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Abstract—We address the worst-user bottleneck of wireless
coded caching, which is known to severely diminish cache-aided
multicasting gains due to the fundamental worst-channel limitation
of multicasting. We consider the quasi-static Rayleigh fading
Broadcast Channel, for which we first show that the effective
coded caching gain of the standard XOR-based coded-caching
scheme completely vanishes in the low signal-to-noise ratio (SNR)
regime. Then, we reveal that this collapse is not intrinsic to coded
caching. We do so by presenting a novel scheme that can fully
recover the coded caching gains by capitalizing on one aspect that
has remained unexploited to date: the shared side information
brought about by the effectively unavoidable file-size constraint. As
a consequence, the worst-user effect is dramatically ameliorated,
as it is substituted by a much more subtle worst-group-of-users
effect, where the suggested grouping is fixed, and it is decided
before the channel or the demands are known. Furthermore, the
theoretical gains are completely recovered as the number of users
increases, and this is done without any user selection technique.
We analyze the rate performance of the proposed scheme and
derive approximations which prove to be very precise. Importantly,
this novel approach can be translated to other coded caching
schemes and scenarios, including decentralized scenarios.

Index Terms—Coded-caching, finite SNR, shared caches, worst-
user bottleneck, effective coded caching gain.

I. INTRODUCTION

CACHE-aided communication is a promising approach
toward reducing congestion in modern communication

networks [2], [3]. The promise of this approach has been
recently fostered by the seminal paper of Maddah-Ali and
Niesen [2], who proposed coded caching as a means to speed
up content delivery by exploiting receiver-side stored content
to remove interference.

The work in [2] considers the error-free (or equivalently, high-
SNR) shared-link Broadcast Channel (BC), where a transmitter
with access to a library of N content files serves K cache-
aided users. Each such user enjoys a local (cache) memory
of size equal to the size of M files, i.e., equal to a fraction
γ ≜ M

N ∈ [0, 1] of the library size. The so-called MN scheme
of [2] involves a cache placement phase and a subsequent
delivery phase. During the first phase, each file is typically
split into a very large number of subfiles, which are selectively
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placed in various different caches. During the second phase, the
communication process is split into a generally large number of
transmission stages, and, at each such stage, a different subset
of Kγ+1 users is simultaneously served via an XOR multicast
transmission, thus allowing for a theoretical speed-up factor
of Kγ + 1 as compared to the uncoded case. This speed-up
factor of Kγ + 1 is also referred to as the coded caching gain
achieved by this scheme.

The above algorithm was originally developed for the
scenario where the channel is error-free and the capacity to
each user is identical. In recent years, a variety of works
have investigated coded caching under more realistic wireless
settings, considering for example uneven channel qualities [4]–
[7], the role of Channel State Information (CSI) availability
[8]–[10], statistically diverse channels [11], [12], and a variety
of other scenarios [13]–[18].

Unfortunately, it is the case that coded caching suffers from
two major constraints. The first is often referred to as the “file-
size constraint” of coded caching, which, as we will recall later,
effectively forces different users to fill up their caches with
identical content [19]–[21]. This constraint, which has been
extensively analyzed in the literature [13], [20]–[23], essentially
foregoes the freedom to endow users with their own dedicated
caches, and rather forces these users to share a very limited
number of cache states1 that is considerably smaller than K. On
the other hand, there is a seemingly unrelated constraint which
stems from the fact that the XOR multicast transmissions are
fundamentally and inevitably limited by the rate of the worst
user that they address [24]. This constraint, often referred to as
the “worst-user bottleneck” of coded caching, arises when users
experience different channel strengths, and it is a constraint
that is severely exacerbated as the SNR becomes smaller.

Both these realities, of bounded file sizes and limited SNR,
are naturally inherent to any practical wireless content-delivery
system. Let us look at these bottlenecks in greater detail.

A. Subpacketization Bottleneck and the Need for Shared Caches

Our work builds on the premise that almost any realistic
single-stream coded caching scenario will involve the use of
shared, rather than dedicated, cache states. As we will see
right below, this has to do with the simple fact that, under
realistic assumptions on γ and K, the file sizes required by
caching schemes dwarf any realistic file sizes that we encounter
in wireless downlink applications. The evidence for this is

1Hereinafter, cache state refers to the content stored at the cache of a certain
user. Thus, two users storing the exact same content in their local cache are
said to have the same cache state.
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overwhelming, and, to date, under realistic assumptions, any
high-performance coded caching scheme requires files to be
split into a number of sub-files that grows exponentially or
near-exponentially with K. For example, the MN algorithm
requires files to be split into at least

(
K
Kγ

)
subfiles, and it is

known from [22, Thm. 3] that this same subpacketization is
indeed necessary for any algorithm to achieve this same gain
under some basic symmetry conditions. Similarly, it was shown
in [19] that decentralized schemes (cf. [25]) require exponential
(in K) subpacketization in order to achieve linear caching gains,
and, along similar lines, [26, Thm. 12] proved that, under basic
assumptions, there exists no coded caching scheme that enjoys
both linear caching gains and linear subpacketization.

From these previous results, we are in a position to say that
such schemes will inevitably require many users to store the
same cache content. While there is not a fundamental limitation
that forces users to cache the same content, an extensive
literature overview indicates that there are only two possible
solutions to keep the subpacketization low while maintaining
the gains: either to repeat the same cache state at several users,
or to importantly increase K [22], [23], [26]. Let us consider
for instance the original MN scheme. Under the constraint
that the subpacketization (number of subfiles) cannot exceed a
realistic value Smax, we know that the best course of action
is to encode over a limited number of Λ < K users at a
time [19], creating Λ different cache states. This Λ is indeed
limited by the file size constraint that asks that

(
Λ
Λγ

)
≤ Smax.

This approach naturally limits the aforementioned (error-free)
optimal gain to Λγ + 1 [27], and it entails cache replication
simply because now there are only Λ cache states to be shared2

or replicated among the K users. As we will show later on,
this forced replication can be exploited to circumvent another
major problem: the worst-user bottleneck.

B. Worst-User Bottleneck: Motivation, Nature of the Problem,
and Prior Work

As we have mentioned, the worst-user limitation induced
by the nature of the multicast transmission [24] is exacerbated
when the SNR becomes smaller and when the channel strengths
are different. Consequently, this dependence on multicasting
can severely affect the applicability of coded caching in
many wireless scenarios that possess such characteristics.
These scenarios prevail in cellular or satellite communications
settings [29] that suffer from heavy path-loss and/or shadowing
and in IoT networks or massive Machine-Type Communication
(mMTC) settings [30]. Similarly, we know that in 4G LTE
networks the range of users’ signal-to-interference-plus-noise
ratio (SINR) is typically 0–20 dB [31], while the SINR of cell-
edge users can be closer to 0–5 dB. The worst-user bottleneck is
also exacerbated when considering the well-established setting
of quasi-static fading that we will consider in the following,
and which generally comes about in the presence of longer
coherence periods and shorter latency constraints. This quasi-
static setting applies to low-mobility scenarios, which nicely

2It is worth noting that the shared cache setting not only captures the effect
of the file-size constraint, but also reflects promising heterogeneous scenarios
where a main station serves users with the help of smaller cache-endowed
helper nodes [27], [28].

capture coded-caching use-cases where pedestrians or static
users are consuming video streaming.

This bottleneck has sparked considerable research interest
that resulted in a variety of notable results [4], [5], [32]–[34].
For example, the work in [32] shows that, in a single transmit-
antenna setting with finite power and quasi-static fading, the
effective gain does not scale as K becomes larger even in the
absence of a file-size constraint; moreover, the power must
scale linearly with K in order to preclude the collapse of the
multicast rate (cf. [32, Table I]). Taking a different approach,
the work in [33] employs superposition coding for opportunistic
scheduling. Another notable work can be found in [34], which
groups together users that experience similar SNR and delivers
to each group in a separate way after neglecting users with
the weakest channels.

However, to date, no scheme is known to overcome the
worst-user bottleneck without user selection for the single
transmit-antenna setting. In this context, we analyze in this work
the worst-user bottleneck when no user selection techniques
are applied, in order to expressly show that these techniques
are not needed to overcome the worst-user bottleneck. This
is an interesting result because user selection increases the
complexity of the transmission in several aspects: First, because
of the CSI required to take the decision of which users are
going to be served in the next transmission; this requirement
entails a trade-off: In order to better exploit the benefits of
user-selection techniques, the transmitter would require CSI
from many users (ideally, all) at every time, which in turn may
consume a lot of resources. Second, the transmitter would need
to add an extra step to select the suitable user subset. Both CSI
acquisition and selection algorithm can become challenging
when the number of users become large, as it is assumed in
our analysis.

In all these previous scenarios, this bottleneck essentially
diminishes the aforementioned coded caching gain3. Had the
SNR been infinite, or the instantaneous link strengths identical,
this hypothetical gain would have taken the form Λγ + 1 for
any allowable Λ up to K (where, we recall, this allowable
Λ is generally much less than K due to the bounded file
sizes). Yet, as the SNR decreases, the effect of the worst-user
bottleneck becomes more accentuated4, and the effective gain
eventually collapses. This collapse will be rigorously described
in Proposition 2, and it is illustrated in Fig. 1.

C. Contributions and Organization

In this work, we consider coded caching with centralized
placement in the standard single-antenna BC and in the context
of finite SNR and quasi-static fading. The analysis holds for
any SNR, whereas some of the subsequent approximations
imply either many users or low SNR values. These asymptotic
results are shown to precisely characterize the performance
also for realistic values found in current wireless networks.
Our contributions are outlined as follows.

3We remind the reader that the gain describes the cache-aided speed-up
factor over the approach which employs the basic Time Division Multiplexing
(TDM) method that serves one user at a time.

4To see this, simply recall that for smaller values of SNR and for z < 1, it
follows that ln(1 + zSNR) ≈ z ln(1 + SNR).
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Fig. 1: Ratio between the average rates of the MN scheme and TDM (i.e.,
the effective coded-cahing gain) over quasi-static Rayleigh fading channel for
different values of |G| = Λγ + 1.

• We first show that the coded caching gain of the MN
scheme with respect to simple uncoded TDM (either with
or without file size constraints) considerably deteriorates for
any reasonable range of SNR values, and, in fact, completely
vanishes in the low-SNR regime.

• Then, focusing on the file-size constrained scenario (which
corresponds to having a limited number Λ of different
cache states), we present a novel transmission scheme that
substantially improves the effective gain, and which manages
to recover — without any user selection technique — the
entire theoretical coded-caching gain Λγ+1 in the presence
of sufficiently many users. The proposed scheme, which will
be referred to as the Aggregated Coded-Caching scheme,
builds on the practical inevitability of having users with
identical cache content, and it employs multi-rate encoding
that avoids XOR transmissions, thus allowing each user to
receive at a rate that matches its single-link capacity. In fact,
it turns out that having B users per cache state is as efficient
as having a time diversity of B coherence times.

• We analyze the average rate (which we rigorously define
later) and derive its exact analytical expression. To offer
insight, we apply low-SNR and large-K approximations to
derive clear closed-form expressions for the average rate and
the gain. These approximations are shown to retain a robust
accuracy even for a very modest user count.

• As a consequence of these results, we now know a simple way
to exploit the unavoidable nature of the file-size constraint
in order to almost entirely remove the worst-user bottleneck.
In essence, we show that, given the file-size constraint, the
worst-user effect can be made negligible. Importantly, this
dual idea of combining cache replication and multi-rate
transmission can be applied to a variety of different coded
caching algorithms in order to allow these algorithms to
provide gains in fading scenarios. This ability is highlighted
in Section V-C, where we apply our ideas in the context of
decentralized coded caching.

The remainder of this paper is organized as follows: Sec-
tion II defines the system model and the problem considered.
In Section III, the proposed scheme is formally described.
The average rate is investigated in Section IV, where we
derive several tight approximations. Some numerical results
and comparisons are presented in Section V, and Section VI
concludes the paper.

Notation: We use the notation X ∼ Y to state that a
random variable X follows a distribution Y . Given a real-
valued function f(x) over a variable x, f(x) = o(x) stands
for limx→0

f(x)
x = 0. E{·} denotes the expectation operator.

We use the short-hand notation [n] ≜ {1, 2, . . . , n} for a
positive integer n. N (µ, σ2) denotes the Gaussian distribution
of mean µ and variance σ2, and Gamma(m, ρ) denotes the
Gamma distribution with shape and scale parameters m and ρ
respectively. | · | denotes the cardinality operator of a set. All
sets are assumed to be ordered.

II. SYSTEM MODEL AND PROBLEM DEFINITION

We consider the quasi-static Rayleigh fading BC in which
a single-antenna transmitter serves a set of K users. As
mentioned before, each user requests a file from a library
{Wn}Nn=1 of N files, and each user is assisted by a cache of
normalized size γ ∈ [0, 1]. We consider an arbitrary number Λ
of allowable cache states, and we assume that K is an integer
multiple of Λ.

The received signal at user k ∈ [K] is given by Yk =
HkX + Zk, where Hk denotes the channel coefficient for
user k, X denotes the transmit signal satisfying an average
power constraint E[|X|2] ≤ P , and Zk denotes the zero-mean,
unit-power, additive white Gaussian noise at user k. Each user k
experiences an instantaneous SNR of SNRk = P |Hk|2, and an
average SNR of ρ ≜ EH {SNRk}. As is common in the coded
caching literature (cf. [32]), we will assume that Hk remains
fixed during a transmission stage, but may change between
different transmission stages. We will further assume that the
users experience statistically symmetric Rayleigh fading.

As it is common in works that study coded caching under
quasi-static fading [4], [32], we adopt the average rate5 as the
metric of interest. Toward this, we define the instantaneous
rate r as the maximal sum-rate that can be transmitted to
the simultaneously served users for a instantaneous channel
realization. Then, the average rate EH{r} is defined as the
average (over fading statistics) of the above instantaneous rate.
It is important to not confuse this long-term average EH{r}
with the ergodic rate, since the latter implies an ability to
encode over several fading realizations (cf. [32]). Henceforth,
all the values for rate (bits/s) and time (s) are normalized to
one Hz of bandwidth.

In this context, a coded caching scheme seeks to provide
an effective coded-caching gain, which represents the true
(multiplicative) speed up factor, at finite SNR, that the said
scheme offers over the average rate obtained by TDM. This
effective gain is contrasted to the (ideal, or high-SNR) nominal
coded-caching gain, which is the gain Λγ + 1 provided by

5We recall that, for quasi-static Rayleigh fading, the typical metric of the
worst-case delivery time does not have an expectation.
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file-size constrained coded caching in the error-free scenario
with fixed and identical link capacities.

The proposed scheme and the analysis are motivated by the
fact that the effective gain of the MN scheme collapses at low
SNR, which will be proven in Section IV. This collapse is
irrespective of Λ and K, i.e., it happens even in the absence
of file-size constraints.

III. AGGREGATED CODED-CACHING SCHEME

We now introduce a novel scheme, coined as the Aggregated
Coded Caching (ACC) scheme, which will be shown to
overcome the previous collapse of the effective gains. The
scheme is based on the scheme presented in [19, Section V-
A], which is henceforth denoted as “the Λ-MN” scheme. In
turn, this Λ-MN scheme consists on the MN scheme but with
cache replication. Yet, the main contribution of this work
is to provide tools that can be applied to different coded
caching schemes, namely multi-rate transmission combined
with cache replication, and the base scheme is chosen to ease
the readability.

The ACC scheme clusters the users into Λ groups of B =
K/Λ users per group, such that every member of the same
group is assigned identical cache content (i.e., they share the
same cache state). As we have seen, this is essentially inevitable
under realistic file-size constraints. The scheme also follows a
standard clique-based approach [2], such that the transmission
is divided into transmission stages that experience a clique-side
information pattern. As for [2], this implies that any desired
subfile of some served user can be found in the cache of every
other user involved in that same transmission stage. Thus,
this approach defines a side-information structure that was
addressed in the following well-known result from [35].

Proposition 1 ( [35, Thm. 6]). The capacity region of a t-user
Gaussian BC, where each user i ∈ [t] is endowed with SNR
equal to SNRi and requests message W ′

i while having access
to side information Wi ={W ′

j}j ̸=i,j∈[t], is given by

C =
{
(R1, · · · , Rt) : 0 ≤ Ri ≤ log2(1 + SNRi), i ∈ [t]

}
.

Proof. Proposition 1 is known as a special case of [35, Thm.
6], and this particular form has been considered in [36], [37].
More details on this, as well as on the association to our setting,
are described in Appendix I.

Proposition 1 implies that, under this particular configuration
of side information, each user can achieve its own point-to-
point capacity, as if no other user was being served at the
same time. There are various optimal multi-rate transmission
schemes for this setting [36], [37], and the proposed ACC
scheme can remain oblivious to the encoding choice.6

Remark 1. We state in advance that the aforementioned multi-
rate transmission must indeed be combined with the method of

6In terms of practicality, we know that very simplified schemes, such as
nesting BPSK into M-QAM constellations (cf. [4]), come extremely close to
achieving the above capacity region, and in fact achieve the single-user capacity
when we restrict ourselves to QAM modulations [38]. Such practical codes can
be directly applied in our cache-aided setting with minor performance losses.

shared caches in order to yield the desired gains. While multi-
rate transmission performs better than MN-based XORs, this
rate improvement appears only when we focus our attention
on a single isolated delivery stage that serves some fixed set
of users G. However, when considering the entire delivery
problem over all sets G, we would see no gain, because the
MN placement and multicast group generation without shared
caches would not allow for an additional subfile to be sent to
a potentially ‘fast’ user in G without generating interference
to the remaining (slower) users. This latter point, which is that
the MN placement does not allow exploitation of fast users, is
presented below in the original context of XORs.

Example 1. Consider the delivery of XOR A2,3⊕B1,3⊕C1,2

meant for users G = {1, 2, 3} who respectively ask for files
W1 = A,W2 = B,W3 = C. Even if user 1 decodes A2,3

very quickly, she must wait for B1,3 and C1,2 to be decoded,
because (by definition of the MN placement) there exists only
one subfile that is desired by user 1 and can be decoded by
users 2 and 3. An illustrative example is shown in Fig. 2a.

A. Aggregated Coded-Caching Design

We proceed with the description of the placement and
delivery phases of the ACC scheme. At the end, we will
also present a small clarifying example.

1) Placement Phase: This phase begins by arbitrarily
splitting the K users into Λ ordered groups of B = K

Λ
users each. Placement is exactly as in [19], [27], and thus it
simply applies the MN placement of the Λ-user problem, and
then each user of the same group stores the same cache content.
In particular, each file Wn, n ∈ [N ], is partitioned into

(
Λ
Λγ

)
segments as Wn →

{
W T

n : T ⊆ [Λ], |T | = Λγ
}
, and then

each user in group g ∈ [Λ] stores all the subfiles belonging to
the set Zg ≜ {W T

n : T ⊆ [Λ], |T | = Λγ, T ∋ g, ∀n ∈ [N ]}.
2) Delivery Phase: The delivery phase is split into

(
Λ

Λγ+1

)
transmission stages, where each stage involves a set G ⊆ [Λ]
of |G| = Λγ + 1 groups. During each stage, the transmitter
simultaneously delivers to as many as Λγ+1 users, each from
a different group in set G. The users within each group are
served one after the other in a round-robin manner. For a given
set G, the transmitter employs a multi-rate code that achieves
the capacity in Proposition 1, which implies that the channel
state information should be available at the transmitter only
for the |G| served users. We emphasize that the multi-rate
transmission in the ACC delivery does not require power-
splitting and guarantees the successful information decoding
in each served user due to the rate adaptation.

Let G(i) denote the i-th group in G, i ∈ [|G|] (recall the
group-set G is ordered). We represent the set of users that
are being served at a particular time by the vector v ∈ Z|G|.7

Consistently, v(i) ∈ [B] tells us which user of the i-th group
in G is currently being served, and dv(i) ∈ [N ] denotes the file
index requested by user v(i). Hence, the transmitter serves the
users v of the groups in G by transmitting

XG,v = X
({

W
G\{G(i)}
dv(i)

}
i∈[|G|]

)
, (1)

7Please note here that the dependence of v on the time index and on G is
assumed but omitted for simplicity.
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t

(a) Dedicated caches: Delay depends on the worst-user capacity at each
transmission stage. Xabc denotes the signal encoded for users a, b, and c.

t

Group 3

Group 2

Group 1

Encoded
signal X111 X211 X212 X323 X333

U1,1 U1,2 U1,3

U2,1 U2,2 U2,3

U3,1 U3,2 U3,3

(b) ACC scheme: Delay depends on the worst group sum rate. Xabc denotes
the encoded signal for users a, b, and c of groups 1, 2, and 3, respectively.

Fig. 2: Comparison of MN and ACC for a nominal coded-caching gain of 3.

where, for any set of messages Φ, X (Φ) denotes the transmitted
signal obtained from encoding the messages in Φ with a coding
scheme achieving the capacity region in Proposition 1. We
recall that the ACC scheme is oblivious to the selected coding
scheme, as long as it achieves the capacity region. As usual
in coded caching schemes, WG\{G(i)}

dv(i)
represents the subfile

intended by user v(i) that is stored in the cache of all groups
in G except group G(i).

Algorithm 1 presents the transmission for a specific group
set G. Every time the user of some group G(i′) obtains its
subfile, v(i′) is updated8 as v(i′)← v(i′)+ 1. This process is
repeated until all users in all groups in G are served. If every
user of a group has obtained its subfile, the transmission is
composed only of the remaining groups. Algorithm 1 is iterated
over all possible

(
Λ

Λγ+1

)
sets G. After this, the K users obtain

their requested files. We reemphasize that the ACC scheme
does not apply user selection. Let us proceed with a simple
clarifying example.

Example 2. Consider a transmission stage serving groups
{1, 2, 3} = G, where each group is composed of B = 3 users.
To simplify the explanation of this example, let us denote the b-
th user of group g as Ug,b and the subfile intended for this user
as W ′

g,b. Let us further assume that the normalized capacity
of each user (expressed in transmitted subfiles per time slot)
is as follows:

User 1 User 2 User 3
Group 1 1 0.25 0.2
Group 2 0.2 1 0.25
Group 3 0.25 1 0.2

8We are actually incurring an abuse of notation in (1) and Algorithm 1.
Specifically, when a group updates its served user, the transmitter continues
encoding the partially-decoded subfiles taking into account that there remains
only a part of such subfiles to be transmitted. This is intuitive from Fig. 2b.

Algorithm 1: Transmission stage for a set of groups G
1 Initialize v ∈ Z|G| as v(i)←− 1 for any i ∈ [|G|]
2 Initialize Number of finished groups←− 0
3 while Number of finished groups ̸= |G| do
4 Transmit
5 XG,v ←− X

({
W

G\{G(i)}
dv(i)

∣∣∣i ∈ [|G|] and v(i) ≤ B
})

6 until A served user v(i), i ∈ [|G|], fully obtains its
subfile

7 Set i⋆ as the index of the group G(i⋆) whose user
has decoded its subfile

8 if v(i⋆) = B then
9 Number of finished groups←−

Number of finished groups + 1

10 v(i⋆)←− v(i⋆) + 1

which simply implies that the point-to-point capacity of users
U1,1, U2,2, and U3,2 is four times the capacity of users U1,2,
U2,3, and U3,1, and five times the capacity of U1,3, U2,1, and
U3,3. The encoded signal for this example is illustrated in
Fig. 2b. Initially, the first user of each group is selected to
be served, and the transmitter sends X

(
W ′

1,1,W
′
2,1,W

′
3,1

)
.

Following the result of Proposition 1, each user can decode
its own subfile at a rate matching its single-user capacity
(log2(1 + SNRg,b)) because each user knows the subfiles of
the other two served users.

After the first slot, user U1,1 has successfully decoded its
subfile. Hence, U1,1 is substituted by U1,2, and the transmitter
sends X

(
W ′

1,2,W
′
2,1,W

′
3,1

)
. The key is that we can serve any

of the users storing the same cache state because all of them
can cache out the subfiles intended by the users of the other
groups in G, and vice versa. Thus, every time a user obtains
its subfile, a new member of the same group substitutes this
user, while the other served users can continue decoding their
subfile. In the same way, U3,1 obtains its subfile after the
fourth time slot, it is replaced by U3,2, and the transmitter
then sends X

(
W ′

1,2,W
′
2,1,W

′
3,2

)
. After the fifth slot, the three

users obtain their subfile and the transmitter starts sending
X
(
W ′

1,3,W
′
2,2,W

′
3,3

)
, and so on.

IV. AVERAGE RATE ANALYSIS

In this section, we analyze the long-term average rate of
the Λ-MN and ACC schemes. First, we will derive the exact
expression of the average rate for both schemes. Afterward,
we will approximate this rate at low SNR, and we will also
derive the limit in the regime of many users. It will turn out,
as we will see in the following, that these two approximations
are very robust in realistic scenarios. Furthermore, we obtain
the effective gain of this scheme with respect to TDM as well
as its improvement with respect to the Λ-MN scheme, and
we show that while the effective gain of the Λ-MN scheme
vanishes at low SNR, the ACC scheme recovers — at any SNR
value — the nominal (high-SNR) gain as the number of users
per cache increases.

We recall that, under Rayleigh fading, the SNR follows
an exponential distribution. Hence, for user k ∈ [K], the
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probability density function (PDF) and cumulative distribution
function (CDF) of SNRk are given respectively by fSNRk

(x) =
1
ρ exp

(
−x

ρ

)
and FSNRk

(x) = 1 − exp
(
−x

ρ

)
, for any x ≥

0, where ρ = EH{SNRk} denotes the average SNR with
respect to channel states. We recall that the user channels are
statistically symmetric. As for the ACC scheme, we will use
SNRg,b, fSNRg,b

(x), and FSNRg,b
(x) to refer to the SNR, PDF,

and CDF corresponding to the b-th user of the group g, where
b ∈ [B] and g ∈ [Λ].

A. Average Rate of the Λ-MN and ACC Schemes

1) Average Rate of the Λ-MN Scheme: We first note that the
Λ-MN is an adaptation for finite-file sizes settings from [19]
of the standard MN scheme of [2]. Placement is analogous
to the one of the ACC scheme, and the transmission consists
of repeating B times the transmission of the dedicated caches
setting. Consequently, the Λ-MN scheme consists of B

(
Λ

Λγ+1

)
transmission stages, each of them employed to deliver an XOR
to a group of users of size |G| = Λγ + 1.

Consider the delivery to a particular set G of Λγ + 1 users.
We know from the multicast capacity theorem in [24] that the
maximum instantaneous rate for any user i ∈ G takes the form

r
(MN)
i,G = log2

(
1 + min

k∈G
SNRk

)
bits/s, (2)

where the minimum operator guarantees the successful infor-
mation decoding at all the users in G. Note that the delay (or
delivery time) required to transmit one sub-file to every user
in G at this transmission stage is given by

TMN,G =
F(
Λ
Λγ

) [log2 (1 + min
k∈G

SNRk

)]−1

s, (3)

where F is the total information bits of a file, and F/
(
Λ
Λγ

)
is

the size of the subfiles generated from subpacketization. Since
mink∈G SNRk follows an exponential distribution with rate
|G|/ρ, the expectation of TMN,G diverges. For this reason, we
consider the average rate as a main metric of interest, which
crisply reflects the worst-user effect.

The instantaneous sum rate is given by
∑

i∈G r
(MN)
i,G , since

we are simultaneously serving all the |G| users. Consequently,
the average (sum) rate for that specific set G takes the form

R̄
(MN)
G ≜ EH

{∑
i∈G

r
(MN)
i,G

}
=
|G|
ln 2

EH

{
ln(1 + min

k∈G
SNRk)

}
(4)

which follows because the users are statistically equivalent,
which in turn also implies that the average sum rate R̄(MN)

remains the same for any set G, i.e., it implies that R̄(MN) =

R̄
(MN)
G′ ∀G′ ⊆ [Λ], |G′| = Λγ + 1.
Naturally, the average rate under the TDM scheme, which

we denote as R̄(TDM), is a special case of R̄(MN) obtained by
setting |G| = 1. The variable mink∈G{SNRk} is the minimum
of |G| i.i.d. exponential variables of rate 1

ρ (i.e., mean ρ), and,

consequently, it follows an exponential distribution with rate
|G|/ρ (or mean ρ/|G|). Thus, it follows from [39, Eq. (15.26)] that

R̄(MN) = − |G|
ln 2

exp

( |G|
ρ

)
· Ei

(
−|G|

ρ

)
, (5)

where Ei(·) represents the exponential integral function [40].
Note that |G| = 1 in (5) yields the closed-form expression
for R̄(TDM).

2) Average Rate of the ACC Scheme: Due to the symmetry
of the ACC scheme and the statistical symmetry of the channel,
we now focus on a particular set G of |G| = Λγ+1 user groups,
where we recall that each group is composed of B users.

As explained in Section III, the ACC scheme allows us to
serve some user b of group g at its own point-to-point capacity,
and it allows us to immediately start serving another user
of the same group as soon as the said user b has completed
the decoding of its subfile. Furthermore, in the ACC scheme,
the delivery to a group-set G is completed when every user
belonging to one of these groups has obtained its subfile.
Consequently, the resulted delay (or delivery time) to serve all
user-groups in G (which include |G| ·B users) is given by

TACC,G =
F(
Λ
Λγ

) max
g∈G

B∑
b=1

[
log2 (1 + SNRg,b)

]−1

s, (6)

which will become (3) for B = 1. As for (3), the expectation
of (6) diverges. Then, as explained for the Λ-MN scheme, we
consider the average rate. The (per-user average) rate with
which any group j in the set G is served is here captured by

r
(ACC)
j,G = min

g∈G

1

B

∑B

b=1
log2(1 + SNRg,b) bits/s (7)

for all j ∈ G. By applying the same reasoning as in (2)–(4), we
obtain that the average rate with which the transmitter delivers
data across the users is given by

R̄(ACC)=
|G|
ln 2

EH

{
min
g∈G

1

B

B∑
b=1

ln(1 + SNRg,b)
}

bits/s. (8)

We quickly note that, by comparing (8) with (4), we can see
how the worst-user effect is essentially averaged out into a
cumulative “worst-group” effect. By considering dedicated
caches (i.e., B = 1), we obtain the same average rate as that of
the Λ-MN scheme in (4) despite having a different (not XOR-
based) coding scheme, which is consistent with Remark 1.

In the following, ȷ ≜
√
−1 denotes the imaginary unit,

Im{·} denotes the imaginary part of a complex number, and
E−ȷt(·) denotes the exponential integral function of the (−ȷt)-
th order [40]. Next, we present our first main result.

Lemma 1. The exact average rate of the ACC scheme over
symmetric quasi-static Rayleigh fading can be derived in a
double-integral form, which takes the form

R̄(ACC) =
|G|

B ln 2
×

∞∫
0

1

2
+

1

π

∞∫
0

Im
{
exp(−ȷxt) exp(B/ρ)

ρB EB
−ȷt

(
1
ρ

)}
t

dt

|G|

dy.

Proof. The proof is relegated to Appendix II.
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The numerical implementation of the above expression is
very complex and it provides little insight. In the following,
we obtain the effective gains in both the low-SNR limit and
the large-B limit for the Λ-MN scheme and the ACC scheme,
and we derive approximations of their rates, from which some
meaningful insights can be easily drawn.

B. Rate Approximations and Effective Gains at Low SNR

1) Λ-MN Scheme: First, we present a low-SNR approxima-
tion for the average rate of the Λ-MN scheme, which is in fact
a special case of the ACC scheme with B = 1. Although the
exact form has been derived in (5), we can provide a simple
but tight approximation which allows us to remove the special
function Ei(·) from the expression.

Lemma 2. In the low-SNR region, the average rate of the
Λ-MN scheme can be approximated by

R̄(MN)≈ |G|
ln 2

(
ln

(
1 +

ρ

|G|

)
− ρ2

2|G|2 (1 + ρ/|G|)2
)
. (9)

Proof. See Appendix III-A.

In the numerical evaluation section (cf. Fig. 6 in Section V),
it will be shown that this computationally efficient second-order
approximation can in fact provide us with an extremely reliable
estimation of the performance even in the medium-SNR region.

Let us now consider the exact effective gain of the Λ-MN
scheme, which, directly from (5), takes the form

R̄(MN)

R̄(TDM)
=
|G| exp

(
|G|
ρ

)
· Ei

(
− |G|

ρ

)
exp

(
1
ρ

)
· Ei

(
− 1

ρ

) . (10)

As expected, the effective gain converges to the nominal gain
|G| at high SNR, since the limit of (10) as ρ → ∞ is |G|.
On the other hand, in the low-SNR region, this effective gain
entirely vanishes, as stated in the following proposition.

Proposition 2. For any value of K and Λ, the effective gain
of the Λ-MN scheme converges to

lim
ρ→0

R̄(MN)

R̄(TDM)
= 1 (11)

meaning that this effective coded-caching gain entirely vanishes
at low SNR.

Proof. See Appendix III-B.

As noted before, Proposition 2 holds for any scheme which
requires decoding of single XORs.

2) ACC Scheme: After presenting the previous result for the
Λ-MN scheme, let us now consider the ACC scheme. In the
following, for any integer vector b ≜ [b1, b2, · · · , bB ] ∈ ZB

composed of B non-negative elements, we will use(
n

b

)
≜

n!

b1!b2! · · · bB !
(12)

to denote the multinomial coefficient. We can now state our
following result, which presents an expression of the rate of
the ACC scheme for the low-SNR regime.

Lemma 3. In the low-SNR region, the average rate of the
ACC scheme can be approximated by R̄(ACC) ≈ ρ|G|

B ln 2 Ψ|G|,
since it holds that

R̄(ACC) =
ρ|G|
B ln 2

Ψ|G| + o(ρ), (13)

where Ψ|G| is defined as

Ψ|G| ≜
∑

||b||1=|G|

(|G|
b

) |G|−1−
∑B

t=1(t−1)bt∏B
t=1((t− 1)!)bt

( B∑
t=1

(t− 1)bt

)
! ,

and where the sum is over all the vectors composed of B
non-negative integer elements and whose norm-1 equals |G|.
Proof. The proof is relegated to Appendix III-C.

From Lemma 3 and Proposition 2, we obtain a corollary on
the gain of the ACC scheme over the Λ-MN scheme.

Corollary 1. In the limit of low SNR, the ratio of R̄(ACC)

over R̄(MN) converges to the constant

lim
ρ→0

R̄(ACC)

R̄(MN)
=
|G|
B

Ψ|G| (14)

where we recall that |G| = K
B γ + 1.

Proof. The proof is relegated to Appendix III-D.

The expression in Corollary 1 is illustrated in Fig. 3 for
different values of B and |G|.
Remark 2. In Fig. 3, we can see that R̄(ACC)

R̄(MN) is concave
with respect to B, and that this concavity increases with |G|.
This signals that, for large |G|, most of the gain from having
B > 1 is obtained quickly, at relatively small values of B. For
example, when |G| = 100 (which is unrealistic), we see that
the ACC rate for B = 2 is up to 20 times higher than the
Λ-MN rate (B = 1).

C. Effective Gain in the Large-B Region

We now move away from the low-SNR regime, and we
consider instead the limit of many users. This regime is nicely
motivated by the ever increasing density of users in wireless
networks. Therefore, we consider that Λ remains fixed and K
can grow unboundedly, which also implies that B →∞ since
B = K/Λ. The following shows that, in the limit of many
users, the effective gain of the ACC scheme matches — for
any SNR value — the nominal gain.

Lemma 4. For any average SNR ρ, the ACC scheme guarantees

lim
B→∞

R̄(ACC)

R̄(TDM)
= Λγ + 1, (15)

and, thus, its effective gain matches the nominal gain for any
value of SNR.

Proof. The proof is relegated to Appendix III-E.

We now proceed to compare the ACC scheme with the Λ-
MN scheme, again in the limit of large B. We will also obtain
the low-SNR approximation of this comparison, which nicely
captures scenarios such as cell-free or satellite networks, where
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Fig. 3: The ACC improvement
(

R̄(ACC)

R̄(MN)

)
over the MN scheme in Corollary 1 for different B and |G|.

the majority of the users is distributed in the edge area and/or
suffers from heavy path-loss or heavy shadowing.

Lemma 5. In a setting with Λ cache states and K = ΛB

users, and for any average SNR ρ, the ratio R̄(ACC)

R̄(MN) satisfies

lim
B→∞

R̄(ACC)

R̄(MN)
= exp

(
1− |G|

ρ

) Ei
(
− 1

ρ

)
Ei

(
− |G|

ρ

) . (16)

Furthermore, it holds that

lim
ρ→0

lim
B→∞

R̄(ACC)

R̄(MN)
= Λγ + 1. (17)

Proof. The proof is relegated to Appendix III-F. Note that (17)
follows from (16), but the same conclusion can be seen directly
by combining Proposition 2 and Lemma 4.

Remark 3. The key for recovering the nominal gain is that
a larger B implies a smaller fluctuation around the average
transmission rate within a user group, which inherently reduces
the impact of the worst-user (or worst-group) bottleneck.

Remark 4. As previously mentioned, the preservation of the
nominal gains in Lemma 5 would also hold for other coded
caching schemes. Indeed, works that focus on the finite file-size
constraint are normally based on XOR transmissions, and thus
they are not robust to the worst-user effect. Consequently, we
can improve the low-SNR performance in scenarios such as
those found in [21], [22], [27] by incorporating our approach
of multi-rate transmission and cache replication into these
schemes. This is shown in Section V-C for the setting of [21].

D. High-Fidelity Approximation of R̄(ACC) for Any SNR Value

The previous subsections offered crisp and insightful approx-
imations of the performance of the ACC scheme. We now take
a step back and seek to provide high-accuracy approximations
that can be evaluated very easily.

Indeed, both the exact value of R̄(ACC) in Lemma 1 and the
approximation at low SNR in Lemma 3 have time-consuming
implementations when B is large. To counter this, we now

provide a simple but very precise large-B approximation of
R̄(ACC), which accurately approximates the average rate even
if B is relatively small. This expression involves the well-
known Q-function Q(·), i.e., the tail distribution function of
the standard normal distribution, and the Meijer’s G-function
G·,·

·,·(·) defined in [40, Eq. (9.301)].
Before presenting the new approximation, let us denote

the expectation of the maximum of |G| i.i.d. standard normal
random variables by H|G|. Consequently, the expectation of
the minimum of such set of variables is given by −H|G|. We
can now present our next result.

Lemma 6. In the large-B regime, the average rate of the ACC
scheme can be approximated by

R̄(ACC) ≈ |G|
ln 2

(
µ− σ√

B
×H|G|

)
, (18)

where µ and σ respectively represent the average and the
standard deviation of ln(1 + SNRg,b) for g ∈ [Λ] and b ∈ [B],
which are given by

µ = − exp

(
1

ρ

)
· Ei

(
−1

ρ

)
, (19)

σ =

√
2 exp

(
1

ρ

)
G3,0

2,3

(
1

ρ

∣∣∣1,10,0,0

)
− µ2. (20)

Proof. See Appendix IV.

The term H|G| is given by the following integral form,

H|G| =
−|G|√
2π

∫ +∞

−∞
y
(
Q(y)

)|G|−1

exp

(
−y2

2

)
dy, (21)

and the proof of (21) is relegated to Appendix IV.
At this point, we note that the value of H|G| for |G| =

1, 2, 3, 4, 5 is known (cf. [41, Sec. 5.16]) and it is given in the
following table.

|G| 1 2 3 4 5

H|G| 0 π
−1
2

3
2
π

−1
2 3π

−3
2 cos−1

(−1
3

)
5
2π

−3
2 cos−1

(−23
27

)
For larger values of |G|, there are not known closed-form

expressions, but it is known (cf. [42]) that one can have



ACCEPTED ON IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 9

-50 0 50 100 150 200

0

1

2

3

4

5

6

7

8

9

10

11

0 5 10 15 20 25 30

1

2

3

4

5

6

7

8

9

10

11

Fig. 4: Effective gain versus ρ for |G| = 10. Right-side plot focuses on realistic SNR values.
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Fig. 5: Effective gain versus ρ for B = 6. Right-side plot focuses on realistic SNR values.

a simple approximation by substituting H|G| by
√
2 ln(|G|).

This approximation is based on the fact that H|G| is bounded
as 1√

π ln 2

√
ln(|G|) ≤ H|G| ≤

√
2 ln(|G|), and the fact

that lim|G|→∞
H|G|√
ln(|G|)

=
√
2 (cf. [42]).

In order to obtain a better approximation of H|G| than√
2 ln(|G|), which is simple but only accurate for large values

of |G|, a very interesting approximation is to adopt the Gauss-
Hermite quadrature (GHQ) [43, Ch. 9], which nicely balances
high accuracy and low complexity. Applying this method to
the specific integral form in (21) yields

H|G| ≈
−
√
2|G|√
π

∑V

v=1
ωvxv

(
Q(
√
2xv)

)|G|−1

, (22)

where V , xv , and ωv are the summation terms, sample points
and weights in the GHQ, respectively. Generally speaking, we
can get an approximate result with high accuracy by summing
up several terms in the GHQ.

V. NUMERICAL RESULTS

In the following, we illustrate through numerical analysis
both the exact results and the previously obtained approx-
imations. The derived approximations on the average rate
are computationally efficient, can handle large-dimensional

problems, and, as we will show via Monte-Carlo simulations,
tightly approximate the true performance of the algorithms.
In the following, we characterize the different considered
scenarios in the simulations by the parameters B and |G|.
Note that the use of these two parameters can apply to various
K,Λ, γ scenarios, where the relation follows from the fact that
|G| = Λγ + 1 = K

B γ + 1.
To motivate the values of B that we use, let us consider

a scenario with γ = 10% and a realistic subpacketization
limit of 105. For a file size of 108 bytes, this implies
an atomic sub-file size of about 1000 bytes. This gives
Λ = argmaxx∈Z

{(
x

0.1x

)
< 105

}
≈ 40, which means that

having K = 800 users reasonably allows for B up to 20.
Such (or even higher) values of K are motivated by several
different scenarios [44], [45]. In order to obtain the simulation
results with high accuracy, 106 channel states are generated
and averaged over Rayleigh fading.

A. Effective Gains With Respect to TDM

In Figs. 4–5, we present the effective coded-caching gains
of the ACC and MN schemes versus ρ, for different values of
B and different nominal gains (|G|). As expected, the effective
gains of both the ACC scheme and the MN scheme converge
to the nominal gain as ρ increases. However, the convergence
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of the ACC scheme is much faster than that of the MN scheme
and, furthermore, the convergence of the ACC scheme becomes
faster as B grows.

From the same figures, it is also worth noting that, when ρ
is relatively small, the effective coded-caching gains of both
schemes arrive to a flat lower bound. The lower bound for the
ACC scheme is notably greater and improves as either B or
|G| become bigger. However, this behavior does not extend
to the MN scheme, which is consistent with the result of
Proposition 2 stating that the effective gain of the MN scheme
collapses at low SNR regardless of the value of the high-SNR
caching gain |G|. Moreover, in Fig. 5, we can see that for the
MN scheme the worst-user effect is amplified as |G| increases.
Therefore, Figs. 4–5 show that the advantages of the ACC
scheme in terms of average rate are still significant even for a
small group size (B = 4, 6).

B. Approximations on the Average Rate R̄(ACC)

In Figs. 6–9, we validate the derived analytical approxima-
tions and highlight some interesting trends and comparisons.
First, Fig. 6 shows the average rate R̄(ACC) versus ρ for
different values of B. Note that, for B = 1, R̄(ACC) = R̄(MN).
For comparison, Fig. 6 displays the simulated result (circle and
asterisk symbols), the exact derived average rate R̄(ACC) in
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Fig. 9: R̄(ACC) versus B for |G| = 10.

Lemma 1 (solid line), the low-SNR multinomial approximation
in Lemma 3 (dashed line), and the low-SNR second-order
approximation for R̄(MN) in Lemma 2 (dotted line). The
rate enhancement due to the ACC scheme is exhibited by
comparing the results of Lemma 1 and Lemma 2 (solid and
dotted lines, respectively). Fig. 6 shows that the accuracy
of the approximation for R̄(MN) in Lemma 2 is better than
the approximation for R̄(ACC) in Lemma 3, mainly because
Lemma 3 considers a first-order approximation. Fig. 7 reveals
that the approximation derived in Lemma 3 becomes more
accurate as |G| increases, which indicates that the value of
ρ at which the nonlinear part of the average rate becomes
significant increases as |G| increases.

The large-B approximation of R̄(ACC) from Lemma 6 is
validated in Fig. 8, where the average rate is plotted for
different |G|. The values of H|G| are taken from the table
presented in Section IV-D. This large-B approximation tightly
approximates the simulation results, even for a small B. In
fact, this approximation is extremely tight for any value of B
bigger than 1. To further demonstrate the accuracy of Lemma 6,
we show in Fig. 9 the results derived by using i) the integral
calculation in (21), ii) the GHQ method in (22), and iii) the√
2 ln(|G|) approximation of H|G| for |G| > 5.
After verifying the high accuracy of the approximation in

Lemma 6, we exploit it to present some interesting comparisons
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Fig. 11: R̄(ACC)/R̄(MN) versus ρ for |G| = 4.

between the ACC scheme and the MN scheme in Figs. 10–11.
In Fig. 10, we can see through the ratio R̄(ACC)

R̄(MN) that R̄(ACC)

provides significant boost for realistic SNR values. In order to
illustrate the extent to which this ratio approaches the theoretical
gain in the low-SNR regime, we show in Fig. 11 the different
ratios/improvements achieved by varying B.

C. Exploiting the Approach in other Settings: Delivery Time
on the Decentralized-Placement Scenario

In order to show the generality of the key ideas underlying
the ACC scheme, we provide an example of its application
in a decentralized coded caching setting with finite file-size
constraints. We then compare our new decentralized scheme
with the state-of-the-art scheme from [21].

In the decentralized scenario of [21], the subpacketization
constraint induces a certain number Λ of cache states. The main
difference with our previous setting is that, during placement,
each user independently selects one of the Λ cache states
uniformly at random and stores it in its cache, such that each
of the Λ cache states will be stored at a different number of
users. Let Bg denote the number of users storing the g-th cache
state, and note that

∑Λ
g=1 Bg = K.

During the delivery phase, the scheme in [21] first serves one
user from each cache state by implementing sequential XOR

transmissions as if we applied the standard MN scheme for Λ
users. After that, the transmission procedure is repeated for the
next user of each cache state for the cache states still including
some not-served users. We refer to [21] for more details.

We recall that, in contrast to the scheme from [21], the
proposed ACC scheme sequentially serves all users in a
set of cache states G of |G| = Λγ + 1 cache states (i.e.,∑

g∈G Bg users). Once all these users have received their
subfile, the transmitter starts to serve another cache-state set G′.
As mentioned in Remark 4, the ACC scheme can be directly
applied to the case in which each cache state is stored at a
different number of users.

Let us now analyze the benefits of using the ideas from the
ACC scheme in this setting. Since now the number of users
per cache state may (and probably will) differ, we need to
consider the average delivery time instead of the average rate.
Note, however, that the delivery time over Rayleigh fading
channels does not converge, as previously mentioned. Hence,
for comparative purposes, we consider Nakagami-m fading to
model the wireless propagation [39]. The delivery time of the
centralized ACC scheme over Nakagami-m fading channels
has been recently analyzed in [46].

We can obtain from (6) the total delivery time of the
decentralized ACC scheme as

TACC =
F(
Λ
Λγ

) ∑
G⊆[Λ]

|G|=Λγ+1

max
g∈G

{∑Bg

b=1

[
ln (1 + SNRg,b)

]−1
}

s.

Upon defining Bmax ≜ maxg∈[Λ]{Bg} and considering the
same assumption of quasi-static fading as for the ACC scheme,
the total delivery time in the coded caching scheme of [21] is

TDec =
F(
Λ
Λγ

) Bmax∑
b=1

∑
G⊆[Λ]

|G|=Λγ+1

max
g∈G
Bg≥b

{[
ln (1 + SNRg,b)

]−1
}

s,

where SNRg,b is the SNR of the b-th (b ∈ [Bg]) user of the
g-th cache state.

For comparison, we also consider the performance of
uncoded caching. When users request different files, the total
delivery time is TunCC =

∑K
k=1

(1−γ)F
ln(1+SNRk)

s.
Next, we numerically evaluate the ratios TunCC/TACC and

TunCC/TDec, averaged over channel states and cache-state
allocations, to compare the delivery time boost of the proposed
approach over Nakagami-m fading channels. We consider that
the distribution of users in cache states follows a Multinomial
distribution with Λ equally probable outcomes (cf. [21]).

We can observe in Fig. 12 how the decentralized ACC
scheme considerably improves the performance of coded
caching, and this enhancement is more acute in the low-to-
moderate SNR region. As previously pointed out, the main
reason for this improvement is the amelioration of the worst-
user bottleneck, where this amelioration is again the result of
using shared caches as a leverage to reduce delay variability.
The fact that this reduction of the worst-user bottleneck is
improved as the total number of users K increases (cf. Lemma
4) is exemplified by comparing the K = 600 case in Fig. 12
with the K = 300 case.
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Fig. 12: Comparison of Delivery Time versus ρ for m = 2 in the decentralized-
placement scenario.

VI. CONCLUSIONS

This work is motivated by the fact that any attempt to
successfully adopt wireless coded caching in large-scale settings
must account for the effects of low-to-moderate SNR fading
channels. In this respect, we have first revealed that dedicated
caches and XOR-based transmissions may no longer be suitable
for various realistic SNR regimes. As we have seen, as the SNR
becomes smaller, the effective gains of XOR-based schemes
collapse, irrespective of either the nominal gain or the number
of users. We have then proposed a novel dual idea that combines
the use of cache replication and a multi-rate transmission
scheme. This approach recovers a big fraction of the lost gains
and does so for any SNR value. These gains are fully recovered
in the regime of many users, again for any SNR value, thus
essentially resolving the worst-user bottleneck.

The use of cache replication or shared cache states, which
is enforced in practical coded caching settings due to the file-
size constraint, turns out to be beneficial in the low SNR
regime. These gains appear in practical values of SNR and
for realistically many users. We have shown how having as
few as 2 users per cache state allows the proposed scheme
to approximately double the effective coded caching gain. As
stated before, these gains do not involve user selection, and the
corresponding user-grouping is done prior to cache-placement
and is oblivious to the demands and of course oblivious to
the channel. Finally, the derived expressions are simple but

very precise. For example, the low SNR approximation for the
MN scheme in Lemma 2 is essentially identical to the actual
performance even for SNR values as high as 20 dB. Similarly,
as Fig. 8 shows, the large-B approximation is almost exact
even for values of B as low as 10.

In the end, the proposed scheme applies toward showing that
properly designed coded caching has the ability to substantially
speed up delivery of multimedia content even in the challenging
environment of low-to-moderate SNR fading channels.

APPENDIX I: CAPACITY REGION OF PROPOSITION 1

This appendix is meant to orient the reader as to how the
existing results in [35] on multicasting with side information9

can be applied to our setting.
Using the notation of [35] and following the same derivation

as in [36], we recover Proposition 1 from [35, Thm. 6] by
choosing Xn to be (X1, X2, · · · , Xt)

n, selecting m = n
in [35, Thm. 6], setting the side information Yi to be Yi =
{Xℓ}ℓ∈[t]\i, and applying invertible mappings between Xn

i and
W ′

i for any i ∈ t. From the maximum entropy theorem [48,
Thm. 9.6.5], we obtain Proposition 1.

For the achievability part, we proceed as in [35] and
consider a codebook of 2n(

∑t
ℓ=1 Rℓ) codewords. The codewords

are denoted by xn(w1, w2, · · · , wt), with wℓ ∈ [2nRℓ ] for
any ℓ ∈ [t]. The letters of the codewords, denoted by
xj(w1, w2, · · · , wt), j ∈ [n], are i.i.d. distributed as N (0, P ).
Each user can decode its intended message from the received
signal and from the (cached) side information using typical
set decoding. The intuition behind the successful decoding at
a certain user i is that, after receiving one of the 2n(

∑t
ℓ=1 Rℓ)

codewords and thanks to the cached information, user i applies
typical decoding over only 2nRi possible codewords.

APPENDIX II: PROOF OF LEMMA 1

Let us start by introducing the notation Sg ≜
∑B

b=1 ln(1 +
SNRg,b), for any group g ∈ [Λ] of users, such that we can
write the average rate of the ACC scheme as

R̄(ACC) =
|G|

B ln 2
EH

{
min
g∈G
{Sg}

}
. (23)

For t ∈ (−∞,+∞), the characteristic function (CF) in
probability [49, Ch. 5] of Sg is defined as

CFSg
(t) = E {exp(ȷtSg)}=E

{
exp

(
ȷt

B∑
b=1

ln(1 + SNRg,b)
)}

=
[
E
{
(1 + SNRg,b)

ȷt
}]B

. (24)

Substituting the PDF of SNRg,b into (24) yields

CFSg
(t) =

1

ρB

[∫ ∞

0

(1 + x)ȷt exp

(
−x

ρ

)
dx

]B
(a)
=

1

ρB
exp

(
B

ρ

)
EB
−ȷt

(
1

ρ

)
, (25)

9Several works have considered this Gaussian setting after [35]. In [36], the
capacity region was derived for the 2-user case, the 3-user case was studied
in [37, Group 8, case G18

⋃
G28], and the converse of Prop. 1 can be also

found in [47, Thm. 4].
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where (a) follows from [40, Eq. (3.382.4)]. By considering
the Gil-Pelaez Theorem [50], the CDF of Sg is obtained as

FSg
(x) =

1

2
− 1

π

∫ ∞

0

Im
{
exp(−ȷxt) exp(B/ρ)

ρB EB
−ȷt

(
1
ρ

)}
t

dt.

Define J ≜ ming∈G{Sg} = ming∈G
{∑B

b=1 ln(1+SNRg,b)
}

.
The CDF of J can be expressed by

FJ(y) = Pr
{
min
g∈G
{Sg} ≤ y

}
= 1− Pr

{
min
g∈G
{Sg} > y

}
= 1− (Pr {Sg > y})|G|

= 1−
(
1

2
+

1

π

∞∫
0

Im
{
exp(−ȷxt) exp(

B
ρ )

ρB EB
−ȷt

(
1
ρ

)}
t

dt

)|G|
. (26)

As J is a non-negative random variable, it holds that E {J} =
E
{∫ J

0
dx

}
, and furthermore,

E
{∫ J

0

dx

}
= E

{∫ ∞

0

I {x ≤ J} dx
}

=

∫ ∞

0

E {I {x ≤ J}}dx =

∫ ∞

0

[1− FJ (y)] dy, (27)

where I{·} denotes the indicator function, which, for claim A,
takes the value I{A} = 1 if A is true and I{A} = 0 otherwise.
Combining (26) and (27) yields that the expectation of J is

E{J} =
∞∫
0

(
1

2
+

1

π

∞∫
0

Im
{
exp(−ȷxt) exp(B/ρ)

ρB EB
−ȷt

(
1
ρ

)}
t

dt

)|G|
dy.

It follows from (23) that R̄(ACC) = |G|
B ln 2E{J}, which gives

Lemma 1 by considering the integral form of E{J}, and
therefore Lemma 1 is proven.

APPENDIX III: PROOFS FOR SECTION IV-B AND
SECTION IV-C

A. Proof of Lemma 2

The fact that SNRg is distributed as Exp(|G|/ρ) implies that
Var(ming∈G{SNRg}) = ρ2

/|G|2 = o(ρ). Thus, in a similar way
as in [51, Eq. (4)], in the low-SNR region we can approximate
R̄(MN) by its robust approximation based on the Taylor series:
Let P (X) be a real-valued function with respect to a random
variable X with mean µX and variance σ2

X . The expectation
of P (X) can be tightly approximated in the low σ2

X region as

E{P (X)} ≈ P (µX) +
σ2
X

2

∂2P (X)

∂X2

∣∣∣∣
X=µX

(28)

where ∂2P (X)
∂X2 stands for the second derivative of P (X) with

respect to X (cf. [52]).
Considering that P (X) = |G|

ln 2 ln (1 + ming∈G {SNRg}) and
that X = ming∈G{SNRg} and adopting the robust approxima-
tion of (28) yields that R̄(MN) can be tightly approximated at
low SNR by (9).

B. Proof of Proposition 2

From the fact that Ei(−x) is bounded as (cf. [53])

−e−x ln
(
1 +

1

x

)
< Ei(−x) <

−e−x

2
ln

(
1 +

2

x

)
, (29)

we can upper bound the numerator and lower bound the
denominator of the exact expression of R̄(MN)

R̄(TDM) in (10) to
obtain that

lim
ρ→0

R̄(MN)

R̄(TDM)
≤ lim

ρ→0

|G|
2

ln
(
1 + 2ρ

|G|

)
ln(1 + ρ)

= 1. (30)

By interchanging the bounds to lower bound the ratio, we obtain
that the limit is also lower bounded by 1, which concludes the
proof of Proposition 2.

C. Proof of Lemma 3

We start by proving that

E
{ B∑

b=1

ln(1 + SNRg,b)
}
= E

{ B∑
b=1

SNRg,b

}
+ o(ρ), (31)

which is obtained from the fact that E
{∑B

b=1 ln(1 +

SNRg,b)
}

= E
{∑B

b=1

(
ln(1 + SNRg,b) − SNRg,b

)}
+

E
{∑B

b=1 SNRg,b

}
. In the above, we obtain (31) from the

Lebesgue’s Dominated Convergence Theorem [54, Thm. 16.4]
as follows: First, we know that limx→0(ln(1+ x)− x)/x = 0,
and hence ln(1 + x)− x = o(x) as x→ 0. In order to prove
that the expectation is also o(ρ) as ρ→ 0, we need to prove
that | ln(1 + x)− x| is bounded by some integrable function.
For that, since ln(1 + x) ≤ x for any x > 0, it follows that
| ln(1 + SNRg,b)− SNRg,b | ≤ | SNRg,b |, which satisfies that
E{| SNRg,b |} = ρ <∞. Hence, we can apply the Dominated
Convergence Theorem and obtain (31).

Since SNRg,b is distributed as Exp( 1ρ ),
∑B

b=1 SNRg,b fol-
lows a Gamma(B, ρ) distribution, with shape and scale param-
eters B and ρ. Then, the CDF of Φ ≜ ming∈G{

∑B
b=1 SNRg,b}

is given by

FΦ(y) = 1−
(

1

Γ(B)
Γ

(
B,

y

ρ

))|G|

(a)
= 1−

(
exp

(
−y

ρ

)∑B−1

t=0

yt

t! ρt

)|G|

, (32)

where Γ(·, ·) denotes the upper incomplete Gamma function
[40], and (a) follows from [40, Eq. (8.352.2)] since B is a
positive integer. For b ∈ ZB , let bt ≜ b(t) ≥ 0, t ∈ [B],
denote its t-th element. Recalling that

(
n
b

)
≜ n!

b1!b2!···bB ! , we
apply the Multinomial theorem [55] to get that

FΦ(y) = 1− exp

(
−|G|y

ρ

)
×

∑
||b||1=|G|

(|G|
b

)
ρ−

∑B
t=1(t−1)bt∏B

t=1((t− 1)!)bt
y
∑B

t=1(t−1)bt .
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In view of the relationship between the CDF and the expec-
tation in (27), the average rate of the ACC scheme can be
approximated in the low-SNR region by

R̄(ACC) =
|G|

B ln 2

(
E{Φ}+ o(ρ)

)
=
|G|

B ln 2

∫ ∞

0

[
1− FΦ(y)

]
dy + o(ρ)

=
|G|

B ln 2

∑
||b||1=|G|

(|G|
b

)
ρ−

∑B
t=1(t−1)bt∏B

t=1((t− 1)!)bt

×
∫ ∞

0

exp

(
−|G|y

ρ

)
y
∑B

t=1(t−1)btdy+o(ρ), (33)

which can be solved by using the definition of Gamma
function [40, Eq. (8.312.2)].

D. Proof of Corollary 1

From Lemma 3 we have that R̄(ACC) = ρ|G|
B ln 2 Ψ|G| + o(ρ)

and also that R̄(TDM) = R̄(ACC)
∣∣
B=|G|=1

= ρ
ln 2 + o(ρ),

whereas from Proposition 2 it follows that limρ→0
R̄(MN)

R̄(TDM) = 1.
These results yield the desired R̄(MN) = ρ

ln 2 + o(ρ) and

limρ→0
R̄(ACC)

R̄(MN) = limρ→0

ρ|G|
B ln 2 Ψ|G|+o(ρ)

ρ
ln 2+o(ρ) = |G|

B Ψ|G|.

E. Proof of Lemma 4

We want to prove that limB→∞
R̄(ACC)

R̄(TDM) = Λγ + 1
for a fixed number of caches Λ and for any ρ. Since
E {| ln (1 + SNRg,b) |} <∞, the Strong Law of Large Num-
bers implies that

1

B

∑B

b=1
ln (1 + SNRg,b)

a.s.−→ E {ln (1 + SNRg,b)} (34)

as B →∞, which implies that

lim
B→∞

1

B

B∑
b=1

ln (1 + SNRg,b) = E {ln (1 + SNRg,b)} , (35)

except for zero-probability events. Then since ln(1 + x) ≤ x
∀x > 0, we get that

EH

{
min
g∈G

1

B

∑B

b=1
ln(1 + SNRg,b)

}
≤ EH

{ 1

B

∑B

b=1
SNRg,b

}
(a)
= ρ <∞, (36)

where (a) comes from the fact that SNRg,b ∼ Exp( 1ρ ) and
thus

∑B
b=1 SNRg,b ∼ Gamma(B, ρ).

From (35) and (36), we can apply Lebesgue’s Dominated
Convergence Theorem [54, Thm. 16.4] to interchange the order
of expectation and limit and show that

limB→∞ R̄(ACC)/R̄(TDM)

(a)
=

lim
B→∞

|G|
ln 2EH

{
ming∈G

1
B

∑B
b=1 ln(1 + SNRg,b)

}
1

ln 2EH {ln (1 + SNRg,b)}
(37)

(b)
= |G|

EH

{
ming∈G limB→∞

1
B

∑B
b=1 ln(1 + SNRg,b)

}
EH {ln (1 + SNRg,b)}

(c)
= |G| = Λγ + 1, (38)

where (a) follows from substituting R̄(ACC) and R̄(TDM) by
their respective expressions, (b) comes from the Dominated
Convergence Theorem and the fact that the minimum of several
continuous functions is a continuous function, and (c) is due
to (35).

F. Proof of Lemma 5
From (34), and by applying the same steps as in (37)–(38),

we obtain (16) as

lim
B→∞

R̄(ACC)

R̄(MN)
=

|G|
ln 2EH {ln (1 + SNRg,b)}

|G|
ln 2EH {ln (1 + ming∈G {SNRg,b})}

(a)
= exp

(
1

ρ
− |G|

ρ

) Ei
(
− 1

ρ

)
Ei

(
− |G|

ρ

) , (39)

where (a) follows from (5). To prove (17), we first obtain
from (39) that

lim
ρ→0

lim
B→∞

R̄(ACC)

R̄(MN)
= lim

ρ→0
exp

(
1

ρ
− |G|

ρ

) Ei
(
− 1

ρ

)
Ei

(
− |G|

ρ

) . (40)

Then, in a similar manner as for the proof of Proposition 2 in
Appendix III-B, we can apply the relations −e−x ln(1 + 1

x ) <

Ei(−x) < −e−x

2 ln(1 + 2
x ) [53] in (40) to obtain that

lim
ρ→0

lim
B→∞

R̄(ACC)

R̄(MN)

≤ lim
ρ→0

exp

(
1− |G|

ρ

) 1
2 exp

(
−1
ρ

)
ln(1 + 2ρ)

exp
(

−|G|
ρ

)
ln(1 + ρ

|G| )
= |G|, (41)

lim
ρ→0

lim
B→∞

R̄(ACC)

R̄(MN)

≥ lim
ρ→0

exp

(
1− |G|

ρ

) 2 exp
(

−1
ρ

)
ln(1 + ρ)

exp
(

−|G|
ρ

)
ln(1 + 2ρ

|G| )
= |G|, (42)

which concludes the proof of Lemma 5.

APPENDIX IV: PROOF OF LEMMA 6
To prove Lemma 6, we first derive the approximation in (18).

Afterward, we obtain the values of µ and σ in (19) and (20),
and finally we derive the integral expression of H|G| in (21).

A. Approximation for the Rate of the ACC Scheme
Let Ag ≜ 1

B

∑B
b=1 ln (1 + SNRg,b), for any g ∈ [Λ],

represent the arithmetic mean of the user capacity over the
set of B users of group g, normalized by ln(2). Let us
consider the Central Limit Theorem (CLT) in the large B
case. According to the Lindeberg-Lévy CLT [56], we have that
Ag

d.−→ N
(
µ, σ2

B

)
as B → ∞, where d. stands for conver-

gence in distribution, and where µ = E {ln (1 + SNRg,b)}
and σ2 = Var {ln (1 + SNRg,b)}10. We consider now the

10Note that, if we focused on the low-SNR region, we could apply the
approximations µ ≈ E{SNRg,b} and σ2 ≈ Var

{
SNRg,b

}
. We do not

consider them here for sake of generality, and our approximation holds for
any value of SNR.
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average rate for the ACC scheme when B →∞. Recall that
A1, · · · , A|G| are i.i.d. normal random variables with mean µ
and variance σ2

/B. Although convergence in distribution does
not generally imply convergence in mean, it was shown in [57]
that this indeed holds in the specific case of extreme values of
i.i.d. random variables. Consequently, R̄(ACC) is given by

lim
B→∞

R̄(ACC) =
|G|
ln 2

E
{
min

{
A1, · · · , A|G|

}}
. (43)

Deriving a simple closed-form expression for (43) is chal-
lenging. Consequently, we propose a simple method to obtain
an approximation to this expectation. Since B → ∞ and
A1, · · · , A|G| are i.i.d. normal random variables, we can write
each Ai, i ∈ [|G|], as Ai = µ+ σ√

B
A′

i, where A′
i ∼ N (0, 1).

Then, the minimum of A1, · · · , A|G| is re-written as

min
i∈[|G|]

{Ai} = µ+
σ√
B

min
i∈[|G|]

{A′
i} . (44)

Then (18) is obtained by taking the expectation of both
sides, multiplying (44) by |G|

ln 2 , and recalling that H|G| ≜
−E

{
mini∈[|G|] {A′

i}
}

, as defined in Section IV-D.

B. Proof of (19)-(20): Mean and Variance of ln(1+SNRg,b)

We derive now the expressions for µ in (19) and σ in (20).
Note that µ

ln(2)=E {log2(1 + SNRg,b)} is exactly R̄(TDM), so
that we have (19) by considering (5) with |G| = 1. Moreover,
we have that

E
{
(ln(1 + SNRg,b))

2
}
=

1

ρ

∫ ∞

0

(ln(1 + x))
2
exp

(
−x

ρ

)
dx.

To obtain a closed-form expression for the previous integral,
we re-write both the logarithmic function and the exponential
function into their Meijer’s G-function forms [40, Eq. (9.301)],
given by ln(1 + x) = G1,2

2,2

(
x
∣∣∣1,11,0

)
and exp

(
−x

ρ

)
=

G1,0
0,1

(
x
ρ

∣∣−
0

)
, respectively. Then, the previous integral becomes

E
{(

ln(1 + SNRg,b)
)2}

=
1

ρ

∫ ∞

0

G1,2
2,2

(
x
∣∣∣1,11,0

)
G1,2

2,2

(
x
∣∣∣1,11,0

)
G1,0

0,1

(
x

ρ

∣∣−
0

)
dx

(a)
= 2 exp

(
1

ρ

)
G3,0

2,3

(
1

ρ

∣∣∣1,10,0,0

)
where (a) follows from [58, Eq. (07.34.21.0081.01)] after basic
simplifications. By combining this expression with the relation-
ship σ2 = E

{
(ln(1 + SNRg,b))

2 } − (E {ln(1 + SNRg,b)})2,
we obtain (20).

C. Proof of (21)

To derive the integral form of H|G|, we calculate the CDF
of Ω ≜ min{A′

1, · · · , A′
|G|} to be

FΩ(y) = 1− Pr
{
min

{
A′

1, · · · , A′
|G|

}
> y

}
= 1− (Pr {A′

1 > y})|G| (a)
= 1− (Q(y))

|G|
, (45)

where (a) holds because the CDF of the standard normal
distribution is FA′

i
(x) = 1−Q(x).

The corresponding PDF is then derived by

fΩ(y) =
∂FΩ(y)

∂y
= −|G| (Q(y))

|G|−1 ∂Q(y)

∂y

(a)
=

1√
2π
|G| (Q(y))

|G|−1
exp

(
−y2

2

)
,

where (a) follows from the integral form of the Q-function
and by applying the Leibniz’s Rule for differentiation under
the integral sign. The value of H|G| in (21) is then obtained
by writing the expectation of Ω as an integral form by using
the above PDF of Ω.
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