K

)
if K ∈

[
Λ

polylog(Λ) , o (Λlog Λ)
]

Θ (Tmin) if K = Ω (Λ log Λ) .

(16)

Proof: Deferred to Appendix C.
Directly from the above, we now know that the performance

deterioration due to user-to-cache association randomness,

9The well-known De Moivre-Laplace Theorem can help us gain some
intuition as to why the above method is computationally efficient and precise.
In our case here, our binomial distribution — which according to the
aforementioned theorem can be approximated by the normal distribution in the
limit of large K — has mean K/Λ and standard deviation

√
K(Λ− 1)/Λ2.

This simply means that the values within three standard deviations of the mean
account for about 99.7% ≈ 100% of the set. This in turn means that Pj̃ ≈ 1

as early on as j̃ = K/Λ + 3
√
K(Λ− 1)/Λ2 << K. Since Pj ≈ 1 for

j ≥ j̃, implies that (13) can be rapidly evaluated with high precision.

IEEE TRANSACTIONS ON COMMUNICATIONS 6

2000 4000 6000 8000

0

20

40

60

0.05 0.1 0.15 0.2

2

4

6

8

Fig. 4. Upper bound comparison with SoA.

scales as

G(γ)=

{
Θ
(

Λ log Λ

K log Λ log Λ
K

)
if K ∈

[
Λ

polylog(Λ) , o (Λlog Λ)
]

Θ (1) if K = Ω (Λ log Λ) ,

(17)
which in turn leads to the following corollary.

Corollary 1. The performance deterioration G(γ) due to as-
sociation randomness, scales as Θ

(
log Λ

log log Λ

)
at K = Θ (Λ),

and as K increases, this deterioration gradually reduces, and
ceases to scale when K = Ω (Λ log Λ).

Proof: The proof is straightforward from Theorem 3.
In identifying the exact scaling laws of the problem, Theo-

rem 3 nicely captures the following points.
• It describes the extent to which the performance deterio-

ration increases with Λ and decreases with K
Λ .

• It reveals that the performance deterioration can in fact
be unbounded.

• It shows how in certain cases, increasing Λ may yield
diminishing returns due to the associated exacerbation
of the random association problem. For example, to
avoid a scaling G(γ), one must approximately keep Λ
below eW (K) (W (.) is the Lambert W-function) such that
Λ log Λ ≤ K.

The detrimental impact of the user-to-cache association’s
randomness on the delivery time motivates the need of tech-
niques to mitigate this impact. In Section III, we show how
incorporating load-balancing methods in shared cache setting
can play a vital role in mitigating this impact.
D. Furthering the SoA on the subpacketization-constrained

decentralized coded caching setting
As mentioned before, in general the shared cache setting is
isomorphic to the subpacketization-constrained coded caching
setting [33], where each cache-enabled user is forced to
store the content from one of Λ cache states. In particular,
the work in [37] proposed a decentralized coded caching in
this subpacketization-constrained setting, where each cache-
enabled user stores the content from one of Λ cache states with
equal probability, which is exactly equivalent to our setting

T
∗
(γ) in [37] T

∗
(γ) in our work

K = Θ (Λ) O
(√

Λ
)

Θ
(

log Λ
log log Λ

)
K = Θ (Λa) for
1 < a < 2 and
K = Ω (Λ log Λ)

O
(
Λa/2

) Θ(Tmin) = Θ
(
K
Λ

)
= Θ

(
Λa−1

)
K = Ω

(
Λ2
)

O
(
K
Λ

)
Θ(Tmin) = Θ

(
K
Λ

)
TABLE II

SOA COMPARISON OF SCALING LAWS.

where each user appears in the coverage area of any particular
cache-enabled cell with equal probability. We briefly mention
below the utility of our results in this latter context.
• Theorem 1 now identifies the exact optimal performance,

as well as provides a more efficient way (see Remark 1)
to evaluate this performance.

• Theorem 2 offers a new tighter upper bound on T
∗
(γ)

(see Figure 4) and the only known lower bound on T
∗
(γ).

• Finally Theorem 3 completes our understanding of the
scaling laws of the random association setting. For ex-
ample, for the case where K = Θ (Λ), prior to our work,
G(γ) was known to scale at most as Θ

(√
Λ
)

, whereas
now we know that this deterioration scales exactly as
Θ
(

log Λ
log log Λ

)
. Please refer to Table II for a detailed

comparison of the known upper bounds and our exact
scaling results.

III. CACHE LOAD BALANCING IN HETEROGENEOUS
NETWORKS

In the previous section, we explored the performance of
coded caching when each user is associated, at random and
with equal probability, to one of Λ caches. Our aim now
is to reduce the detrimental impact of the user-to-cache as-
sociation’s randomness on the delivery time, by using load-
balancing methods that introduce a certain element of choice
in this association, and thus allow for better profile vectors.
Such choice can exist naturally in different scenarios, like for
example in the wireless cache-aided heterogeneous network
setting, where each user can be within the communication
range of more than one cache helper node.

We define a generic load-balancing method φ to be a
function that maps the set of users [K] into a cache population
vector V = φ([K]) as a result of the load-balancing choice.
Similarly as in (2), the optimal delay, given a certain load-
balancing policy φ, is defined as

T
∗
φ(γ) = min

X
EV

[
max
d

T (φ([K]),d,X)

]
. (18)

The above definition is the same as the one in (2), with
the only difference that the random variable representing
the cache population vector V is now following a different
probability distribution that depends on the load-balancing
method φ. Employing the optimal scheme X from Theorem 1,
the average delivery time takes the form (cf. equation (7))

Tφ(γ) =

Λ−t∑
λ=1

E[lλ]

(
Λ−λ
t

)(
Λ
t

) , (19)

where [l1, l2, . . . , lΛ] = sort(φ([K])). It is important to point
out that the choice of the load-balancing method can be

IEEE TRANSACTIONS ON COMMUNICATIONS 7

in general limited by some practical constraints, such as
geographical constraints and operational constraints10. We will
focus on analyzing the above, for two load-balancing methods
which will prove to allow for unbounded gains.
A. Randomized load balancing with multiple choices
In the original scenario, for any given user, one cache is
randomly picked to assist this user. Now we consider a load-
balancing method φr which, for any given user, picks h ≥ 2
candidate caches at random, and then associates each such
user with the least loaded cache among these h caches. This
static method is referred to as randomized load balancing with
multiple choices [49], and is considered in a variety of settings
(see for example [50]). The performance of this method is
presented in the following result, for the limiting case of large
Λ.

Theorem 4. In the K-user, Λ-cell heterogeneous network with
normalized cache size γ, where each user benefits from the
least loaded cache among h randomly chosen caches, the
limiting optimal delay converges to

T
∗
φr (γ)=

Θ
(
Tmin

Λ log log Λ
K log h

)
ifK=o

(
Λ log log Λ

log h

)
Θ (Tmin) ifK=Ω

(
Λ log log Λ

log h

)
.

(20)

Proof: The achievability part of the theorem is deferred to
Appendix D. After noticing that the definition of the optimal
delay in (18) is equal to (2), optimality is proven the same way
as for the optimality of Theorem 1 by following the same steps
as in equations (35)-(36). Following those steps requires (cf.
[21]) that P (V) remains fixed for any V such that sort(V) =
L; which is true also for the considered load-balancing method
φr because the method is not biased to any specific cache, i.e.
φr assigns each user to one of the available caches only based
on the load of the caches and independently from the cache
identity. Therefore, the proof follows the same steps as for the
case where there is no load balancing.

The above theorem naturally implies that the performance
deterioration, due to random association, scales as

Gr(γ) =

Θ
(

Λ log log Λ
K log h

)
if K =o

(
Λ log log Λ

log h

)
Θ (1) if K =Ω

(
Λ log log Λ

log h

)
,

(21)

as well as implies the following corollary.

Corollary 2. In the K-user, Λ-cell heterogeneous network
with random-selection load balancing, the performance dete-
rioration due to random association, scales as Θ

(
log log Λ

log h

)
when K = Θ (Λ), and then as K increases, this deterio-
ration gradually reduces, and ceases to scale when K =

Ω
(

Λ log log Λ
log h

)
.

Proof: The proof is direct from (21).
We can see that the above method can dramatically amelio-

rate the random association effect, where (for example when
K is in the same order as Λ) even a small choice among
h = 2 caches, can tilt the scaling of G(γ), from the original
Θ
(

log Λ
log log Λ

)
to a much slower Θ (log log Λ).

10Removal of all these constraints naturally brings us back to the ideal
user-to-cache association where each cache is associated to an equal number
of users.

B. Load balancing via proximity-based cache selection
The aforementioned randomized load-balancing method, de-
spite its substantial impact, may not apply when the choice
is limited by geographical proximity. To capture this lim-
itation, we consider the load-balancing approach φp where
the set of Λ caches is divided into Λ/h disjoint groups[
X1,X2, . . . ,XΛ/h

]
of h caches each11. Once a user is

associated at random, with uniform probability, to one of these
groups, then we choose to associate this user to the least loaded
cache from that group. The performance of this method is
presented in the following result, for the limiting case of large
Λ.

Theorem 5. In the K-user, Λ-cell heterogeneous network with
normalized cache size γ, where each user benefits from the
least loaded cache among h neighboring caches, then the
limiting optimal delay converges to

T
∗
φp(γ)=

Θ

(
TminΛ log Λ

h

hK log
Λ log Λ

h
hK

)
if K∈

[
Λ

h polylog(Λ
h)
, o
(
Λ
h log Λ

h

)]
Θ (Tmin) if K =Ω

(
Λ
h log Λ

h

)
.

(22)

Proof: The achievability proof is deferred to Appendix E,
while the optimality part of the theorem follows the same
argument as the proof of Theorem 4.

The above implies a performance deterioration of

Gp(γ)=

Θ

(
Λ
hK log Λ

h

log
Λ log Λ

h
hK

)
if K ∈

[
Λ/h

polylog(Λ
h)
, o
(
Λ
h log Λ

h

)]
Θ (1) if K = Ω

(
Λ
h log Λ

h

)
,

(23)
which in turn implies the following.

Corollary 3. In the K-user, Λ-cell heterogeneous network
with proximity-bounded load balancing, the performance dete-
rioration due to random association scales as Θ

(
log(Λ/h)

log log(Λ/h)

)
when K = Θ

(
Λ
h

)
, and as K increases, this deteriora-

tion gradually reduces, and ceases to scale when K =
Ω
(

Λ
h log Λ

h

)
.

Proof: The proof is straightforward from Theorem 5.
We can see that proximity-bounded load balancing signif-

icantly ameliorate the random association effect, where now
deterioration ceases to scale when K = Ω

(
Λ
h log Λ

h

)
compared

to the original K = Ω (Λ log Λ).
IV. NUMERICAL VALIDATION

We proceed to numerically validate our results, using two basic
numerical evaluation approaches. The first is the sampling-
based numerical (SBN) approximation method, where we
generate a sufficiently large set L1 of randomly generated
profile vectors L, and approximate EL[T (L)] as

EL[T (L)] ≈ 1

|L1|
∑
L∈L1

T (L), (24)

where we recall that T (L) is defined in (4). The corresponding
approximate performance deterioration is then evaluated by
dividing the above by Tmin.

11In this method, our focus is in the asymptotic setting, thus we do not
need to assume that h divides Λ.

IEEE TRANSACTIONS ON COMMUNICATIONS 8

0.1 0.2 0.3 0.4 0.5 0.6 0.7

1

1.5

2

2.5

3

3.5

AUB

Exact

ALB

0.1 0.2 0.3 0.4 0.5 0.6 0.7

1

1.5

2

2.5

3

3.5

AUB

Exact

ALB

Fig. 5. Analytical upper bound (AUB) from (14) vs. analytical lower bound
(ALB) from (15) vs. exact G(γ) from (10) (Λ = 20).

0.1 0.2 0.3 0.4 0.5 0.6 0.7

1.6

1.8

2

2.2

2.4

Fig. 6. Exact G(γ) from (10) vs. sampling-based numerical (SBN)
approximation from (24) (|L1| = 10000).

The second is a threshold-based numerical method, whose
first step is to generate a set L2 ⊆ L of profile vectors L
such that

∑
L∈L2

P (L) ≈ ρ, for some chosen threshold value
ρ ∈ [0, 1]. Recall that the closed form expression for P (L) is
given in equation (33). Subsequently, with this subset L2 at
hand, we simply have the numerical lower bound (NLB)

EL[T (L)] ≥
∑
L∈L2

P (L)T (L) + (1− ρ)Tmin, (25)

by considering the best-case delay for each L ∈ L/L2, and
similarly have the numerical upper bound (NUB)

EL[T (L)] ≤
∑
L∈L2

P (L)T (L) + (1− ρ)K(1− γ), (26)

by considering the worst possible delay K(1 − γ) for every
L ∈ L/L2. The bounding of G(γ) is direct by dividing the
above with Tmin.

Naturally the larger the threshold ρ, the tighter the bounds,
the higher the computational cost. The additive gap between
the bounds on G(γ), takes the form (1− ρ)

(
K(1−γ)
Tmin

− 1
)
≈

(1− ρ) t, revealing the benefit of increasing ρ.
First, Figures 5-7 include comparisons that involve the exact

G(γ) from (10), and thus — due to the computational cost

0.1 0.2 0.3 0.4 0.5

1

2

3

4

0.1 0.2 0.3 0.4 0.5

1

2

3

4

Fig. 7. Threshold-based numerical upper bound (NUB) from (26) vs.
threshold-based numerical lower bound (NLB) from (25) vs. exact G(γ)
from (10) (Λ = 30 and ρ = 0.95).

0.05 0.1 0.15 0.2 0.25 0.3 0.35

2

3

4

0.05 0.1 0.15 0.2 0.25 0.3 0.35

1.5

2

2.5

Fig. 8. Analytical upper bound (AUB) from (14) vs. sampling-based
numerical (SBN) approximation from (24).

— the number of caches remains at a modest Λ = 20
(and a relatively larger Λ = 30 for Figure 7). In particular,
Figure 5 compares the exact G(γ) with the analytical bounds
in (14) and (15), where it is clear that both AUB and ALB
yield sensible bounds, and AUB becomes much tighter as
γ increases. Figure 6 compares the exact G(γ) with the
sampling-based numerical (SBN) approximation in (24) (for
|L1| = 10000), where it is evident that the SBN approximation
is consistent with the exact performance. Finally, Figure 7
compares the exact G(γ) (for Λ = 30) with the threshold-
based numerical bounds that are based on (25) and (26), using
ρ = 0.95. Interestingly, the threshold-based NLB turns out to
be very tight in the entire range of γ, whereas the NUB tends
to move away from the exact performance as γ increases.

Subsequently, for much larger dimensionalities, Figure 8
compares the AUB from (14) with the SBN approximation
from (24) for |L1| = 10000. The figure highlight the extent to
which the ratio K

Λ affects the performance deterioration.

IEEE TRANSACTIONS ON COMMUNICATIONS 9

Finally, Figure 9 uses a suitably modified analytical
upper bound to explore the effect of h when applying
proximity-bounded load balancing. We know from (40) that
the expected number of users in the most populous cache
group (i.e, E[lh1]), when each user can be associated to
any cache group with equal probability h

Λ is bounded as
E[lh1] ≤ K −

∑K−1
j=0 max

(
1− Λ

h (1− Phj), 0
)
, where Phj =∑j

i=0

(
K
i

) (
h
Λ

)i (
1− h

Λ

)K−i
. Also, from (59), the expected

number of users in the most populous cache (i.e., E[l1]) under
proximity-bounded load balancing is bounded as E[l1] <
E[lh1]
h + 1. Thus using (47), the analytical upper bound on the

T
∗
φp(γ) is given by

T
∗
φp(γ) ≤ Λ− t

1 + t
E[l1] <

Λ−t
1+t

(
E[lh1]

h
+ 1

)

=
Λ−t
1+t

1+
K

h
− 1

h

K−1∑
j=0

max

(
1−Λ

h
(1−Phj), 0

) .

(27)
From Figure 9, we can see that, as expected, the perfor-

mance deterioration decreases as h increases.
V. EXTENSION TO THE CASE OF NON-UNIFORM CACHE

POPULATION INTENSITIES

In this section, we extend our study to the scenario where
cache population intensities (i.e, probability that a user can
appear in the coverage area of any particular cache-enabled
cell) are following a non-uniform distribution12. For any cache
λ ∈ [Λ], let pλ be the probability that a user can appear
in the coverage area of λth cache-enabled cell such that
p = [p1, p2, · · · , pΛ], where

∑
λ∈[Λ] pλ = 1, denotes the cache

population intensities vector.
A. Analytical Bounds
Considering the uncoded cache placement scheme in [2], and
the delivery scheme in [21], the following theorem bounds
the average delay T (γ), when cache population intensities are
following a non-uniform distribution.

Theorem 6. In the K-user, Λ-cache setting with normalized
cache size γ and a random user-to-cache association with
cache population intensities p, the average delay T (γ) is
bounded by

T (γ) ≤ KΛ−t
1+t

−
Λ−t∑
λ=1

(
Λ−λ
t

)(
Λ
t

) K−1∑
j=0

max

(
0, 1−Λ−F (j)

λ

)
, (28)

and

T (γ) ≥ Λ− t
1 + t

(
Ktmax(p)

(Λ− 1)
+
K

Λ

(Λ− t− 1)

(Λ− 1)

)
, (29)

where

F (j) =

Λ∑
k=1

j∑
i=0

(
K

i

)
(pk)

i
(1− pk)

K−i
. (30)

Proof: The proof can be found in the longer version of
this work [43, Appendix G].

It is fast to numerically evaluate the analytical bound
proposed in Theorem 6 for any given distribution of cache

12All the results presented in this section are optimal for the case when the
cache population intensities are not known during the cache placement phase.

2000 4000 6000 8000

3

4

5

6

7

Fig. 9. Analytical upper bound (AUB) from (27) without (h = 1) and with
(h > 1) proximity-bounded load balancing.

population intensities p. However, in order to gain some
simple and insightful form of the performance in the presence
of non-uniform cache population intensities, we proceed with
the asymptotic analysis of the T (γ) under the assumption that
cache population intensities p follows the Zipf distribution13.
For the Zipf distribution, cache population intensities p are
given by14 pλ = λ−α

Hα(Λ) , ∀ λ ∈ [Λ], where α > 0 is the
Zipf exponent, and Hα(Λ) =

∑Λ
i=1 i

−α is a normalization
constant formed as the generalized harmonic number.
B. Scaling Laws
The following theorem provides the asymptotic analysis of the
T (γ), in the limit of large Λ.

Theorem 7. In the K-user, Λ-caches setting with normalized
cache size γ and random user-to-cache association with cache
population intensities p following the Zipf distribution with the
Zipf exponent α, the delay scales as

T (γ) =

Θ (TminΛ) α > 1

O
(
Tmin

√
Λ2

K + Λ2

(log Λ)2

)
α = 1

and Ω
(
Tmin

Λ
log Λ

)
O

(
Tmin

√
Λ2

K + Λ2α

)
0.5 < α < 1

and Ω (TminΛα)

O

(
Tmin

√
Λ2

K + Λ log Λ

)
α = 0.5

and Ω
(
Tmin

√
Λ
)

O

(
Tmin

(√
Λ + Λ2

K

))
α < 0.5.

and Ω (TminΛα)

(31)

Proof: The proof can be found in the longer version of
this work [43, Appendix H].

In identifying the scaling laws of the problem, Theorem 7
nicely captures the following points:
• It describes to what extent the performance deterioration

13There are several studies that propose different user distribution models
(i.e., distribution of cache population intensities) for wireless networks [51],
[52]. We use the Zipf distribution as it nicely covers a wide range of non-
uniform patterns by only tuning one parameter.

14Without loss of generality, we assume a descending order between cache
population intensities of the Λ caches.

IEEE TRANSACTIONS ON COMMUNICATIONS 10

increases with α (i.e., the skewness in cache population
intensities).

• It shows that, in some cases there is no global caching
gain, e.g., the performance deterioration scales as Θ (Λ)
for α > 1.

• It reveals that unlike the case of uniform cache population
intensities – where the deterioration can be avoided as
long as K = Ω (Λ log Λ) – the existence of skewness
in cache population intensities can lead to an unbounded
deterioration irrespective of the relation between K and
Λ.

• It highlights the importance of incorporating the knowl-
edge of the cache population intensities vector while
designing the placement and delivery scheme. As pointed
out earlier, being unaware of the severeness of this non-
uniformity may lead to the vanishing of the coding gain,
and the system may eventually need to confine itself to
the local caching gain.

C. Randomized load balancing with multiple choices under
non-uniform cache population intensities

We consider a load-balancing method φn which, for any given
user, picks h ≥ 2 candidate caches at random based on the
cache population intensities p following the Zipf distribution,
and then associates each such user to the least loaded cache
among these h caches. The performance of this method is
presented in the following result, for the limiting case of large
Λ.

Theorem 8. In the K-user, Λ-cell heterogeneous network with
normalized cache size γ, where each user benefits from the
least loaded cache among h randomly chosen caches based
on the cache population intensities p with the Zipf exponent
α, the limiting delay converges to

Tφn(γ)=

{
O
(
Tmin

Λ log log Λ
K

)
ifK=o (Λ log log Λ)

O (Tmin) ifK=Ω (Λ log log Λ) ,

(32)
when h = Θ (log Λ).

Proof: The proof can be found in the longer version of
this work [43, Appendix I].

We can see that load balancing can dramatically ameliorate
the random association effect. For example, when α > 1,
picking any log Λ candidate caches is sufficient to tilt the
scaling of G(γ) from Θ (Λ) to a much slower O (log log Λ)
and O (1), when K = Θ(Λ) and K = Ω (Λ log log Λ) respec-
tively. As long as h is in the same order as log Λ, significant
improvements can be achieved irrespective of the level of
skewness of the cache population intensities. In conclusion,
even for the non-uniform cache population intensities, load
balancing can still be impactful. However, for non-uniform
cache population intensities setting h = 2 may not bring
significant gains which were observed for the case of uniform
cache population intensities case (cf. Corollary 2) as now h
must be in the order of log Λ.
D. Numerical validation for the non-uniform cache population

intensities
We now numerically validate our results for the case of
non-uniform cache population intensities. For the numerical

0.05 0.1 0.15 0.2 0.25 0.3 0.35

2

3

4

5

0.05 0.1 0.15 0.2 0.25 0.3 0.35

5

10

15

20

25

AUB =0.75

SBN =0.75

AUB =0.5

SBN =0.5

AUB =0.25

SBN =0.25

Fig. 10. Analytical upper bound (AUB) from (28) vs. sampling-based
numerical (SBN) approximation from (24).

analysis, we assume that cache population intensities p follows
the Zipf distribution. Figure 10 compares the AUB from (28)
with the SBN approximation from (24) for |L1| = 10000. Note
that L1 is generated based on cache population intensities p.
The figure highlights the extent to which the Zipf exponent α
(i.e., the skewness in cache population intensities) affects the
performance deterioration.

VI. CONCLUSIONS

In this work we identified the exact optimal performance of
coded caching with random user-to-cache association when
users can appear in the coverage area of any particular
cache-enabled cell with equal probability. In our opinion, the
random association problem has direct practical ramifications,
as it captures promising scenarios (such as the heterogeneous
network scenario) as well as operational realities (namely, the
subpacketization constraint). The problem becomes even more
pertinent as we now know that its effect can in fact scale
indefinitely.

Key to our effort to identify the effect of association
randomness, has been the need to provide expressions that can
either be evaluated in a numerically tractable way, or that can
be rigorously approximated in order to yield clear insight. The
first part was achieved by deriving exact expressions as well as
new analytical bounds that can be evaluated directly, while the
second part was achieved by studying the asymptotics of the
problem which yielded simple performance expressions and
direct operational guidelines. This same approach also allowed
us to clearly capture the effect and importance of basic load-
balancing techniques that are used to mitigate the detrimental
effect coming from the aforementioned randomness in user-
to-cache association.

Finally, we extended our analysis for the case where cache
population intensities are following a non-uniform distribution.
We provided analytical bounds and studied the asymptotics
of the problem. Also, we show that load balancing can
help mitigating the effect of randomness even when cache
population intensities are non-uniform.

APPENDIX

Detailed proofs of all the analytical results in this paper can
be found in [43].

IEEE TRANSACTIONS ON COMMUNICATIONS 11

A. Proof of Theorem 1
We first note that the probability P (L) of observing a specific
profile vector L ∈ L is simply the cumulative probability over
all V for which sort(V) = L. This probability takes the form

P (L) =

term 1︷ ︸︸ ︷
1

ΛK
× K!∏Λ

i=1 li!
×

term 2︷ ︸︸ ︷
Λ!∏|BL|
j=1 bj !

. (33)

To see this, we analyze the different terms of the above
equation. The first term in (33) accounts for the fact that
there are ΛK different user-to-cache associations, i.e., there
are ΛK different ways that K users can be allocated to
the Λ different caches. It also accounts for the fact that
each user can be associated to any one particular cache,
with equal probability 1

Λ . The second term in (33) indicates
the number of all user-to-cache associations that leads15 to
a specific V for which sort(V) = L, for some fixed L.
Consequently term 1 in (33) is simply P (V), which naturally
remains fixed for any V for which sort(V) = L, and which
originates from the well-known probability mass function of
the multinomial distribution. Consequently this implies that
P (L) = |{V : sort(V) = L}| × P (V). Finally, term 2
describes the number of all possible cache population vectors
V for which sort(V) is equal to some fixed L.

We now proceed to insert (33) into (7), which yields the
average delay

EL[T (L)] =

Λ−t∑
λ=1

∑
L∈L

P (L)lλ

(
Λ−λ
t

)(
Λ
t

)
=

Λ−t∑
λ=1

∑
L∈L

K! t! (Λ− t)! lλ
(

Λ−λ
t

)
ΛK

∏Λ
i=1 li!

∏|BL|
j=1 bj !

, (34)

which concludes the achievability part of the proof for the
expression in Theorem 1.

Optimality of the aforementioned expression can be proved
by means of the lower bound developed in [21]. We notice
that the optimal delay T

∗
(γ) can be lower bounded as

T
∗
(γ) = min

X
EL

[
EVL

[
max
d

T (V,d,X)

]]
≥ min
X

EL

[
max
d

EVL
[T (V,d,X)]

]
≥ EL

[
min
X

max
d

EVL
[T (V,d,X)]

]
≥ EL

[
min
X

Ed∈DwcEVL
[T (V,d,X)]︸ ︷︷ ︸

T∗(L)

]
, (35)

where Dwc denoted the set of demand vectors with distinct
users’ file-requests. Next, exploiting the fact that P (V) is the
same for any V for which sort(V) = L, we notice that

T ∗(L) , min
X

Ed∈DwcEVL
[T (V,d,X)]

is lower bounded by equation (53) in [21], which then proves

15Recall that different user-to-cache associations can lead to the same cache
population vector V. For example, when K = Λ = 3, the following 6
user-to-cache associations, [1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 2, 1], and
[3, 1, 2] — each describing which user is associated to which cache — in
fact all correspond to the same V = [1, 1, 1], because always each cache is
associated to one user.

that T ∗(L) is bounded as

T ∗(L) ≥
Λ−t∑
λ=1

lλ

(
Λ−λ
t

)(
Λ
t

) . (36)

This concludes the proof for the optimality of the delivery
time in Theorem 1.
B. Proof of Theorem 2
We start our proof by deriving the expected number of users
in the λ-th most populous cache (i.e., E[lλ]), which is given
by

E[lλ] =

K−1∑
j=0

P [lλ > j] =

K−1∑
j=0

(1− P [lλ ≤ j])

= K −
K−1∑
j=0

P [lλ ≤ j]. (37)

where P [lλ ≤ j] is the probability that λ-th most populous
cache is associated to no more than j requesting users. From
[53, Proposition 2], we have

P [lλ ≤ j] ≥ max

(
1− Λ

λ
(1− Pj), 0

)
, (38)

where Pj is the probability that a cache is associated to no
more than j requesting users. Recalling that each user can be
assigned to any particular cache with equal probability, we can
conclude that Pj is given as

Pj =

j∑
i=0

(
K

i

)(
1

Λ

)i(
1− 1

Λ

)K−i
. (39)

E[lλ] is upper bounded by

E[lλ] ≤ K −
K−1∑
j=0

max

(
1− Λ

λ
(1− Pj), 0

)
. (40)

Consequently the upper bound of T
∗
(γ) is given as

T
∗
(γ) =

Λ−t∑
λ=1

E[lλ]

(
Λ−λ
t

)(
Λ
t

)
≤

Λ−t∑
λ=1

(
Λ−λ
t

)(
Λ
t

)
K−K−1∑

j=0

max

(
1−Λ

λ
(1− Pj), 0

)
(a)
=

(
Λ
t+1

)(
Λ
t

) K−Λ−t∑
λ=1

(
Λ−λ
t

)(
Λ
t

) K−1∑
j=0

max

(
1−Λ

λ
(1−Pj), 0

)
,

(41)
where in step (a), we used the column-sum property of Pascal’s
triangle, which is

∑n
k=0

(
k
t

)
=
(
n+1
t+1

)
. This concludes the

proof of the upper bound in (11).
Next, we prove the lower bound in (12). Crucial to this

proof is the exploitation of the fact that
∑Λ
λ=1E[lλ] = K and

of the fact that both E[lλ] and
(

Λ−λ
t

)
in (7) are non-increasing

with λ. We first see that

T
∗
(γ) =

Λ−t∑
λ=1

E[lλ]

(
Λ−λ
t

)(
Λ
t

) ≥ E[l1]
(

Λ−1
t

)
+
∑Λ−t
λ=2B

(
Λ−λ
t

)(
Λ
t

) ,

(42)

where B = K−E[l1]
Λ−1 . This can be simplified as

T
∗
(γ) ≥ E[l1]

(
Λ−1
t

)(
Λ
t

) +B

(
Λ−1
t+1

)(
Λ
t

)

IEEE TRANSACTIONS ON COMMUNICATIONS 12

= E[l1]
Λ− t

Λ
+B

(Λ− t)(Λ− t− 1)

(1 + t)Λ

= (Λ− t)
(
E[l1]

Λ
+
K − E[l1]

Λ− 1

Λ− t− 1

(1 + t)Λ

)
=

Λ− t
1 + t

(
E[l1]t

Λ− 1
+
K

Λ

Λ− t− 1

Λ− 1

)
. (43)

To conclude the proof, we need to derive E[l1]. It is straight-
forward that l1 ≥

⌈
K
Λ

⌉
, thus for j =

[
0, 1, 2, · · · ,

⌈
K
Λ

⌉
− 1
]

we have P [l1 ≤ j] = 0, and for j =
[⌈
K
Λ

⌉
,
⌈
K
Λ

⌉
+ 1, · · · ,K

]
,

from [53, Proposition 1] we have
P [l1 ≤ j] ≤ min(Pj , 1) = Pj , (44)

where Pj is defined in (39). Therefore, using (37), E[l1] is
lower bounded as

E[l1] = K −
K−1∑
j=0

P [l1 ≤ j] ≥ K −
K−1∑
j=dKΛ e

Pj . (45)

Finally, combining (43) and (45), we obtain

T
∗
(γ) ≥ Λ−t

1 + t

 t

Λ−1

K−K−1∑
j=dKΛ e

Pj

+
K

Λ

Λ−t−1

Λ− 1

 , (46)

which concludes the proof of Theorem 2.
C. Proof of Theorem 3
The fact that both E[lλ] and

(
Λ−λ
t

)
in (7) are non-increasing

with λ, we see that T
∗
(γ) is bounded by

T
∗
(γ) =

Λ−t∑
λ=1

E[lλ]

(
Λ−λ
t

)(
Λ
t

) ≤ 1(
Λ
t

) Λ−t∑
λ=1

E[l1]

(
Λ− λ
t

)
(a)
=

E[l1](
Λ
t

) Λ−t∑
λ=1

(
Λ− λ
t

)
= E[l1]

(
Λ
t+1

)(
Λ
t

)
= E[l1]

Λ− t
1 + t

=
K(1− γ)

1 + t

ΛE[l1]

K
, (47)

where in step (a), we used the column-sum property of Pascal’s
triangle, which is

∑n
k=0

(
k
t

)
=
(
n+1
t+1

)
. Thus from (47), we get

T
∗
(γ) = O

(
K(1− γ)

1 + t

ΛE[l1]

K

)
(48)

and from (43), we have

T
∗
(γ) = Ω

(
K(1− γ)

1 + t

ΛE[l1]γ

K

)
. (49)

As γ is a constant, we can conclude that the expressions in (48)
and (49) asymptotically match, and thus

T
∗
(γ) = Θ

(
K(1− γ)

1 + t

E[l1]Λ

K

)
. (50)

Combining (50) and (6), we obtain

T
∗
(γ) = Θ

(
Tmin

E[l1]Λ

K

)
. (51)

For the remaining part, which is to develop the asymptotics of
E[l1], we proceed with the following lemma which is adopted
and adapted here directly from the work of [54] on the Balls
into Bins problem.

Lemma 1 ([54, Theorem 1] - adaptation). In a Λ-cell K-
user setting where each user can be associated with equal

probability to any of the caches, the tail of l1 takes the form

P [l1 > kβ] =

{
o (1) if β > 1

1− o (1) if 0 < β < 1,
(52)

for

kβ=

log Λ

log Λ log Λ
K

(
1+β

log log Λ log Λ
K

log Λ log Λ
K

)
if Λ

polylog(Λ)≤K=o (Λ log Λ)

Θ (β log Λ) ifK=Θ (Λ log(Λ))

K
Λ +β

√
K log(Λ)

0.5Λ ifω (Λ log Λ) = K≤ Λ polylog(Λ)

K
Λ +

√
K log(Λ)

0.5Λ

(
1− log log Λ

2β log Λ

)
ifK=ω

(
Λ (log Λ)

3
)
.

(53)

Proof: The result comes directly from [54, Theorem 1].

With Lemma 1 at hand, we consider the case of β > 1, for
which we get that

E[l1] =

kβ−1∑
j=0

P [l1 > j]+P [l1 > kβ] +

K−1∑
j=kβ+1

P [l1 > j]

(a)

≤ kβ + o(1) +

K−1∑
j=kβ+1

P [l1 > j]

(b)

≤ kβ + o(1) + (K−kβ−1)o(1)

= kβ(1− o(1)) +Ko(1) = O (kβ) , (54)
where in step (a), we use the fact that P [l1 > j] is at most
1 for j = [0, 1, · · · kβ − 1] and in step (b), we use the fact
if P [l1 > kβ] = o(1) then P [l1 > j] is at most o(1) for
j = [kβ + 1, · · ·K − 1]. Similarly, for 0 < β < 1, we have

E[l1]
(a)

≥ kβ(1− o(1)) + 1− o(1) ≥ kβ(1− o(1)) = Ω (kβ) ,
(55)

where in step (a), we use the fact that
∑K−1
j=kβ+1 P [l1 > j] ≥ 0

and if P [l1 > kβ] = 1−o(1) then P [l1 > j] is at least 1−o(1)
for j = [0, 1, · · · kβ − 1]. Combining (53), (54), and (55), we
have

E[l1]=

Θ
(

log Λ

log Λ log Λ
K

)
if K ∈ [Λ

polylog(Λ) , o (Λlog Λ)]

Θ

(
K
Λ +

√
K log(Λ)

Λ

)
ifK = Ω (Λ log Λ) .

(56)

Combining (51) with (56), allows us to directly conclude the
proof of Theorem 3.
D. Proof of Theorem 4
Directly from the result in [50, Corollary 1.4] on the Balanced
Allocations problem, we can conclude that for h > 1, the E[l1]
asymptotically converges to

E[l1] =
log log Λ

log h
+
K

Λ
±Θ(1). (57)

Consequently combining (51) and (57), directly yields (20)
which concludes the proof of Theorem 4.
E. Proof of Theorem 5
We start our proof by deriving the expected number of users
in the most populous cache (i.e., E[l1]). Recall that under
the proximity-based load-balancing technique, each user can
be associated to any cache group with equal probability h

Λ .
Once a user is associated to a group, then this user will be
associated to the least loaded cache from that group. Let lh1 be

IEEE TRANSACTIONS ON COMMUNICATIONS 13

the number of users that are associated to the most populous
group of caches, then the number of users in the most populous
cache is given by l1 =

⌈
lh1
h

⌉
. Thus, we have

E[l1] =

K∑
i=1

P [lh1 = i]

⌈
lh1
h

⌉
, (58)

where P [lh1 = i] is the probability that i users are associated
to the most populous group of caches. Let S1 ⊆ [K] be the set
of elements such that for each element i ∈ S1, i

h is integer.
Then, we have

E[l1] =
∑
i∈S1

P [lh1 = i]
lh1
h

+
∑

i∈S1/[K]

P [lh1 = i]

⌈
lh1
h

⌉

=
E[lh1]

h
+
∑

i∈S1/[K]

P [lh1 = i]

(⌈
lh1
h

⌉
− lh1
h

)
. (59)

It is straightforward to see that 0 <
∑
i∈S1/[K] P [lh1 =

i]
(⌈

lh1
h

⌉
− lh1

h

)
< 1, Therefore, E[l1] is bounded as E[lh1]

h <

E[l1] <
E[lh1]
h + 1, and we can conclude that

E[l1] = Θ

(
E[lh1]

h

)
. (60)

Evaluating E[lh1] from (56) by treating each group as a single
cache, we conclude that

E[l1]=

Θ

(
log Λ

h

h log
Λ log Λ

h
hK

)
if K ∈

[
Λ/h

polylog(Λ
h)
, o
(
Λ
h log Λ

h

)]
Θ

(
K
Λ +

√
K log(Λ

h)

hΛ

)
ifK = Ω

(
Λ
h log Λ

h

)
.

(61)
Finally combining (51) and (61), directly yields (22), and thus
concludes the proof of Theorem 5.

REFERENCES

[1] A. Malik, B. Serbetci, E. Parrinello, and P. Elia, “Stochastic Analysis of
Coded Multicasting for Shared Caches Networks,” in Proc. IEEE Global
Commun. Conf. (GLOBECOM), Taipei, Taiwan, Dec. 2020, pp. 1–6.

[2] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2856–2867, May 2014.

[3] U. Niesen and M. A. Maddah-Ali, “Coded caching with nonuniform
demands,” IEEE Trans. Inf. Theory, vol. 63, no. 2, pp. 1146–1158, Feb
2017.

[4] J. Zhang, X. Lin, and X. Wang, “Coded caching under arbitrary
popularity distributions,” IEEE Trans. Inf. Theory, vol. 64, no. 1, pp.
349–366, Jan 2018.

[5] M. Ji, A. M. Tulino, J. Llorca, and G. Caire, “On the average per-
formance of caching and coded multicasting with random demands,” in
Proc. 11th Int. Symp. Wireless Commun. Syst. (ISWCS), Barcelona, Aug.
2014, pp. 922–926.

[6] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Characterizing the
rate-memory tradeoff in cache networks within a factor of 2,” IEEE
Trans. Inf. Theory, vol. 65, no. 1, pp. 647–663, Jan 2019.

[7] K. Wan, D. Tuninetti, and P. Piantanida, “An index coding approach
to caching with uncoded cache placement,” IEEE Trans. Inf. Theory,
vol. 66, no. 3, pp. 1318–1332, 2020.

[8] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “The exact rate-
memory tradeoff for caching with uncoded prefetching,” IEEE Trans.
Inf. Theory, vol. 64, no. 2, pp. 1281–1296, 2018.

[9] S. S. Bidokhti, M. Wigger, and R. Timo, “Erasure broadcast networks
with receiver caching,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Barcelona, Jul. 2016, pp. 1819–1823.

[10] J. Zhang and P. Elia, “Wireless coded caching: A topological perspec-
tive,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Aachen, Jun. 2017,
pp. 401–405.

[11] E. Lampiris, J. Zhang, and P. Elia, “Cache-aided cooperation with no
CSIT,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Aachen, Jun. 2017,
pp. 2960–2964.

[12] E. Lampiris and P. Elia, “Adding transmitters dramatically boosts coded-
caching gains for finite file sizes,” IEEE J. Sel. Areas Commun., vol. 36,
no. 6, pp. 1176–1188, Jun. 2018.

[13] J. Zhang and P. Elia, “Fundamental limits of cache-aided wireless
BC: Interplay of Coded-Caching and CSIT feedback,” IEEE Trans. Inf.
Theory, vol. 63, no. 5, pp. 3142–3160, May 2017.

[14] S. P. Shariatpanahi, S. A. Motahari, and B. H. Khalaj, “Multi-server
Coded Caching,” IEEE Trans. Inf. Theory, vol. 62, no. 12, pp. 7253–
7271, 2016.

[15] A. Tölli, S. P. Shariatpanahi, J. Kaleva, and B. H. Khalaj, “Multi-antenna
interference management for coded caching,” IEEE Trans. Wireless
Commun., vol. 19, no. 3, pp. 2091–2106, 2020.

[16] S. Shariatpanahi and B. H. Khalaj, “On multi-server Coded Caching in
the low memory regime,” arXiv preprint arXiv:1803.07655, 2018.

[17] J. Zhang, F. Engelmann, and P. Elia, “Coded caching for reducing CSIT-
feedback in wireless communications,” in 2015 53rd Annual Allerton
Conf. on Commun., Cont., and Comput. (Allerton), 2015, pp. 1099–
1105.

[18] E. Piovano, H. Joudeh, and B. Clerckx, “On Coded Caching in the
overloaded MISO Broadcast Channel,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), 2017, pp. 2795–2799.

[19] Y. Cao and M. Tao, “Treating content delivery in multi-antenna coded
caching as general message sets transmission: A DoF region perspec-
tive,” IEEE Trans. Wireless Commun., vol. 18, no. 6, pp. 3129–3141,
Jun. 2019.

[20] J. Hachem, N. Karamchandani, and S. Diggavi, “Coded caching for
multi-level popularity and access,” IEEE Trans. Inf. Theory, vol. 63,
no. 5, pp. 3108–3141, May 2017.

[21] E. Parrinello, A. Unsal, and P. Elia, “Fundamental limits of coded
caching with multiple antennas, shared caches and uncoded prefetching,”
IEEE Trans. Inf. Theory, vol. 66, no. 4, pp. 2252–2268, Apr. 2020.

[22] M. Ji, G. Caire, and A. F. Molisch, “Fundamental limits of caching in
wireless d2d networks,” IEEE Trans. Inf. Theory, vol. 62, no. 2, pp.
849–869, Feb 2016.

[23] A. Sengupta, R. Tandon, and O. Simeone, “Fog-aided wireless networks
for content delivery: Fundamental latency tradeoffs,” IEEE Trans. Inf.
Theory, vol. 63, no. 10, pp. 6650–6678, Oct. 2017.

[24] Y. Cao, M. Tao, F. Xu, and K. Liu, “Fundamental storage-latency trade-
off in cache-aided mimo interference networks,” IEEE Trans. Wireless
Commun., vol. 16, no. 8, pp. 5061–5076, Aug. 2017.

[25] J. S. P. Roig, D. Gündüz, and F. Tosato, “Interference networks with
caches at both ends,” in Proc. IEEE Int. Conf. Commun. (ICC), Paris,
May 2017, pp. 1–6.

[26] M. Bayat, R. K. Mungara, and G. Caire, “Achieving spatial scalability
for coded caching via coded multipoint multicasting,” IEEE Trans.
Wireless Commun., vol. 18, no. 1, pp. 227–240, Jan. 2019.

[27] E. Lampiris and P. Elia, “Achieving full multiplexing and unbounded
caching gains with bounded feedback resources,” in Proc. IEEE Int.
Symp. Inf. Theory (ISIT), Vail, CO, Jun. 2018, pp. 1440–1444.

[28] N. S. Karat, S. Dey, A. Thomas, and B. S. Rajan, “An optimal
linear error correcting delivery scheme for coded caching with shared
caches,” 2019. [Online]. Available: http://arxiv.org/abs/1901.03188

[29] K. Wan, D. Tuninetti, M. Ji, and G. Caire, “On the fundamental
limits of fog-ran cache-aided networks with downlink and sidelink
communications,” IEEE Transactions on Information Theory, pp. 1–1,
2021.

[30] T. X. Vu, S. Chatzinotas, and B. Ottersten, “Coded caching and storage
planning in heterogeneous networks,” in Proc. IEEE Wireless Commun.
and Netw. Conf. (WCNC), San Francisco, CA, Mar. 2017, pp. 1–6.

[31] E. Parrinello and P. Elia, “Coded caching with optimized shared-cache
sizes,” in Proc. IEEE Inf. Theory Workshop (ITW), Visby, Sweden, Aug.
2019, pp. 1–5.

[32] A. Sengupta and R. Tandon, “Improved approximation of storage-rate
tradeoff for caching with multiple demands,” IEEE Trans. Commun.,
vol. 65, no. 5, pp. 1940–1955, May 2017.

[33] K. Shanmugam, M. Ji, A. M. Tulino, J. Llorca, and A. G. Dimakis,
“Finite-length analysis of caching-aided coded multicasting,” IEEE
Trans. Inf. Theory, vol. 62, no. 10, pp. 5524–5537, Oct. 2016.

[34] L. Tang and A. Ramamoorthy, “Low subpacketization schemes for coded
caching,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Aachen, Jun. 2017,
pp. 2790–2794.

[35] C. Shangguan, Y. Zhang, and G. Ge, “Centralized coded caching
schemes: A hypergraph theoretical approach,” IEEE Trans. Inf. Theory,
vol. 64, no. 8, pp. 5755–5766, Aug. 2018.

[36] K. Shanmugam, A. M. Tulino, and A. G. Dimakis, “Coded caching
with linear subpacketization is possible using Ruzsa-Szemeredi graphs,”

http://arxiv.org/abs/1901.03188

IEEE TRANSACTIONS ON COMMUNICATIONS 14

in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Aachen, Jun. 2017, pp.
1237–1241.

[37] S. Jin, Y. Cui, H. Liu, and G. Caire, “A new order-optimal decentralized
coded caching scheme with good performance in the finite file size
regime,” IEEE Trans. Commun., vol. 67, no. 8, pp. 5297–5310, Aug.
2019.

[38] J. G. Andrews, S. Singh, Q. Ye, X. Lin, and H. S. Dhillon, “An overview
of load balancing in hetnets: old myths and open problems,” IEEE
Wireless Commun., vol. 21, no. 2, pp. 18–25, 2014.

[39] Q. Ye, B. Rong, Y. Chen, M. Al-Shalash, C. Caramanis, and J. G.
Andrews, “User association for load balancing in heterogeneous cellular
networks,” IEEE Trans. Wireless Commun., vol. 12, no. 6, pp. 2706–
2716, 2013.

[40] H. Kim, G. de Veciana, X. Yang, and M. Venkatachalam, “Distributed
α-optimal user association and cell load balancing in wireless
networks,” IEEE/ACM Trans. Netw., vol. 20, no. 1, p. 177–190, Feb.
2012. [Online]. Available: https://doi.org/10.1109/TNET.2011.2157937

[41] H. Jo, Y. J. Sang, P. Xia, and J. G. Andrews, “Heterogeneous cellular
networks with flexible cell association: A comprehensive downlink sinr
analysis,” IEEE Trans. Wireless Commun., vol. 11, no. 10, pp. 3484–
3495, 2012.

[42] T. Han and N. Ansari, “Network utility aware traffic load balancing
in backhaul-constrained cache-enabled small cell networks with hybrid
power supplies,” IEEE Trans. Mobile Comput., vol. 16, no. 10, pp. 2819–
2832, 2017.

[43] A. Malik, B. Serbetci, E. Parrinello, and P. Elia, “Fundamental limits
of stochastic shared caches networks,” 2020. [Online]. Available:
https://arxiv.org/pdf/2005.13847.pdf

[44] “NIST Digital Library of Mathematical Functions,” http://dlmf.nist.gov/,
Release 1.0.26 of 2020-03-15, f. W. J. Olver, A. B. Olde Daalhuis,
D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R.
Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds. [Online].
Available: http://dlmf.nist.gov/26.9.iv

[45] I. Stojmenović and A. Zoghbi, “Fast algorithms for generating integer
partitions,” Int. J. Comput. Math., vol. 70, no. 2, pp. 319–332, 1998.

[46] V. Vajnovszki, “Generating permutations with a given major index,”
2013. [Online]. Available: https://arxiv.org/pdf/1302.6558.pdf

[47] M. Merca, “Fast algorithm for generating ascending compositions,” J.
Math. Model. and Algorithms, vol. 11, pp. 89–104, 2012.

[48] J. Kelleher and B. O’Sullivan, “Generating all partitions: A
comparison of two encodings,” 2009. [Online]. Available: http:
//arxiv.org/abs/0909.2331

[49] M. Mitzenmacher, “The power of two choices in randomized load
balancing,” IEEE Trans. Parallel Distrib. Syst., vol. 12, no. 10, pp. 1094–
1104, 2001.

[50] B. Petra, C. Artur, S. Angelika, and V. Berthold, “Balanced allocations:
The heavily loaded case,” SIAM J. Comput., vol. 35, no. 6, pp. 1350–
1385, Jun. 2006.

[51] C. Li, A. Yongacoglu, and C. D’Amours, “Heterogeneous cellular
network user distribution model,” in Proc. IEEE Latin-American Con-
ference on Commun. (LATINCOM), Medellin, Nov. 2016, pp. 1–6.

[52] G. George, A. Lozano, and M. Haenggi, “Distribution of the number
of users per base station in cellular networks,” IEEE Wireless Commun.
Letters, vol. 8, no. 2, pp. 520–523, Apr. 2019.

[53] G. Caraux and O. Gascuel, “Bounds on distribution functions of order
statistics for dependent variates,” Statist. Probab. Lett., vol. 14, no. 2,
pp. 103–105, May 1992.

[54] R. Martin and S. Angelika, “Balls into bins — A simple and tight
analysis,” in Proc. Int. Workshop Randomization Approx. Techn. Comput.
Sci., 1998, pp. 159–170.

Adeel Malik received the B.S. degree in Electrical
(Telecommunication) Engineering from the COM-
SATS Institute of Information and Technology, Pak-
istan, in 2013. During 2014–2016, he worked as
a research assistant with Dr. Jalaluddin Qureshi on
Namal College funded research projects focusing on
the construction of wireless transmission protocols.
In 2018, he graduated with an M.Sc. in Computer
Science and Engineering from Dankook University,
South Korea. Currently, he is working at EURE-
COM’s Duality project as a PhD student under the

supervision of Prof. Petros Elia. His research focuses on content-centric
wireless networks.

Berksan Serbetci received the B.Sc. degree in
Electrical and Electronics Engineering from Mid-
dle East Technical University in 2009, the M.Sc.
degree in Electrical and Electronics Engineering
from Bogazici University in 2012, and the Ph.D.
degree in Applied Mathematics from the University
of Twente in 2018. He is currently a postdoctoral fel-
low with the Communication Systems Department,
EURECOM. His research interests include caching,
wireless networks, optimization theory, stochastic
processes, stochastic geometry, information theory

and machine learning.

Emanuele Parrinello received the B.Sc. degree
in telecommunication engineering from the Politec-
nico di Torino in 2015, the M.Sc. degree (Hons.)
in communications and computer networks engi-
neering from the Politecnico di Torino in 2018,
and the M.Sc. degree in mobile communications
from EURECOM, Telecom ParisTech, in 2018. He
is currently pursuing the Ph.D. degree with the
Communication Systems Department, EURECOM,
Sorbonne University. His research interests lie in
caching networks, network information theory, and

wireless communication.

Petros Elia received the B.Sc. degree from the
Illinois Institute of Technology, and the M.Sc. and
Ph.D. degrees in electrical engineering from the
University of Southern California (USC), Los An-
geles, in 2001 and 2006 respectively. He is now a
professor with the Department of Communication
Systems at EURECOM in Sophia Antipolis, France.
His latest research deals with the intersection of
coded caching and feedback-aided communications
in multiuser settings. He has also worked in the area
of complexity-constrained communications, MIMO,

queueing theory and cross-layer design, coding theory, information theoretic
limits in cooperative communications, and surveillance networks. He is a Ful-
bright scholar, the co-recipient of the NEWCOM++ distinguished achievement
award 2008-2011 for a sequence of publications on the topic of complexity
in wireless communications, and the recipient of the ERC Consolidator Grant
2017-2022 on cache-aided wireless communications.

https://doi.org/10.1109/TNET.2011.2157937
https://arxiv.org/pdf/2005.13847.pdf
http://dlmf.nist.gov/26.9.iv
https://arxiv.org/pdf/1302.6558.pdf
http://arxiv.org/abs/0909.2331
http://arxiv.org/abs/0909.2331

	Introduction
	Coded caching networks with shared caches
	Load balancing in mobile networks
	Shared-cache setting & problem statement
	Metric of interest
	Our contribution
	Notations

	Main Results
	Exact characterization of the optimal average delay
	Computationally efficient bounds on the optimal performance
	Scaling laws of coded caching with random association
	Furthering the SoA on the subpacketization-constrained decentralized coded caching setting

	Cache Load Balancing in Heterogeneous Networks
	Randomized load balancing with multiple choices
	Load balancing via proximity-based cache selection

	Numerical Validation
	Extension to the case of non-uniform cache population intensities
	Analytical Bounds
	Scaling Laws
	Randomized load balancing with multiple choices under non-uniform cache population intensities
	Numerical validation for the non-uniform cache population intensities

	Conclusions
	Appendix
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5

	References
	Biographies
	Adeel Malik
	Berksan Serbetci
	Emanuele Parrinello
	Petros Elia

