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Abstract

Achieving a fair usage of network resources is of vital importance in Slice-ready
5G network. The dilemma of which network slice to accept or to reject is very
challenging for the Infrastructure Provider (InfProv). On one hand, InfProv aims to
maximize the network resources usage by accepting as many network slices as pos-
sible; on the other hand, the network resources are limited, and the network slice
requirements regarding Quality of Service (QoS) need to be fulfilled. In this paper,
we devise three admission control mechanisms based on Reinforcement Learning,
namely Q-Learning, Deep Q-Learning, and Regret Matching, which allow deriv-
ing admission control decisions (policy) to be applied by InfProv to admit or reject
network slice requests. We evaluated the three algorithms using computer simula-
tion, showing results on each mechanism’s performance in terms of maximizing the
InfProv revenue and their ability to learn offline or online.
KEYWORDS:
5G; Network slicing; Infrastructure Provider; Slice Admission Control; Reinforcement Learning.

1 INTRODUCTION

The emerging 5G mobile networks are expected to provide a wide range of novel services that come with different needs
and performances, such as ultra-low latency, very high data rates, reliable communications, etc.1. In this context, Network
Slicing is envisioned to fulfill these requirements. It is based on new technologies, including Software Defined Network (SDN),
Network Function Virtualization (NFV), etc.2 3. The basic idea of network slicing is to create several virtual instances (slices)
of the same network infrastructure, where each instance can provide a specific service. So far, three main types of slice have
been defined: eMBB (Enhanced Mobile Broadband), which needs both high data rates and low latency, Ultra-Reliable Low-
Latency Communications (uRLLC) covering all services requiring ultra-low latency and high reliability, and Massive Machine-
to-Machine Communication (mMTC), requiring wireless connectivity for mass deployment of devices.
Network Slicing enables the apparition of new players in the market: the Infrastructure, or slice, Provider (InfProv), which is the
owner of the network infrastru (for example: operators), requesting for a network slice from InfProv to get a target service with
specific needs4 5. However, as each provider has limited resources6 7, it is challenging to have an optimal policy to decide which
slice requests will be accepted (and/or rejected) by InfProv, and based on which criteria. Indeed, it is difficult to find the optimal
policy that, on one hand, increases the revenue of the InfProv and allows an optimal usage of the infrastructure; on the other
hand, guarantees the requirement of the admitted network slice in terms of QoS to avoid violating the Service Level Agreement
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(SLA). Further, the optimal admission control policy has to consider the long term income of InfProv by accepting the slice that
maximizes the revenue while considering their traffic dynamic. For instance, it is difficult to decide between accepting network
slices that pay a higher price for a long duration or accepting more network slices for a short duration but pay less money.
In this work, we propose novel slice admission control (SAC) algorithms to be run at the InfProv level aiming at deriving an

optimal policy to decide if an arrival network slice request has to be accepted or rejected. The proposed algorithms are based
on Reinforcement Learning and seek the optimal policy to increase the InfProv revenue while reducing the penalty to pay due
to SLA violation. Three algorithms are introduced: Q-Learning (QL), Deep Q-Learning (DQL), and Regret Matching (RM).
Besides deriving the optimal policy, we shed light on the proposed algorithms ability to run offline or online, which is a crucial
criterion. Indeed, offline solutions require a training phase before being used, which is sometimes costly; but they generally
achieve the best results. While online solutions are trained on the fly using only observable information of the controlled system.
The rest of this paper is organized as follows: Section 2 presents different proposed solutions to address SAC’s problem and

the efficiency of using RL. Section 3 details the system model that will be analyzed later in section 4. Finally, section 5 presents
and discusses the different simulation results.

2 RELATEDWORK

Different studies have addressed the problem of network slice admission control by exploring several techniques. In16, the
authors proposed an algorithm aims at maximizing the profit of InfProv, by admitting more slice requests than the overall
capacity of the system, similarly to the concept of flight overbooking. They formulated the orchestration issue as a stochastic
management problem that performs jointly resource allocation and admission control in all technological domains composing
a mobile system. They then proposed solving the formulated problem using two algorithms: an optimal solution using Benders
decomposition and a sub-optimal heuristic that accelerates the decision-making process. The authors of17 proposed an admission
control mechanism for network slicing that maximizes InfProv revenues while meeting services’ latency requirements. They
design a SAC policy using bid selection before studying the best strategy under different constraints (e.g., available resources,
InfProv’s strategy and requested traffic, etc.).
The authors of5 proposed to maximize the revenues of InfProv when performing admission control by modeling the problem

via Markov Decision Process (MDP). They proposed two methods to solve the MDP: value iteration and Q-learning. This work
is based on offline solutions, whereas our work will present dynamic and online solutions. Moreover, the algorithms proposed
in this work are not appropriate for a complex environment, while in our work we will test algorithms tailored to more complex
environments, citing deep QL. Regarding modeling, this work aimed to maximize InfProv revenues by accepting the most
expensive slices’ requests first, which may lead to a lack of fairness between the network slices requests. Moreover, this work
ignores the notion of priority between network slices, which, in contrast, will be considered in our contribution. Finally, it did
not consider the needed physical resources in both UL and DL, which we will introduce in this work. In18, the author proposed
a new dynamic SAC model, using reinforcement learning. In this model, the InfProv generates revenues when accepting a slice
request; and based on the requested slice priority, pays a penalty when rejecting it. The designed model aims at reducing the
penalty fee by minimizing the rejection of expensive requests, hence maximizing InfProv revenues. This work also confirms the
efficiency of using RL to maximize InfProv revenues. However, in our work, we consider more parameters to tackle the SAC
issue, including the notion of hosting time needed by each slice and the requested physical resources by slice tenants at both UL
and DL directions.

3 SYSTEMMODEL

In this section, we describe the considered system model, which is illustrated in Figure 1. It comprises the following actors:
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FIGURE 1 System model

Network players: In our system model, we consider two main players: (i) the Infrastructure Provider (InfProv), which is the
owner of the network infrastructure, and in charge of instantiating network slices for tenants by providing the required resources;
(ii) the tenants that request the instantiation of network slice from the infrastructure provider to offer services for their clients.
Network slice model: In our model, each network slice is characterized by five main criteria:
1. The physical resources needed to satisfy the requirement of a network slice, in UL and DL, noted Nresireq(UL) and
Nresireq(DL), respectively.Where i is the slice type, which can be either eMBB, uRLLC, or mMTC.We define the needed
resources by each slice type as follows:

• NreseMBB
req (DL) >> NreseMBB

req (UL)

• NresuRLLCreq (DL) >> NresuRLLCreq (UL) or NresuRLLCreq (DL) == NresuRLLCreq (UL) or NresuRLLCreq (DL) <<
NresuRLLCreq (UL)

• NresmMTC
req (DL) << NresmMTC

req (UL)

We justify these assumptions as most eMBB traffic has dominated DL traffic (ex. high definition video streaming), while
mMTC traffic has dominated UL traffic (ex. IoT traffic). The case of uRLLC is different, as all the types of traffic may
exist and depend on the service.

2. The hosting time of each network slice type Htime: Each slice, if admitted, will use the InfProv’s resources for a given
duration.

3. The priority of the slice: It depends on the application running on the corresponding slice.
4. The price P i

req that a slice tenant pays to InfProv for the used resources. The tenant has to pay the resources per time unit
for theHtime duration. Here, req refers to a slice tenant, and i refers to the slice type.

Infrastructure provider model: The InfProv entity is characterized by its capacity in terms of available resources at time t
(Ct). It represents the total amount of available resources that may be allocated to a new network slice. It is worth noting thatCt is
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updated when a network slice is admitted or leaves. In other words, when a new network slice is accepted, the needed resources
will be allocated and dedicated to it; when a network slice ends, its associated resources will be automatically released. Thus, at
each time instant t, the available resources at InfProv is performed as follows: Ct= Ctotal - Callocated + Creleased . Note that, two
formulas are used, one for UL and one for DL, as the resources are separated. Ctotal is the total number of resources available in
the InfProv in UL or DL. Callocated and Creleased are respectively the number of allocated and released resources at time t in UL
or DL.
The proposed SAC model is applied only for the RAN resources, composed of DL and UL. We argue this assumption by the
fact that RAN is considered as the bottleneck of the system, while other network slice’s required resources (such as computing)
are always available, and no reservation is needed.
In summary, the InfProv is characterized by its resources capacity Ctotal, while a network slice is identified by: N i

res, Htime,
Priority, and P i

req .

4 SYSTEM ANALYSIS

As stated earlier, we seek an optimal admission control policy that aims at finding a trade-off between fulfilling the network slice
resource request (UL and DL); while maximizing InfProv revenues. First, we propose to model the SAC using Markov Decision
Process (MDP)12. Since exactly solving the MDP is very challenging due to the difficulties in modeling the traffic dynamics,
we apply reinforcement learning to derive the optimal policy and to find the earlier-mentioned trade-off. For that, we will use
different Reinforcement learning models, namely QL, DQL, and RM, to predict the optimal action to apply when a new demand
of a network slice arrives at the system (i.e., accept or reject an arrival slice request).

4.1 Markov Decision Process model
A Markov Decision Process is composed of 4-tuplesM = (S;A; T ;R), where S is the set of states, A is the set of actions, T
is the transition probability from state s at time t to state s′ at time t + 1 when taking an action a, and R is the reward obtained
by performing the action a, which leads to move from the state s to s′.
For our system, we assume that a state s = (n, m, l, b) is composed of four information where:

• n is the number of accepted eMBB slices;
• m is the number of accepted uRLLC slices;
• l is the number of accepted mMTC slices;
• b is a value that can be equal to 1,2 or 3 to indicate the slice type, eMBB, uRLLC, or mMTC, respectively, of the last

received request.
At receiving a new network slice request, InfProv, via an agent, observes the state of the system and takes action a: either to
accept or reject the request. The action set is as follows:

a =

⎧

⎪

⎨

⎪

⎩

1 if new arrival slice request is accepted
0 if new arrival slice request is rejected (1)

The different transitions of the system occur when a new network slice arrives, and a decision is needed, and when a network
slice leaves the system. If the system is in a state s = (n, m, l, b) and a new slice arrives, a decision needs to be taken (i.e., accept
or reject), leading that the system transits to one of the following states:

• (n + 1, m, l, 1) if a slice of eMBB is accepted;
• (n, m + 1, l, 2) if a slice of uRLLC is accepted;
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• (n, m, l + 1, 3) if a slice of mMTC is accepted;
• (n, m, l, 1) if a slice of eMBB is rejected;
• (n, m, l, 2) if a slice of uRLLC is rejected;
• (n, m, l, 3) if a slice of mMTC is rejected.

If a network slice leaves, then the system moves to one of the following states without taking any action:
• (n − 1, m, l, 1) if a slice of eMBB has left;
• (n, m − 1, l, 2) if a slice of uRLLC has left;
• (n, m, l − 1, 3) if a slice of mMTC has left.
As mentioned above, each network slice is described by <Nresireq(UL),Nresireq(DL),Htime, priority and P i

req>. We assume
that the price P i

req to pay by each slice tenant, by time unit, is proportional to the slice priority. Hence, we propose to model the
estimated reward that InfProv expects to receive from each accepted network slice as follows:

Rinf = sign[Ct −Nresireq] × P
i
req ×Htime

i
req (2)

With:

sign(Ct −Nresireq) =

⎧

⎪

⎨

⎪

⎩

1 Ct≥Nresireq
−1 Ct < Nresireq

(3)

In equation 2, we multiply the P i
req by Htime, since each accepted slice tenant pays a P i

req according to the slice priority by a
time unit. Hence, the total price that a tenant of an accepted slice will pay depends on his priority and the requested hosting time.
Besides, we have added the sign in this equation to ensure that there are enough resources in InfProv to support the number of
required slice resources.
It is worth noting that in this work, for each accepted network slice, the InfProv should be able to provide the needed resources

for both UL and DL. Otherwise, the InfProv will pay a penalty, if it accepts a slice request without having enough resources
to cover the slice resource requirements. To this end, Ct should be always higher than Nresireq in UL and DL. Therefore, the
reward defined in 2 for both UL and DL will be calculated as follows:

Rinf = [sign(CInfDL −NresireqDL) ∧ sign(CInfUL −NresireqUL)] × P
i
req ×Htime

i
req (4)

We also note that the Rinf is null if the slice request is rejected, as neither penalty nor reward can be applied. Having defined
the MDP model, we need to find the optimal policy that maximizes the long term total reward for InfProv. The optimal policy
corresponds to the action to take for each state s aiming at maximizing the long-term total reward. Since the MDP is hard to
solve using techniques like Value iteration or Policy iteration as the traffic model is hard to model, we describe in the next section
how to find this policy using Reinforcement Learning, through three models QL, DQN, and RM.

4.2 Admission control using QL
Q-learning is an offline reinforcement learning algorithm that generates an optimal policy to maximize the expected total reward
for any finiteMDP, i.e., the state and action spacesmay be finite, which is our model’s case. This policy is based on the Q-learning
function, which is designed to seek the best action in each state to maximize the long-term total reward.
The QL method consists first of calculating, for each possible action in each state, a value named Q-value. Then the QL

method stores these Q-values in a table, namely the Q-table. This step is called the exploration of the unknown environment. It
is worth noting that the Q-table is initiated to zero and updated with the new Q-values obtained after each episode.
The agent performs in a state st, one of the two actions: accept or reject a new slice request for the epoch t, and it observes

the state transitions st+1, and rewards r. Hence, it updates the Q-value using the weighted average of the previous and the new
Q-value, as shown in the following equation:
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Qnew
(

st, at
)

← (1 − �)Q
(

st, at
)

+ �
(

rt+1 +  maxa∈A
Q(st+1, a)

)

(5)
with:
• Q(st, at) is the old Q value;
• Qnew(st, at) the new value obtained after updating the old one;
• � is the learning rate that controls how fast the new estimation adapts to the random changes imposed by the environment.
•  is the discount factor that notifies the importance of future rewards;
• rt is a reward received from action at;
• maxQ(st+1; a) is the estimation of the optimal future action.
After several episodes, the Q-table converges and becomes the reference table for the agent (.i.e., the entity that takes decisions)

to select the best action based on the Q-value. However, one of the QL method’s weaknesses is the convergence time, i.e., the
time needed by the agent to explore all the states to learn the best action to take in the future. Indeed, it depends on the state
space; if the latter is large, the time to converge is high, which may be problematic if QL is used without offline training.

4.3 Admission control using DQL
Q learning is based on a Q-table to store the learned results for each state and action. Consequently, if the state space is large,
the table size explodes, leading to an increase in the training time as the agent has to take more time to explore all the states. To
this end, DQL uses deep learning to represent the Q-values, where each state passes through several hidden layers of a neural
network to get the Q-values. Then, DQL calculates: (i) the loss function that represents the mean squared error (MSE) as shown
equation 6 of the predicted Q-value (Qpred), and (ii) the target Q-value (Qtarget) (see equation 7) that represents the maximum
possible value for the next state.

MSE(�i) = [Qtarget −Q(st, a, �i]2 (6)

Qtarget = E[r + maxQ(st, a′, �i−1)] (7)
With � is the weight.
Using the same � weights in (6), the values Qtarget and Qpred move at the same time. For this purpose, DQL uses two neural

networks, one for Qpred and the other one for Qtarget. Algorithm 1 presents the different steps of the DQL algorithm.
Note that we have considered the states and actions as defined in the MDP.

4.4 Admission control using Regret Matching
Regret Matching (RM) is an online learning algorithm similar to Reinforcement Learning. Its agent (player or user) looks for the
right action based on the regrets of the previous actions. The main principle consists of minimizing the regrets of its decisions
at each step of the system. To do so, the agent relies on past behavior of taken actions to guide its future decisions by favoring
the actions that it regrets not to have chosen before.
The strategy of this method is to adjust the agent’s policy by distributing probabilities on all actions proportionally to the

regrets of not having played other actions.The regret is defined as follows: if a is the action chosen by the agent at time T , thus for
any other action a ≠a∗, the regret of choosing the action a but not another action a∗ up to time T is obtained as shown equation
819.

RegT (a, a∗) =
1
T

T
∑

t=1
rt(a) −

1
T

T
∑

t=1
rit(a

∗) (8)
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Algorithm 1 Deep Q Learning algorithm
Ensure: s← st+1
Initialize: replay memory D to capacityN
Initialize: Q0(s, a) with random weights,

for episode← 1: M do
Initialize state st

for t← 1: T do

• With probability � select:
– a random action at
– at= maxa Q(st, a, �) (otherwise)

• Execute action at and observe reward rt and state st+1
• Store transition (st,at,rt,st+1) in D
• Set st+1= st
• Sample random minibatch of transitions (st,at,rt,st+1) from D

• Set Qtargetj=
⎧

⎪

⎨

⎪

⎩

rj for terminal st+1
rj +  * maxa′* Q(st+1,a’,�i−1 for non terminal st+1

• Perform a gradient descent step:
• MSE(�i)= [Qtarget −Q(st, aj , �i]2

end for
end for

Algorithm 2 Regret matching algorithm
Ensure: s← st+1
Initialize: action a1,

for t← 1: T do

• Take action at
• Receive reward rt(a) and rt(a∗)
• Update the regret of choosing action at and not a∗t is: RegT (a, a∗)= 1

T

∑T
t=1 rt(a) - 1

T

∑T
t=1 r

i
t(a

∗)

• The probability of choosing action at in the next step is: PT+1(a)=
⎧

⎪

⎨

⎪

⎩

[RegT (a,a∗)]+
∑

a=0,1[RegT (a,a∗)]+
if a ≠aT

1 −
∑

a′≠aT
PT+1(a′) if a= aT

• Select action corresponding to maximum probability
• Update action at+1

end for



8

with: rt(a) is the reward obtained at time T, by choosing the action a. At each step, the agent chooses an action aT between two
actions (accept or reject) considered in this study (see equation 1). The probability PT+1 that the agent will choose action a in
the next step defined by next time T+1, is defined as follows:

PT+1(a) =

⎧

⎪

⎨

⎪

⎩

[RegT (a,a∗)]+
∑

a=0,1[RegT (a,a∗)]+
if a ≠aT

1 −
∑

a′≠aT
PT+1(a′) if a= aT

(9)

With: RegT (a, a∗)]+ = max [RegT (a, a∗),0] presents the non negative part of the regret RegT (a, a∗).
The RM algorithm is illustrated in Algorithm 2.
It is worth noting that the RM is a fully online solution; the policy should be initiated before that the algorithm starts adapting
itself. Therefore, we consider RM with two initial policies: accept and reject. The first one starts by accepting the network slice
requests, while the second one starts by rejecting the requests.

5 PERFORMANCE EVALUATION

In this section, we present the simulation results of the slice admission control problem by comparing the three methods’ per-
formances. It is worth noting that the RM considered here is initialized once by accepting the first received requests (noted as
RM with accept policy), and once by rejecting the first received requests (noted as RM with reject policy).

TABLE 1 Number of resources: (i) available in InfProv, (ii) requested by each slice in UL and DL

[UL, DL] InfProv [100, 100]
[uRLLC, mMTC, mMBB] UL slices [5,9,5]
[uRLLC, mMTC, mMBB] DL slices [5,5,10]

We assume that InfProv receives requests to create slices following a Poisson process with two different arrival rates as
follows: (i) rate=2 per time unit (tu) corresponding to a low arrival rate (i.e., the slice requests arrive rarely), and (ii) rate=10
per tu corresponding to a frequent slice request arrival. Besides, we assume that each slice request stays hosted in InfProv for a
Htime period. To show the impact ofHtime, we use four values as follows: (i) short period whereHtime= 5 tu, (ii) medium period
whereHtime = 20 tu, (iii) large period whereHtime = 50 tu, and (vi) very large period whereHtime = 100 tu. We consider that the
number of resources requested by each slice in UL and DL, and the number of resources available in the InfProv are different,
and their values are presented in tab Table 1. Note that the three algorithms considered in our work (i.e., RM, QL, and DQL)
apply the same reward formula, which is based on the price and hosting time of each accepted slice request.
Regarding slices’ priority, we assume obviously that uRLLC slices have the highest priority since it hosts application requiring
critical latency and reliability, while eMBB and mMTC slices have the same priority. The price of running the uRLLC slice
type is four times higher than the price to pay for running the mMTC and eMBB slice types. The latter slices (i.e., mMMTC
and eMBB) have the same price. In other words, we use the price to pay as a way to enforce priority among the slice types.
Regarding the training session, it is worth noting that the offline version of both QL and DQL algorithms requires a training
phase, in which the agent explores the environment to learn how to achieve the optimal and most rewarding actions. However,
our results are generated on the test phase, i.e., we aim to evaluate our learning models on new data.
Figure 2 illustrates the cumulative reward as well as the cumulative penalty obtained using the proposed algorithms (RM

initialized with accept policy, RM initialized with reject policy, QL, and DQL) when the arrival rate is 2 per tu, and for four



9

0 100 200 300 400 500

Time

0

50

100

150

200

250

300

C
u

m
u

la
ti

v
e
 I
n

fP
ro

v
 R

e
w

a
rd

0

5

10

15

20

25

30

C
u

m
u

la
ti

v
e
 I
n

fP
ro

v
 P

e
n

a
lt

y

Reward RM init Accept

Reward RM init Reject

Reward QL

Reward DQL

Penalty RM init Accept

Penalty RM init Rejct

Penalty QL

Penalty DQL

(a)Htime= 5 tu

0 100 200 300 400 500

Time

0

50

100

150

200

250

C
u

m
u

la
ti

v
e
 I
n

fP
ro

v
 R

e
w

a
rd

0

5

10

15

20

25

30

C
u

m
u

la
ti

v
e
 I
n

fP
ro

v
 P

e
n

a
lt

y

Reward RM init Accept

Reward RM init Reject

Reward QL

Reward DQL

Penalty RM init Accept

Penalty RM init Rejct

Penalty QL

Penalty DQL

(b)Htime= 20 tu

0 100 200 300 400 500

Time

0

20

40

60

80

100

C
u

m
u

la
ti

v
e
 I
n

fP
ro

v
 R

e
w

a
rd

0

5

10

15

20

25

30

C
u

m
u

la
ti

v
e
 I
n

fP
ro

v
 P

e
n

a
lt

y

Reward RM init Accept

Reward RM init Reject

Reward QL

Reward DQL

Penalty RM init Accept

Penalty RM init Rejct

Penalty QL

Penalty DQL

(c)Htime= 50 tu

0 100 200 300 400 500

Time

0

10

20

30

40

50

60

C
u

m
u

la
ti

v
e
 I
n

fP
ro

v
 R

e
w

a
rd

0

5

10

15

20

25

30

C
u

m
u

la
ti

v
e
 I
n

fP
ro

v
 P

e
n

a
lt

y

Reward RM init Accept

Reward RM init Reject

Reward QL

Reward DQL

Penalty RM init Accept

Penalty RM init Rejct

Penalty QL

Penalty DQL

(d)Htime= 100 tu

FIGURE 2 InfP rov reward and penalty vs. T ime for slice arrival request rate= 2

values of the Holding time (Htime). The same metrics are shown in Figure 3, but for an arrival rate of 10 per tu. We recall that
cumulative reward is obtained by the infrastructure provider when accepting slices, and (ii) the penalty is incurred when a slice
is accepted but InfProv has not sufficient resources either in DL or UL or in both directions to satisfy its requirements. For
the cumulative reward, we notice that, for both arrival rates and in the four proposed solutions, when the Htime increases, the
cumulative reward decreases. We argue this by the fact that the resources are not released quickly whenHtime is high; hence the
InfProv rejects new requests during thisHtime period.
Besides, penalties (accepting a slice without having a resource) occur when the InfProv resources are saturated, and the SAC
keeps accepting arrival slices. We remark that penalties are higher when both the arrival rate and the holding time are high,
which is evident as the resources are quickly saturated since accepted slices stay longer in the system. Further, we note that
most of the algorithms require some time to detect that the resources are saturated and keep accepting requests until the reward
starts to be negative. Consequently, they change the policy to reject. The time to detect that the resources are saturated is a
criterion to understand which algorithm performs well, and hence learned the system’s behavior. In this case, we remark that
RM obtains the best performances with accept policy, followed by DQL. QL achieves the worst performance. We argue this
by the fact that RM, thanks to its regret formula, detects quickly that the reward starts to be negative, and adapts the policy
accordingly. Further, DQL with the neuronal network can learn and predict better when to change the policy, compared to QL,
where the Q-tables cannot predict when to update.
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FIGURE 3 InfP rov reward and penalty vs. T ime for slice arrival request rate=10

On the other hand, when the arrival rate and the holding time are low, the probability of having penalties is very small or even
null as there are always available resources to accept new slices Figure 2.
The results of Figure 2 and Figure 3 also show that in terms of rewards, the QL algorithm is the worst algorithm of all tested
algorithms regardless of the arrival rate of each type of slices, by achieving the lowest cumulative reward. This means that it
does not learn well when the policy should change from accepting to rejecting, or the contrary. Indeed, QL derived policies
that favor rejecting slice requests.

Figure 4 presents the percentage of rejected requests according toHtime when using the proposed algorithms: RMwith accept
policy, QL and DQL, and request arrivals rate= 10 corresponding to a frequent slice request arrival. We notice that increasing
Htime leads to an increase in the percentage of rejection for all the algorithms. This is obvious as high values ofHtime mean that
admitted slices will stay longer in the network, and hence low resources are available to accept new slices (i.e., increase the
reject rate). Moreover, we noticed that QL rejects more requests than RM and DQL for all the Htime, which confirms the low
cumulated penalty and reward of QL shown in the two precedent figures.

In Figure 5 we present the percentage of accepted slices according to their type and for differentHtime, when using RM algo-
rithms with accept policy, QL and DQL. Here our objective is to verify whether the proposed algorithms satisfy the slice priority
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FIGURE 4 Percentage of slice request reject vsHtime for slice arrival request rate= 10

condition, i.e., the ability to give priority to uRLLC slices compared to the other slice types. We can see that all algorithms favor
the uRLLC slice over the other slice types. Further, we see that DQL and RM show the highest percentage of accepted uRLLC
slices compared to QL. In other words, these results validate our reward function and the fact of using the price to pay as a way
to enforce priority among the three types of slices.
One of the biggest challenges when using Reinforcement Learning to solve SAC’s problem is whether online or offline learning
is better? And what is the time of convergence? So far, we have seen that RM, a fully online algorithm, works well for SAC’s
problem, while DQL and QL need to be trained before being used. Regarding DQL we wanted to understand if an online version
could make sense to address the SAC problem efficiently. To this aim, we draw in Figure 6 a comparison between the offline
DQL (when we first perform the training phase and then the tests) and the online DQL in terms of average reward. The online
training phase of DQL varies between 0 and 1000 episodes. Each episode represents one training epoch during which the sys-
tem receives 100 arrival slice requests. The maximum number of episodes depends on the convergence of the online learning
model. We have increased the number of episodes and calculated the corresponding average reward. We have stopped when the
learning model starts to give a constant reward (between 500 and 1000). Note that the average reward is an average value of the
reward obtained for the four considered Htime. We clearly observe that the online DQL needs time i.e., more episodes to con-
verge (improve the learning) and start achieving the same performance as offline DQL (around 400 episodes). This means that
during this period, i.e., before converging, the DQL performances are awful and can seriously affect the business of InfProv.
All the results confirm that one of SAC’s best policy is to accept whenever the resources are available to maximize the InfProv
profile. In this context, RMwith accept policy achieves the best performances by reducing the penalty and increasing the reward.
DQL and QL could be a good candidate, but there is a need to well tune the learning steps in order to anticipate when the policy
has to change. Indeed, RM uses a simple and efficient formula to understand the need to change policy, while DQL and QL need
to learn this. However, in a more complex system, where a high number of actions are available, things may change as RM can
hardly, by using a simple formula, capture the behavior of the system. In contrast, DQL can be a powerful solution. But, in the
case of a SAC with only two available actions, RM with the accept policy is the best alternative for InfProv.
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FIGURE 5 Percentage of accepted slice type for slice arrival request rate=10

6 CONCLUSION

In this paper, we have studied the challenge of network slice admission control for future 5G networks. We have proposed
algorithms based on Reinforcement Learning algorithms (QL, DQL), and an online algorithm, which is the Regret Matching to
solve this problem. We first modeled the problem as an MDP and described how the proposed algorithms could derive a policy
to be used by the agent to maximize the InfProv revenue while avoiding violating network slice requirements. We have modeled
the reward as a function of the network slice price to pay, and the penalty to pay if the slice requirement is not satisfied. Through
extensive simulation, we showed that all algorithms could derive a good policy, but RM achieves the best performances, as the
SAC problem is not complex and the actions state is limited.
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