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Abstract—In this work, we address the worst-user bottleneck
of coded caching, which is known to diminish any caching
gains due to the fundamental requirement that the multicast
transmission rate should be limited by that of the worst channel
among the served users. We consider the quasi-static Rayleigh
fading Broadcast Channel, for which we first show that the coded
caching gain of the XOR-based standard coded-caching scheme
completely vanishes in the low-SNR regime. Yet, we show that
this collapse is not intrinsic to coded caching by presenting a
novel scheme that can completely recover the caching gains. The
scheme exploits an aspect that has remained unexploited: the
shared side information brought about by the file size constraint.
The worst-user effect is dramatically ameliorated because it is
replaced by the worst-group-of-users effect, where the users
within a group have the same side information and the grouping
is decided before the channel or the demands are known.

I. INTRODUCTION

Cache-aided communications is a promising approach aiming
at reducing congestion in communication networks. Toward this
aim, the seminal paper of Maddah-Ali and Niesen [1] proposed
coded caching as a means of speeding up content delivery by
exploiting receiver-side cached content to remove interference.

The work in [1] considers the error-free (or equivalently, high-
SNR) shared-link Broadcast Channel (BC), where a transmitter
with access to a library of N content files serves K users. Each
such user enjoys a local (cache) memory of size equal to the
size of M files, i.e., equal to a fraction γ , M

N ∈ [0, 1] of the
library size. The scheme of [1], henceforth referred to as the
MN scheme, involves a cache placement phase and a subsequent
delivery phase. During the first phase, each file is split into a
generally large number of subfiles, which are selectively placed
in various caches. During the second phase, the communication
is split into an also large number of transmission stages,
and, at each of them, a different subset of Kγ + 1 users
is simultaneously served, thus providing a theoretical speed-up
factor (or gain) of Kγ + 1 as compared to the uncoded case.

In recent years, a variety of works have investigated coded
caching under more realistic wireless settings, considering for
example uneven channel qualities [2]–[4] or the role of Channel
State Information (CSI) availability [5]–[7]. Unfortunately, it is
the case that coded caching suffers from two major constraints
that severely limit its gains. The first is often referred to as the
“file-size constraint”, which stems from having to split each file
into a number of subfiles that generally dwarfs any realistic file
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sizes that we may encounter [7], [8]. Hence, the MN scheme,
as well as most known schemes [8], will inevitably require
many users to share the same cache content. For example, for
the scheme in [1], a file size constraint can effectively force the
K users to share a smaller number of Λ < K distinct cache
states, which would yield a (file-size) constrained caching gain
of Λγ + 1 in the error-free scenario.

On the other hand, there is a seemingly unrelated constraint
which stems from the fact that the XOR multicast transmissions
are fundamentally and inevitably limited by the rate of the
worst user that they address [9]. This constraint, often referred
to as the “worst-user bottleneck” of coded caching, arises
when users experience different channel strengths, and it is
a constraint that is exacerbated as the SNR becomes smaller.
This bottleneck may indeed render coded caching unsuitable for
many wireless scenarios that naturally operate at SNR regimes
that are most often not much higher than 0–10 dB [10].

This latter bottleneck has sparked considerable research
interest. For example, for the well-established quasi-static
fading setting, it has been shown by [11] that, in a single
transmit antenna setting with finite power or SNR, the effective
gain does not scale as K becomes larger even in the absence of
file-size constraint. Moreover, the work in [12] exploits channel
heterogeneity to serve users at a different rate, mainly by em-
ploying superposition coding for opportunistic scheduling [12].
Another notable work is [13], which groups together users that
experience similar SNR, and which, after neglecting users with
the weakest channels, delivers to each group separately. To date,
for a single transmit antenna setting without user selection, no
scheme is known to overcome this bottleneck.

Contributions and Organization

In this work, we consider coded caching with centralized
placement in the standard single-antenna BC, in the context
of finite SNR and quasi-static fading. For this setting, we will
show that the theoretical global caching gain of the file-size
constrained MN scheme with respect to uncoded Time Division
Multiplexing (TDM), which corresponds to Λγ+1, deteriorates
considerably at moderate SNR, and, in fact, it completely
vanishes in the low-SNR regime. This low-SNR regime remains
of interest because many wireless scenarios operate at below-
moderate SNR values. As it turns out, this regime allows us
to crisply and very reliably capture the worst-user effect of
coded caching in the aforementioned realistic SNR ranges.

Then, we show that this collapse is not inherent to coded
caching. We do so by presenting a novel scheme that recovers



(without any user selection) the theoretical coded-caching gain
in the presence of sufficiently many users. The proposed scheme
builds on the inevitability of having users with identical cache
content, and it employs multi-rate encoding that avoids XOR
transmissions, thus allowing each user to receive at a rate that
matches its single-link capacity. As we will see, this implies
that, in the presence of finite file-sizes and sufficiently many
users, the worst-user effect can be made negligible even in the
absence of any user-selection or time-diversity technique.

Notations: E{·} denotes the expectation operator, |·| denotes
the cardinality operator of a set, and, for any K ∈ N, [K] ,
{1, . . . ,K}. X ∼ Y means that the random variable X follows
the distribution Y . We assume that all the sets are ordered.

II. SYSTEM MODEL AND PROBLEM DEFINITION

We consider the Rayleigh fading BC in which a single-
antenna transmitter serves a set of K users. As mentioned
before, each user requests a file from a library F = {Wn}Nn=1

of N files, and each user is assisted by a cache of normalized
size γ ∈ [0, 1]. We will consider an arbitrary number Λ
of different allowable cache states, and we will assume for
simplicity that K is an integer multiple of Λ.

The received signal at user k is given by Yk = HkX + Zk,
where Hk denotes the channel coefficient for user k, X denotes
the transmit signal satisfying an average power constraint
E[|X|2] ≤ P , and Zk denotes the zero-mean, unit-power,
additive white Gaussian noise at user k. Each user k experiences
an instantaneous SNR of SNRk = P |Hk|2, and an average
SNR of ρ , EH {SNRk}. As is common in the coded caching
literature (cf. [11]), we will assume that Hk remains fixed
during a transmission stage, but may change between different
transmission stages. We will further assume that the users
experience statistically symmetric Rayleigh fading.

As with various other works that study coded caching under
quasi-static fading [2], [11], we will adopt the transmission
rate1 as the metric of interest. Toward this, we define the
instantaneous rate rk as the maximal rate that can be transmitted
to user k for the instantaneous channel realization, and similarly
we will consider the average rate EH{rk} to be the above
rate, averaged over the fading statistics.2

In this context, a coded caching scheme seeks to provide
an effective coded-caching gain, where this effective gain
represents the true (multiplicative) speed up factor, at finite
SNR, that the said scheme offers over the average rate obtained
by TDM. This effective gain is contrasted to the (ideal, or high-
SNR) nominal coded-caching gain, which is the gain Λγ + 1
provided by the file-size constrained coded caching in the
error-free scenario with fixed and identical link capacities.

The proposed scheme and the analysis here derived are
motivated by the fact that the effective gain of the MN scheme
collapses at low SNR, which will be proven in Section IV.

1We recall that, in the quasi-static Rayleigh fading scenario, the typical
metric of the worst-case delivery time does not have an expectation.

2The long-term average EH{rk} should not be confused with the ergodic
rate, which implies an ability to encode over several fading realizations [11].

Furthermore, this collapse is irrespective of Λ and K, i.e., it
happens even in the absence of file-size constraints.

III. AGGREGATED CODED-CACHING SCHEME

We now introduce a novel scheme that we denote as the
Aggregated Coded-Caching scheme (or ACC).

The ACC scheme clusters the users into Λ groups of B =
K/Λ users per group, such that every member of the same
group is assigned identical cache content. As we have seen,
this is essentially inevitable under realistic file-size constraints.

Our scheme follows a standard clique-based approach [1],
such that the transmission is divided into transmission stages
that experience a clique-side information pattern. In particular,
as in [1], for each such stage, any desired subfile W ′i of
some served user i can be found in the cache of every other
user involved in that same transmission stage. This approach
defines a side-information structure which was addressed in
the following well known result from [14].

Proposition 1 ( [14, Thm. 6]). The capacity region of a t-user
Gaussian BC, where each user i ∈ [t] is endowed with SNR
equal to SNRi and requests message W ′i while having access
to side information Wi ={W ′j}j 6=i, is given by

C =
{

(R1, · · · , Rt) : 0 ≤ Ri ≤ log2(1 + SNRi), i ∈ [t]
}
.

Proposition 1 implies that, under this particular configuration
of side information, each user can achieve its own point-to-
point capacity. There are various optimal schemes for this
setting [15], [16], and the proposed ACC scheme can remain
oblivious to the encoding scheme employed.3

A. Aggregated Coded-Caching Design

We proceed with the description of the placement and
delivery phases of the ACC scheme. At the end, we will
also present a small clarifying example.

1) Placement phase: This phase begins by arbitrarily split-
ting the K users into Λ ordered groups of B = K

Λ users each.
Placement is exactly as in [18], and thus it simply applies
the MN placement of the Λ-user problem, such that each
user of the same group shares the same cache content. In
particular, each file Wn, n ∈ [N ], is partitioned into

(
Λ

Λγ

)
segments as Wn→

{
W Tn : T ⊆ [Λ], |T | = Λγ

}
. Then, each

user in group g ∈ [Λ] stores all the subfiles in the following
set Zg = {W Tn : T ⊆ [Λ], |T | = Λγ, T 3 g, ∀n ∈ [N ]}.

2) Delivery phase: The delivery phase is split into
(

Λ
Λγ+1

)
transmission stages, where each stage involves a set G ⊆ [Λ]
of |G| = Λγ + 1 groups. During each stage, the transmitter
simultaneously delivers to |G| = Λγ + 1 users, each from a
different group in set G. The users within each group are served
in a TDM round-robin manner. For a given set of Λγ+ 1 users
simultaneously served, the transmitter employs a multi-rate
scheme that achieves the capacity in Proposition 1.

3In terms of practicality, it is known that schemes such as nesting BPSK
into M-QAM constellations [2] can approach this optimal capacity and can in
fact achieve the single-user capacity insofar as we restrict ourselves to QAM
modulations [17]. If simplicity necessitates, such simple encoding schemes
can be directly applied in our cache-aided setting, with only minor losses.



Algorithm 1: Transmission stage for a set of groups G
1 Initialize v ∈ Z|G| as v(i)←− 1 for any i ∈ [|G|]
2 Initialize finished groups←− 0
3 while Number of finished groups 6= |G| do
4 Transmit
5 XG,v←−X

({
W
G\{G(i)}
dv(i)

∣∣∣ i∈ [|G|] and v(i)≤B
})

6 until A served user v(i), i∈ [|G|], decodes its subfile
7 Set i? as the index of the group G(i?) whose user

v(i?) has decoded its subfile
8 if v(i?) = B then
9 finished groups←− finished groups + 1

10 v(i?)←− v(i?) + 1

Once a user decodes its desired subfile, the transmitter starts
serving another user from the same group without delay, while
continuing the transmission to the other users, which is possible
because the users in the same group cache the same content.

The transmitted signal when the transmitter delivers the
subfiles A1, . . . , A|G| is denoted by X

(
A1, . . . , A|G|

)
. Let us

recall that G is ordered and let G(i) denote the i-th group in
G, i ∈ [|G|]; consistently, the vector v ∈ Z|G| represents4 the
set of currently served users, such that v(i) tells us which user
of the group G(i) is currently being served, where v(i) ∈ [B].
The transmit signal for serving users v of the groups in G is

XG,v = X
({
W
G\{G(i)}
dv(i)

}
i∈[|G|]

)
, (1)

where dv(i)∈ [N ] denotes the file index requested by user v(i).
Algorithm 1 presents the transmission for a specific set of

groups G. Every time the user of some group G(i′) obtains its
subfile, v(i′) is updated5 as v(i′)← v(i′) + 1. This process
is repeated until all the users in all the groups in G are served.
If every user of a group has obtained its intended subfile,
the transmission can be composed only of the remaining
groups. Algorithm 1 is iterated over all possible

(
Λ

Λγ+1

)
sets

G. After this, the K users can obtain their requested files.
We reemphasize that the ACC scheme does not apply user
selection. Let us proceed with a simple clarifying example.

Example 1. Consider a transmission stage that serves groups
{1, 2, 3} =: G, where each group is composed of B = 3 users.
To simplify the explanation of this example, let us denote the
b-th user of the (ordered) group g as Ug,b, and let W ′g,b denote
the subfile intended for this user. Let us further assume that
the normalized capacity of each user is as in the next table:

User 1 User 2 User 3
Group 1 1 0.25 0.2
Group 2 0.2 1 0.25
Group 3 0.25 1 0.2

where the capacity is expressed in subfiles per unit of time.
4The dependence of v on the time index and on G is omitted for simplicity.
5We are actually incurring an abuse of notation in (1) and Algorithm 1.

Specifically, when a group updates its served user, the transmitter continues
encoding the partially-decoded subfiles taking into account that there only
remains a part of such subfiles to be transmitted. This is intuitive from Fig. 1.

t

Group 3

Group 2

Group 1

Encoded
signal X111 X211 X212 X323 X333

U1,1 U1,2 U1,3

U2,1 U2,2 U2,3

U3,1 U3,2 U3,3

Fig. 1: ACC scheme for a nominal coded-caching gain of 3: Delay
depends on the average per-user rate within the group. Xabc denotes the
encoded signal for users a, b, and c, of groups 1, 2, and 3, respectively.

This means that the point-to-point capacity of users U1,1,
U2,2, and U3,2 is four times the capacity of users U1,2, U2,3,
and U3,1, and five times the capacity of U1,3, U2,1, and U3,3.
The encoded signal for this example is illustrated in Fig. 1.
Initially, the first user of each group is selected to be served,
and the transmitter sends X

(
W ′1,1,W

′
2,1,W

′
3,1

)
. Following the

result of Proposition 1, each user can decode its own subfile at
a rate matching its single-user capacity (log2(1 + SNRg,b)).

After a single unit of time, user U1,1 has successfully
decoded its subfile. Hence, U1,1 is replaced by U1,2, and the
transmitter sends X

(
W ′1,2,W

′
2,1,W

′
3,1

)
. The key is that we

can replace any of the users sharing the cache, because all
of them can cache out the subfiles intended by the users of
the other groups in G, and vice versa. Thus, every time a user
obtains its subfile, a new member of the same cache group
replaces this user: After the fourth unit of time, U3,1 obtains
its subfile, and is replaced by U3,2. Then, the transmitter sends
X
(
W ′1,2,W

′
2,1,W

′
3,2

)
. After the fifth unit of time, all the three

served users obtain their desired subfiles, the transmitter begins
to send X

(
W ′1,3,W

′
2,2,W

′
3,3

)
, and so forth.

IV. AVERAGE RATE ANALYSIS

We analyze the average rate of the MN and ACC schemes.
We recall that, under Rayleigh fading, the probability density
function (PDF) and cumulative distribution function (CDF) of
SNRk are respectively fSNRk(x) = 1/ρ e−

x
ρ , and FSNRk(x) =

1 − e−x/ρ, for x ≥ 0. We will use SNRg,b, fSNRg,b(x),
FSNRg,b(x) to refer to the SNR, PDF, and CDF corresponding
to the b-th user of the group g, where b ∈ [B] and g ∈ [Λ].

A. Average Rate of the MN and the ACC Schemes

1) MN scheme: Since the MN scheme serves Λγ + 1 users
at a time, let us consider the delivery to a particular group G
of Λγ + 1 users. From the multicast capacity theorem in [9],
the maximum instantaneous rate for any user i∈G is given by

r
(MN)
i,G = log2

(
1 + mink∈G SNRk

)
bits/s/Hz, (2)

and thus the instantaneous sum rate is simply
∑
i∈G r

(MN)
i,G ,

since we are serving |G| users simultaneously. Consequently,
the average sum rate for that specific group G takes the form

R̄
(MN)
G ,EH

{∑
i∈G

r
(MN)
i,G

}
=
|G|
ln 2

EH
{

ln(1 + min
k∈G

SNRk)
}

(3)



which follows because the users are statistically equivalent,
which in turn also implies that, for any group G′ ⊆ [Λ] of size
|G′| = Λγ + 1, the average sum rate R̄(MN) = R̄

(MN)
G′ remains

the same. Naturally, the average rate under the TDM scheme,
which we denote as R̄(TDM), is a special case of R̄(MN) which
is obtained by setting |G| = 1.

Note that, even if we allowed multi-rate transmission in the
MN scheme, we cannot start transmitting another XOR until
the slowest user decodes the previous XOR, because it will
create interference (cf. [19]).

2) ACC scheme: Due to the symmetry of the ACC scheme
and the statistical symmetry of the channel, we will here focus
on a set G of |G| = Λγ + 1 user groups, where we recall that
each group is composed of B users.

As explained in Section III, the ACC scheme allows us to
serve some user b of group g at its own point-to-point capacity,
and it allows us to immediately start serving another user of the
same group as soon as the delivery to that user b is completed.
Furthermore, in the ACC scheme, the delivery to a set G of
groups is completed when all the groups of that set are finished.
Consequently, the (per-user average) instantaneous rate with
which any group j in the set G is served is here captured by

r
(ACC)
j,G = min

g∈G

1

B

∑B

b=1
log2(1 + SNRg,b) bits/s/Hz, (4)

and thus, by applying the same reasoning as in (2)–(3), we
obtain that the average ACC rate takes the form

R̄(ACC) =
|G|
ln 2

EH
{

min
g∈G

1

B

∑B

b=1
ln
(
1 + SNRg,b

)}
. (5)

Before analyzing the gain associated to the above rate, we
note that, by comparing (5) with (3), we can see how the
worst-user effect is essentially averaged out into a cumulative
“worst-group” effect. Furthermore, the ACC scheme for B = 1
corresponds to the MN scheme.

B. Effective Gain of the MN and the ACC Schemes

The complete exposition of the finite-SNR performance of
the MN and ACC schemes can be found in the journal version
of this work [19]. Due to lack of space, we choose here to
highlight two important results. The first result concerns the
MN scheme, and it reveals that its effective gain vanishes
entirely at low SNR, irrespective of K and Λ. The second
result concerns the ACC scheme and it demonstrates that, for
sufficiently large B, the ACC scheme entirely recovers the
nominal high-SNR gain of Λγ + 1 for any SNR value.

Lemma 1. For any value of K and Λ, the MN scheme satisfies

lim
ρ→0

R̄(MN)

R̄(TDM)
= 1. (6)

Thus, its effective gain entirely vanishes at low SNR.

Proof. The proof first considers the fact that ming∈G{SNRg}
follows an exponential distribution with rate |G|/ρ. Consequently,
directly from [20, Eq. (15.26)], the above average rate takes the
form R̄(MN) = − |G|ln 2e

|G|/ρ ·Ei (−|G|/ρ), where Ei(·) represents
the exponential integral function [21]. Setting |G| = 1 directly

yields the average rate of TDM. Consequently, the ratio can
be written as

R̄(MN)

R̄(TDM)
= |G|e

|G|−1
ρ · Ei (−|G|/ρ)

Ei (−1/ρ)
. (7)

Given that −e−x ln(1 + 1
x ) < Ei(−x) < −e−x

2 ln(1 + 2
x )

[21], we can upper bound the numerator and lower bound
the denominator to obtain that

lim
ρ→0

R̄(MN)

R̄(TDM)
≤ lim
ρ→0

|G|
2

ln(1 + 2ρ
|G| )

ln(1 + ρ)
= 1. (8)

By interchanging the bounds to lower bound the ratio, we obtain
that the limit is also lower bounded by 1, which concludes the
proof of Lemma 1.

It is worth noting that the collapse of the gain in Lemma 1
holds for any scheme which requires decoding of single XORs.

We proceed to prove that, for K/Λ � 1, the worst-user
effect can be entirely eradicated.

Lemma 2. For any average SNR ρ, the ACC scheme guarantees

lim
B→∞

R̄(ACC)

R̄(TDM)
= Λγ + 1, (9)

and thus, its effective gain matches the nominal gain for any
value of SNR.

Proof. Since E {| ln (1 + SNRg,b) |} <∞, it follows from the
Strong Law of Large Numbers that, as B →∞,

lim
B→∞

1

B

∑B

b=1
ln (1 + SNRg,b)= E {ln (1 + SNRg,b)} , (10)

except for zero-probability events. Now, by taking into account
that ln(1 + x) ≤ x for any x > 0, we obtain that

EH
{

min
g∈G

1

B

B∑
b=1

ln(1 + SNRg,b)
}
≤ EH

{ 1

B

B∑
b=1

SNRg,b

}
(a)
= ρ <∞, (11)

where (a) follows because SNRg,b ∼ Exp(1/ρ) and thus
1
B

∑B
b=1 SNRg,b ∼ Gamma(B, Bρ ). From (10)–(11), we

can apply Lebesgue’s Dominated Convergence Theorem [22,
Theo. 16.4] to interchange expectation and limit to show that

lim
B→∞

|G|
ln 2EH

{
ming∈G

1
B

∑B
b=1 ln(1 + SNRg,b)

}
1

ln 2EH {ln (1 + SNRg,b)}
(a)
= |G| EH

{
min
g∈G

lim
B→∞

1
B

∑B
b=1 ln(1 + SNRg,b)

EH {ln (1 + SNRg,b)}

}
(12)

(b)
= |G| = Λγ + 1, (13)

where (b) is due to (10), and where (a) derives from the Dom-
inated Convergence Theorem and the fact that the minimum
of several continuous functions is a continuous function.

The above directly implies that, in the low SNR regime with
large B, the ACC scheme improves upon the MN scheme (for
any Λ) by a factor of Λγ + 1.
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Fig. 2: Effective coded-caching gain versus ρ for |G| = 10.
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Fig. 3: Effective coded-caching gain versus ρ for B = 6.

In Figs. 2–3, we present the effective coded-caching gains
of the ACC and MN schemes versus ρ for different values
of the number of users per group (B) and nominal gain (|G|).
The gains are obtained from evaluating the average rates given
in (3) and (5), whose exact expressions are derived in the
journal version [19]. As expected, the effective gains of both
schemes converge to the nominal gain as ρ increases. However,
the convergence of the ACC scheme is much faster than that of
the MN scheme and, furthermore, the convergence of the ACC
scheme becomes faster as B grows. Figs. 2–3 also show the
significant advantage of the ACC scheme in terms of average
rate at low SNR, even for a small group size (B = 4, 6).

V. CONCLUSIONS

We have shown that the key components of the coded-
caching schemes achieving the optimal gains in the high-SNR
regime, namely dedicated caches and XOR-based transmissions,
are not suitable for the low-SNR regime inasmuch as the perfor-
mance converges to that of simple TDM transmission without
coded caching. To overcome this problem, we have designed
a transmission scheme, so-called ACC scheme, which exploits
the unavoidable nature of the subpacketization bottleneck in
a simple way so as to reduce and asymptotically remove the
worst-user bottleneck. Remarkably, the fact that users share
the same cache content provides a time diversity effect even if

there is no luxury for such an effect. The preservation of the
asymptotic gains at low SNR under quasi-static fading, which
were thought to vanish, evidences that coded caching has the
ability to delivery multimedia content (generally involving
a large volume of data) even in the presence of previously
prohibitive values of low-to-moderate SNR. This result fosters
the use of coded caching in settings such as satellite or cell-free
networks, where most of the users are located in the edge area
and suffer from heavy path-loss or heavy shadowing.
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