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Abstract

Service Function Chaining (SFC) is a networking concept by which traffic is steered through a
set of ordered functions composing an end-to-end service. It represents one of the facilitating
technologies for 5G, and is enabled by the Network Function Virtualization (NFV) and Software
Defined Networks (SDN) paradigms. Many contributions have been made to support SFC, from
chain composition to its deployment and life-cycle management. However, few research works
study SFC orchestration. Even fewer consider the multi-domain context, which remains an open
issue with many challenges that need to be tackled to provide end-to-end services.

Indeed, in the multi-domain context, SFC placement faces new challenges related to the lack of
visibility on the local domain’s networks. The domain operators are often reluctant to unveil details
on their topology to external parties. Furthermore, the new 5G use cases introduce new require-
ments related to Quality of Service (QoS) and Quality of Experience (QoE), requirements that the
placement process needs to optimize simultaneously. Another issue stems from the possible het-
erogeneity in encapsulation methods that are implemented by each domain, which means that an
interfacing entity is needed at the ingress of each domain, to add the sub-SFCs encapsulation that
is implemented by the domain. Furthermore, to ensure the end-to-end forwarding of SFC packets,
each domain should be able to classify the packets at its network’s ingress, and be aware of the
next domain in the global SFC in order to forward the packets at the end of its local sub-SFC.

In this thesis, different solutions are proposed to enable Service Function Chaining over multiple
domains. First, a hierarchical framework is elaborated for SFC placement with limited visibility,
and an ILP model is fomulated for the optimization problem, which aims to minimize the overall
cost, and the end-to-end latency, using the weighted sum approach. A heuristic is also developed
for scalability. The evaluation results show the heuristic’s efficiency with a limited visibility, with
solutions that are close to optimal by 89− 96% in realistic times.
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Next, the formulation is improved to express the user’s preferences more accurately using
Physical Programming, and SLA classes are determined according to the 5G use cases and
their requirements in terms of latency and bandwidth per user. This approach is compared to
the previously modeled ILP. The results show that Physical Programming allows the generation
of placement solutions that are closer to the user’s preferences for all of the optimization objectives.

Finally, an ETSI-compliant orchestration framework is proposed, to deploy multi-domain SFCs
while taking into account the difference in encapsulations implemented by each domain. The
mechanisms for the end-to-end SFC deployment and deletion are detailed, and a Proof of Concept
is implemented. The evaluation shows that SFC deployment times vary mainly depending on the
VNF instantiation process, while the orchestration and network configuration times remain stable.
The observation of the end-to-end latencies also gave insights on the type of encapsulation that
should be implemented depending on SFC length.

Keywords : Service Function Chaining (SFC); Network Function Virtualization (NFV);
Software Defined Networks (SDN); Multi-Domain ; Optimization; Physical Programming;
Orchestration and Management (MANO)
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Résumé

Les avancées technologiques récentes, ainsi que la démocratisation des smartphones et objets in-
telligents ont conduit à l’émergence de nouveaux cas d’usage d’internet (voitures autonomes, e-
santé, maisons connectées...etc), ainsi qu’à la multiplication du nombre de terminaux connectés
aux réseaux mobiles et du volume de données échangées. Les réseaux de quatrième génération
(4G) n’étant pas en mesure de supporter ces nouveaux besoins, notamment en termes de bande
passante et de latence, une cinquième génération de réseaux (5G) a été développée afin de pallier
à ces exigences. Au niveau du coeur de réseau, elle s’appuie principalement sur deux technologies
: Les Software Defined Networks (SDN), ainsi que la Network Function Virtualization (NFV).

Ces deux technologies permettent également la mise en oeuvre du Service Function Chaining
(SFC). Celui-ci est un concept qui consiste en la décomposition d’un service donné en plusieurs
blocs fonctionnels, appelés Service Functions (SFs), qui effectuent tour à tour des traitements
spécifiques des données afin de délivrer le service final à l’utilisateur. Les données d’une SFC sont
acheminées entre les différentes fonctions par des Service Function Forwarders (SFFs) dans un
ordre précis, et nécessitent un mécanisme d’identification et de routage de paquets.

Plusieurs travaux ont abordé le Service Function Chaining, en proposant différentes solutions de
placement, d’orchestration et de déploiement, mais la majorité s’intéresse uniquement au cas des
SFCs mono-domaines. Cependant, il existe des cas où pour des besoins fonctionnels ou de sécu-
rité, les fonctions d’une même SFC doivent être placées sur des domaines différents. Il est à noter
que le terme multi-domaines peut concerner plusieurs entités administratives, mais également des
départements appartenant à une même entité administrative, mais dont la gestion se fait de manière
autonome et indépendante pour des raisons pratiques. Ce scénario comporte des spécificités qui
nécessitent d’être prises en compte lors du déploiement de SFCs, notamment, le manque de visibil-
ité sur l’infrastructure locale des domaines, ainsi que l’hétérogénéité des méthodes d’encapsulation
et de routage des paquets entre les différents domaines.

iii



Dans cette thèse, plusieurs solutions sont élaborées afin de permettre le déploiement de SFCs,
dès l’étape de la réception d’une requête de déploiement, jusqu’à la fin de déploiement effectif.
La première problématique abordée est celle du placement de SFCs avec une visibilité limitée
sur les infrastructures des domaines locaux. En effet, les administrateurs de domaines sont réti-
cents à divulguer des détails critiques sur leur infrastructure, et vont donc communiquer le moins
d’informations possible. Une architecture de placement hiérarchique est proposée, où un orches-
trateur centralisé reconstitue une vue abstraite du réseau à partir des informations communiquées
par chaque domaine et effectue un placement initial des SFCs, puis partitionne la requête et envoie
chaque sous-SFC aux domaines locaux pour qu’ils effectuent leur placement. Une modélisation
linéaire (Integer Linear Programming) optimale, ainsi qu’une heuristique sont développées, avec
pour objectif de minimiser le coût de déploiement et la latence de bout en bout, en utilisant une
somme pondérée des valeurs normalisées comme objectif d’optimisation. Les résultats des sim-
ulations démontrent l’efficacité de l’heuristique combinée à l’architecture hiérarchique, avec des
résultats se rapprochant de l’optimal à 89− 96%.

Par la suite, le modèle d’optimisation hiérarchique est enrichi afin d’exprimer de manière plus
précise les préferences des utilisateurs. Pour ce faire, l’approche de Physical Programming est
employée afin de formuler les fonctions objectif à l’aide d’intervalles de préférences définies par
l’utilisateur. Trois méthodes sont utilisées : Le Linear Physical Programming, le Non Linear
Physical Programming, et le Global Physical Programming. Trois objectifs d’optimisation sont
considérés : le coût, la latence de bout en bout, mais aussi la bande passante allouée par utilisateur.
Des SLAs inspirées des cas d’usage de la 5G sont définies avec différentes exigences par rapport
aux indicateurs de QoS, et un algorithme Branch and Bound ainsi qu’une heuristique mémétique
sont développés. L’évaluation de ces algorithmes montre que les méthodes de Physical Program-
ming permettent d’obtenir des résultats satisfaisant chaque objectif de manière individuelle, et que
les solutions obtenues sont plus satisfaisantes pour les utilisateurs que celles de l’ILP.

Enfin, une solution d’orchestration est conçue et mise en oeuvre afin de permettre le déploiement
des SFCs multi-domaines, en effectuant la configuration de l’acheminement des paquets de bout
en bout, et en assurant une traduction des en-têtes d’encapsulation entre les domaines. Une ar-
chitecture d’orchestration multi-domaines conforme au standard ETSI-MANO est détaillée, avec
l’incorporation d’un composant d’interfaçage permettant d’insérer l’encapsulation de chaque sous-
SFC à l’entrée du domaine, et d’assurer le routage des paquets entre domaines. Un mécanisme de
déploiement de SFCs est également mis en place afin de permettre l’échange d’informations néces-
saires entre composants pour le routage des paquets de bout en bout. Une preuve de concept est
développée afin de valider cette architecture, en implémentant une plateforme de déploiement de
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SFCs sur deux machines physiques. L’évaluation des mécanismes de déploiement et de terminai-
son démontre la scalabilité de cette solution en termes de temps d’orchestration et de configuration
qui restent stables avec l’augmentation de la longueur des SFCs. Par ailleurs, les mesures de la-
tence, en employant deux types d’encapsulation différents (NSH et Segment Routing), permettent
d’observer des différences entre les deux encapsulations au niveau de l’entrée des domaines, qui
peut être expliquée par la taille des en-têtes ajoutés, et des latences de bout en bout qui varient de
12 à 120ms selon la longueur de SFC.

Mots-clé : Chaînes de service (SFC); Virtualisation des fonctions réseau (NFV); Software
Defined Networks (SDN); Multi-Domaines ; Optimisation; Physical Programming; Orches-
tration et Management (MANO)
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Chapter 1

Introduction

The recent technological advances in networks and applications have introduced a set of new het-
erogeneous services and interactive applications with specific requirements. Further, the advent of
the Internet of Things (IoT) and Massive Machine type Communication have exponentially mul-
tiplied the number of users, and traffic volumes that networks need to handle. In this context,
a new generation of mobile networks technology (5G) is under development aiming to accom-
modate the requirements of the new use cases that have been introduced [1]. Multiple Standard
Development Organizations (SDO) and partnerships such as ITU (International Telecommunica-
tion Union), 3GPP (Third Generation Partnership Project), and NGMN (Next Generation Mobile
Networks Alliance) have launched initiatives such as the 5GPPP (5G Infrastructure Public Private
Partnership) in order to standardize the 5G architecture, and identify its use cases and require-
ments [2]. In summary, the upcoming 5G networks are set to provide higher data rates (100 times
the usual data rates), ultra-low latency (< 1ms for radio latency, and < 10ms for the end to end
latency), improved connectivity to support higher user densities and traffic volumes, a "5-nines"
reliability, support for mobility of users, while keeping cost and energy consumption at a mini-
mum [3]. Figure 1.1 summarizes the main requirements for 5G, as defined by the 5GPPP [4]. Note
that the requirements for each Key Performance Indicator (KPI) depend on the use case. Indeed,
the Augmented Reality use case would require lower latencies than those needed for a classic web
browsing usage. Therefore, a differentiation between the use cases and their specific requirements
needed to be made. The different SDOs define three main usage categories for their use case
definitions [3]:
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Figure 1.1: 5G NORMA Use Cases and Requirements [4]

• Enhanced Mobile BroadBand (eMBB): Covers the classical internet usage scenarios,
where significantly higher data rates are provided to enable applications such as the
streaming of 4K and 8K UHD videos.

• Massive Machine Type Communications (mMTC): This category encompasses the use
cases that include machine-to-machine (M2M) communications, and require support for a
very high number of connected devices and multiplied traffic volumes. Examples of use
cases include IoT based applications such as smart homes, smart cities, and smart factories.

• Ultra Reliable Low Latency Communications (URLLC): The use cases of this category
require ultra-reliable and low-latency network links for critical communications. Examples
include Autonomous Vehicles with V2X communication, drone communications, and indus-
trial control and automation.

The 3GPP defines multiple usage scenarios for 5G, with different KPI targets [1,5]. The NGMN
identifies multiple use cases, as well as user experience and system performance KPIs such as
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data rates, latency, mobility, and traffic density; and describes 5G design principles and compo-
nents [6, 7]. Similarly, the ITU defines key parameters and their target values for International
Mobile Telecommunications (IMT) for 2020 and beyond [8]. While 5GPPP proposes a layered
functional architecture for 5G dubbed 5G NORMA [9] [4], and several use cases and scenarios,
with functional and performance requirements.

In order to satisfy the aforementioned constraints, two main enabling technologies have been
retained for the core part of 5G: Network Function Virtualization (NFV), and Software Defined
Networking (SDN). Software Defined Networking states that the control plane is decoupled from
the data plane in networks: the traffic steering rules are determined by a logically centralized con-
troller and are communicated to the forwarding network components in the data plane through
a southbound interface, thus making the network dynamically programmable [10]. On the other
hand, cloud computing and virtualization allowed for the rise of the Network Function Virtualiza-
tion paradigm, where network functions are deployed as virtual instances on commodity servers
instead of proprietary hardware appliances, therefore reducing Capital (CAPEX) and Operational
(OPEX) Expenditures, and improving service flexibility and manageability [11, 12]. Along with
NFV emerged the concept of micro-services, which is the decomposition of services in multi-
ple small blocks that perform simple functions. This approach improves service modularity and
resilience, adds flexibility in service management, and allows for function sharing between ser-
vices [13]. However, decomposing services into a set of functions creates the need for steering
traffic between those functions in a particular order so that services are properly delivered; this
process is referred to as Service Function Chaining (SFC).

1.1 Context And Motivations
Service Function Chaining is a networking concept by which traffic is steered through a set of
ordered functions composing an end-to-end service. Many research works explored SFC under
different aspects: composition, resource allocation, as well as placement and chaining, and pro-
posed solutions to enable and support SFCs. However, most of these works assume that the SFC is
deployed on a single domain and ignore the multi-domain scenario, which remains an open issue
with many challenges that need to be tackled in order to provide end-to-end services.

The multi-domain scenario occurs when the SFC requires the deployment of its components on
different domains for multiple reasons such as resource shortage, the mobility of users, security,
or service composition using functions that are delivered by different operators. Note that in this
work, a domain is defined as an autonomous network infrastructure, with an orchestration entity
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that independently implements its own management decisions and its own networking protocols.
Therefore, the multi-domain context can be applied both to multiple administrative entities and to
separate divisions of the same entity.

1.1.1 Multi-Domain SFC Use Cases
In this section, we present four use-cases demonstrating the need of multi-domain SFCs. The
first use-case is the IoT use case where security and data aggregation functions are deployed on
edge clouds; the second one is related to user mobility, where a part of the SFC is migrated/re-
instantiated on a different domain post-deployment as a result of a user’s change of position; the
third one is related to the more generic scenario of service composition, where the end-to-end SFC
is constructed by deploying and chaining functions on different domains; and the final use case
refers to resource shortage, where the operator doesn’t dispose of sufficient resources in order to
accommodate the SFC, whether during the initial deployment, or post-deployment.

Industrial Internet of Things (IIoT) Use Case

As previously stated, the upcoming 5G networks are set to enable three main usage scenarios:
enhanced mobile broadband, ultra-reliable and low-latency communications, and massive machine
type communications. The latter supports the deployment of a massive number of IoT devices for
several applications. Industrial Internet of Things (IIoT) represents one of the most significant
applications of IoT, with use cases such as smart cities and smart factories. These use cases rely
on the deployment and the collection of data from a large set of IoT devices, e.g. surveillance
cameras, sensors, etc. [14]. Considering the volume of data that is generated by the different
devices, the operator could benefit from placing data aggregation functions at the edge of the
network to reduce the amount of consumed network resources [15]. Multiple network providers
and vendors have developed commercial solutions that leverage on IoT and edge computing, such
as Microsoft with Azure IoT Edge [16], or Amazon with AWS IoT Greengrass [17]. Both solutions
allow the deployment of pre-processing functions at the edge of the network, which collect the data
generated by the IoT devices and perform filtering and compression before sending it to the core
cloud for further processing.

Furthermore, for security concerns, it is essential to protect the infrastructure from different
attacks, especially since IoT devices are more vulnerable to hacking and can be used as vectors for
large scale attacks [18]. The operator would need to deploy security functions that perform traffic
inspection and attack detection in order to stop/mitigate attacks such as DDos attacks before they
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enter the network. Therefore, security functions should also be deployed as close as possible to the
sources of data.

However, due to the number and geographical distribution of the devices, the operator may not
be able to afford the cost of deploying edge clouds covering the whole sensing area; instead, a less
costly alternative is to deploy the security and compression functions on external edge clouds closer
to the devices. In that case, as illustrated in Figure 1.2, the operator deploys a multi-domain SFC,
where the data flow generated by the IoT devices is directed to the security functions deployed on
the external edge clouds. After analysis, the flows that are deemed secure are transmitted to the
aggregation functions also deployed on the external edge clouds, before sending the compressed
data to the remaining functions of the SFC that are deployed on the operator’s domain.

Figure 1.2: IoT Use Case: Security and data ag-
gregation functions at the edge of the network

Figure 1.3: User Mobility Use Case: Au-
tonomous Driving

User Mobility Use Case: Autonomous Driving

Autonomous driving is one of the main use cases defined for the upcoming 5G networks [19]. It
leverages Vehicle to Infrastructure (V2I) as well as Vehicle to Vehicle (V2V) communication in
order to collect information on the vehicles’ surroundings and make appropriate driving decisions.
We will consider the Vehicle to Infrastructure communication case: The cars capture information
on their environment using onboarded cameras and sensors, and send them to the core cloud for
treatment. The analysis function then makes decisions according to the obtained information and
sends back a navigation control instruction to the vehicle. An example SFC for this use case
would be as follows [20]:
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Figure 1.4: Service Composition Across Multiple Operator Domains

The flow goes first through security functions (IDS, firewall) in order to ensure that the traffic is
legitimate and doesn’t violate any security policy. It is then transmitted to a service prioritization
function that determines that this traffic has a high priority due to the criticality of the service.
After that the flow is routed to a video decoding function, then to a screen rendering function, and
finally to a machine learning function in order to obtain optimal navigation control procedures to
be sent to the vehicle for execution. For the sake of simplicity, the security and flow prioritization
functions will be omitted in the illustration.

In this context, and similar to the previous use case, the operator deploys image compression
functions at the edge of the network, therefore reducing the amount of consumed network re-
sources. However, as illustrated in Figure 1.3 the vehicles are in constant mobility. Some cars
could move far away from the operator’s edge clouds, which would induce additional latency that
wouldn’t be acceptable for such a critical application. Indeed, a delayed response would lead to
increased accident risk. Note that due to the unpredictability of the users’ mobility patterns, it
would be difficult for the operator to deploy edge clouds that would cover all the geographical
areas visited by its users in a cost-efficient manner. A solution for the operator would then be to
either deploy a new compression function or migrate an existing one to the edge cloud of a second
operator closer to the vehicle, then send the traffic back to the original SFC, therefore creating a
multi-domain SFC.
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Service Composition

With the advent of virtualization, different cloud service models emerged: Infrastructure as a Ser-
vice (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). These models enable
service providers to grant access to resources, development environment, and software hosted on
their infrastructure respectively, thus enabling a multi-tenant multi-layer architecture where phys-
ical and virtual resources are shared between different customers (tenants) as independent and
isolated slices. In this scenario, as illustrated in Figure 1.4, the service tenant does not own any in-
frastructure and composes its own service from a set of micro-services where each type of function
is hosted by a different cloud service provider.

As an example, the European Telecommunications Standards Institute (ETSI) Mobile Edge
Cloud (MEC) in 5G white paper describes a use case where Mobile Network Operators (MNOs)
buy edge cloud services from third party providers in order to extend their network, without buy-
ing edge infrastructure [15]. Furthermore, multiple companies such as Google [21], Amazon [22],
Microsoft [23] or IBM [24] provide Functions-as-a-Service (FaaS), also referred to as Serverless
computing, where the client deploys its own applications on cloud platforms provided and man-
aged by the FaaS operator [25]. In order to better take advantage of the different proposed features
and pricing of each vendor, the client might benefit from deploying parts of their application on
the clouds of different vendors [26]. The Virtual Network Functions (VNFs) are chained together
creating the SFC of the tenant, and each tenant then disposes of its own overlay slice spanning
multiple domains. Note that a slice can host more than one SFC.

Resource Shortage

Initial Deployment Supposing a user requests a certain service that requires the deployment of
a new SFC, but the domain operator does not dispose of sufficient resources in order to host the
whole SFC; for security reasons, the operator then chooses to deploy locally the critical functions
that should not be hosted on an external operator’s domain (e.g. functions that require access to the
operator’s database ect.), and the rest of the SFC is deployed on the domain of other operators; the
choice of the parts of the SFC that should be deployed externally may be motivated by additional
factors like resource consumption cost, or the generated latency.

Post-Deployment In case the user request load increases, and the initially deployed SFC does
not dispose of sufficient resources in order to respond to those requests while satisfying the pre-
defined SLAs, the operator typically identifies bottelneck-inducing VNFs, then performs elasticity
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operations by either allocating additional resources to those VNFs, or deploying additional in-
stances for load balancing; however, there might be cases where the operator does not dispose of
the required resources on its infrastructure. A solution would then be to scale-out those VNFs by
deploying new instances on other operator’s domains, and perform load balancing; or deploy new
instances with more resources and re-route the traffic to these new VNFs.

1.1.2 Multi-Domain SFC Challenges
The multi-domain context introduces multiple challenges, that are mainly due to the autonomous
management and orchestration of each domain, and the level of trust that is established with ex-
ternal entities. In this context, additional constraints apply as a result of the limited visibility and
control on each local domain, and heterogeneous technologies and protocols. In the following, we
describe some of the main challenges related to multi-domain SFC:

• For security reasons, the domains tend to hide key information on their infrastructure. They
would disclose the amount of resources that they make available for the SFC, the price per
unit, and information on their border gateways in order to reach the domain. However, the
internal topology information is kept hidden. This makes the SFC placement process more
difficult due to the lack of visibility. Indeed, the placement optimization process requires
information on the deployment infrastructure to find the best solution. Therefore, new place-
ment schemes and algorithms are required to perform the multi-domain SFC mapping with
a limited visibility on the infrastructure.

• Similarly, the end-to-end deployment and management of the SFCs, as well as the orchestra-
tion architectures need adaptations in order to cope with the limited visibility and control that
each domain allows on their infrastructure. New protocols are required for the deployment
and configuration of multi-domain SFCs, in order to ensure the end-to-end inter-domain
packet forwarding.

• Due to the independent management of the domains, different traffic routing and encap-
sulation methods might be employed by each domain, which requires the deployment and
configuration of interfacing entities to ensure compatibility regardless of the implemented
protocols and encapsulations of the domains.
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1.2 Thesis Statement and Contributions
Based on the aforementioned challenges, an orchestration framework is needed in order to ensure
the placement, deployment, and life-cycle management of multi-domain SFCs. In this thesis, we
propose different solutions to enable Service Function Chaining over multiple domains:

• First, we tackle the issue of placing multi-domain SFCs with limited visibility on the infras-
tructure. We propose a hierarchical framework, that allows a logically centralized coordina-
tor to collect information disclosed by each domain, and create an abstracted view in order
to compute an initial placement of the SFC, then partition the SFC accordingly, and send
each sub-SFC to the designated domains. In case the local placement of a sub-SFC fails, a
backtracking mechanism is triggered in order to compute a new solution while ruling out the
last combination.

• Second, we propose multiple methods and algorithms to compute the placement of SFCs. We
formulate an Integer Linear Programming (ILP) model that minimizes the cost and end-to-
end latency, while satisfying the service’s constraints. Then, in order to better accommodate
the user preferences, we extend the model using Physical Programming, and SLA classes
that reflect the 5G use cases and their requirements in terms of latency and bandwidth per
user. Both models are implemented using exact solutions, as well as heuristic algorithms for
scalability.

• Finally, we devise on an ETSI-compliant multi-domain SFC deployment and orchestration
framework, that includes an interfacing component in order to translate the SFC encapsula-
tions at the ingress and egress of each domain, and ensure compatibility. We also detail the
workflow for multi-domain SFC deployment that allows the configuration of the different
architectural components to perform the end-to-end packet forwarding.

Together, the contributions of this thesis allow the elaboration of a multi-domain SFC deploy-
ment orchestration architecture that manages the pre-deployment and deployment phases of the
SFC life-cycle.

1.3 Thesis Structure
This thesis is structured as follows: Chapter 2 provides an overview of the state of the art of SFC
and its enabling technologies, and details the challenges related to multi-domain SFCs. Chapter 3
and Chapter 4 are dedicated to the optimal placement of multi-domain SFCs with limited visibility
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on the infrastructure. Chapter 5 tackles the deployment phase, and proposes an orchestration ar-
chitecture for multi-domain SFC. Finally, we conclude the document in Chapter 6 with an analysis
of the thesis contributions, as well as an overview of the remaining open issues.

Chapter 2 - State of The Art: In this chapter, we introduce the main concepts and principles
related to SFC, its architecture and enabling technologies, and the existing contributions in each
phase of the SFC life-cycle. Then, we detail the challenges related to multi-domain SFC, as well
as the existing works, and their shortcomings.

Chapter 3 - SFC Placement - Weighted Sum Approach: In this chapter, we propose a hierar-
chical framework for SFC placement with limited visibility. A centralized Multi-Domain Orches-
trator creates an abstracted view of the network using the information provided by each domain,
then performs an initial placement of the SFC before partitioning the request, and sending the
sub-SFCs to the local domains accordingly. We then formulate an ILP model for the optimization
problem, aiming to minimize the overall cost and end-to-end latency using the weighted sum ap-
proach. Finally, for scalability, we develop an efficient memetic heuristic algorithm to solve this
problem. The work related to this chapter is:

• Accepted - "A Multi-Objective SFC Placement Scheme over Multiple Domains", IEEE
International Conference on Communications (ICC) 2019, Shanghai, China, N.Toumi,
D.Meddour, A.Ksentini.

Chapter 4 - SFC Placement - Physical Programming: In this chapter, the ILP formulation is
improved to better express the user’s preferences using Physical Programming, which allows the
formulation of the preferences in terms of meaningful interval values. Three Physical Program-
ming methods are used: Linear, Non Linear, and Global. In order to support the 5G use cases and
their requirements, we leverage on SDO documents in order to define several SLA classes and their
requirements in terms of latency and bandwidth per user. Finally, we develop a Branch and Bound
exact algorithm to solve this formulation, as well as a heuristic algorithm in order to perform the
multi-domain SFC placement, by minimizing cost and end-to-end latency, while maximizing the
allocated bandwidth per user. The work related to this chapter is:

• Published - "On Using Physical Programming for Multi-Domain SFC Placement with Lim-
ited Visibility", IEEE Transactions on Cloud Computing, N.Toumi, O.Bernier, D.Meddour,
A.Ksentini, doi: 10.1109/TCC.2020.3046997.
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Chapter 5 - SFC Deployment and Orchestration: In this chapter, we propose an ETSI-
compliant orchestration framework in order to deploy multi-domain SFCs while taking into
account the difference in encapsulations implemented by each domain. We extend the Or-Or
reference point as well as the Internet Engineering Task Force (IETF)’s Internal Boundary
Node [27]. We then detail the mechanisms for the end-to-end SFC deployment and deletion, as
well as the information that needs to be exchanged between the architecture components. Once
the SFC has been deployed, we describe the end-to-end packet forwarding mechanism. Finally, in
order to validate our architecture, we implement a Proof of Concept platform for multi-domain
SFC deployment, where different encapsulation types are employed. The works related to this
chapter are:

• Presented - "Towards Cross-Domain Service Function Chain Orchestration", IEEE Global
Communications Conference (Globecom) 2020, Taipei, Taiwan, N.Toumi, O.Bernier,
D.Meddour, A.Ksentini.

• Accepted- "On Cross-Domain Service Function Chain Orchestration: An Architectural
Framework", Elsevier Computer Networks Journal, N.Toumi, O.Bernier, D.Meddour,
A.Ksentini.
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Chapter 2

State of The Art

2.1 Introduction
As stated in the previous chapter, new technologies were developed to accommodate the new 5G
use cases and applications, and satisfy their requirements. In the core part of the network, two
main enablers have emerged: Software Defined Networking, and Network Function Virtualization.
Together, these technologies form the basis for the deployment of 5G services, and enable other
paradigms such as Network Slicing, and Service Function Chaining.

2.1.1 Software Defined Networking
SDN is a networking paradigm proposed by the Open Networking Foundation (ONF). It introduces
a layered networking architecture where the control plane is separated from the data plane. In the
control plane, a logically centralized controller, with global knowledge on the network, elaborates
forwarding policies that implement the desired network behavior, formulated by network appli-
cations through the northbound interface using Application Programming Interfaces (APIs). The
forwarding plane is composed of the interconnected forwarding devices that perform actions on
packets according to the instructions of the control plane, communicated through a southbound in-
terface using protocols such as OpenFlow [10]. This approach has multiple advantages: Since the
network intelligence is centralized in the control plane, the data plane devices only apply the for-
warding rules, which means that less intelligence is needed in the networking equipment, therefore
network deployment costs can be reduced. The centralized control plane also makes the network
programmable and allows more flexibility. Indeed, the global network behavior can be changed
dynamically by updating the forwarding rules in the data plane devices.
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2.1.2 Network Function Virtualization
NFV is a virtualization technology that decouples network functions from the underlying hardware
equipment. Instead of using dedicated proprietary appliances, Virtual Network Function VNF in-
stances can be deployed on commodity servers, thus reducing CAPEX and OPEX costs [11]. By
virtualizing the network functions, their deployment can be performed in a more efficient manner.
Indeed, network services can be deployed and migrated faster, and scaling benefits from added
flexibility as resources can be dynamically provisioned to the virtual instances [12]. Based on
this approach, Network Services (NS) are decomposed into sets of VNFs. In order to deliver
these services, the VNFs ought to be interconnected using Connection Points (CPs), Virtual Links
(VLs), and VNF Forwarding Graphs (VNFFGs) that describe the interconnection topology be-
tween VNFs. Furthermore, traffic rules need to be implemented in order to forward packets to
each VNF of the network service in an ordered manner.
This process is referred to as Service Function Chaining. In this chapter, we provide an overview
on the state of the art of SFC, and the previous contributions in the literature, then, we introduce
the multi-domain context and its challenges.

2.2 Service Function Chaining
A Service Function Chain is an abstraction of a service that defines its different functional compo-
nents (Service Functions), as well as the order (strict or flexible) in which the packets need to be
processed by each component (Service Function Path) in order to deliver an end-to-end network
service. The RFC7665 [28] defines a general architecture for the SFC data plane, which is based
on the following principles:

• Topological independence: SFC deployment doesn’t require any changes to the underlay
topology.

• Plane separation between the SFP establishment (control plane) and the packet handling
operations (data plane).

• Classification: Traffic that matches the classification rules for a given SFC is forwarded
according to the specific SFP of that SFC. Classification rules can have different levels of
granularity: it can use specific TCP/IP fields, parts of the packet’s payload, or rely on higher-
level inspections.

• Shared Meta-data: Meta-data/context data can be shared between different SFC components.
An example of shared Meta-data is user/subscriber information.
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• Service definition independence: The SFC architecture doesn’t depend on the details of its
service functions.

• Service function chain independence: Any operation on an SFC (creation, modification,
deletion) doesn’t impact other SFCs. This also applies to SFPs.

• Heterogeneous control/policy points: Independent mechanisms can be used to define local
classification criteria and traffic steering policies.

The Service Function Chaining deployment architecture can be modeled in three layers:

• Data plane: Is responsible for traffic steering and treatment.

• Control Plane: Enforces the forwarding rules on the network components.

• Orchestration and Management plane: Determines the traffic steering rules, the place-
ment of service functions, and manages their life-cycle events.

2.2.1 Data Plane of SFCs
2.1.1.1 Functional components

The general architecture for Service Function Chaining as described in the RFC 7665 [28] is
illustrated in Figure 2.1, and is composed of the following core components:

Figure 2.1: SFC Architecture in RFC 7665
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• Classifiers: Each packet entering the network goes through a classifier that determines the
SFC that a packet belongs to, and selects/creates the appropriate SFP. As mentioned earlier,
the classification is done by matching pre-defined classification rules. Once the SFC and
SFP are determined, the packet is encapsulated and forwarded to the first Service Function
in the SFP.

• Service Function Forwarders: Are responsible for forwarding the received packets to the
following SFF, or Service Function in the SFP, according to the information contained in
the SFC encapsulation of the packet. In case the SFP allows multiple choices in forwarding,
a SFF must ensure that all the packets are treated the same way.

• Service Functions: Are logical components responsible for performing specific treatment
of ingress traffic (e.g. firewalls, DPI, Network Address Translation (NAT), Load Balancers),
after processing the packets, the SFC encapsulation is updated in order to steer the traffic to
the next hop in the SFP, and the packets are sent back to the SFF. Note that a Service Function
can be assigned to more than one SFC. Some Service Functions are able to reclassify packets;
for example, if a DPI detects that a certain traffic is malicious, it reclassifies it accordingly
so that the packets are dropped or redirected to a firewall.

• SFC Proxys: In case some Service Functions are "SFC-unaware", which means that they
don’t support the SFC encapsulation; packets being forwarded to these service functions
need to pass through proxies that remove the SFC encapsulation, then add it again to the
classified egress packets with updated information and forward it to the next hop in the SFP.

2.1.1.2 Traffic Steering

Data plane forwarding components forward SFC traffic according to traffic steering policies. Traf-
fic steering in SFC can be performed using two key approaches [29, 30]:

Flow-based traffic steering: This approach preserves the original packets, and the forwarders
steer packets after identifying the SFC they belong to. A few proposed solutions rely on OpenFlow
classification [29, 31–34] for SFC identification; another solution relies on Deep Packet Inspec-
tion [35] at the switch level for a more fine-grained classification. However, this latter solution
introduces significant delays, as the classification needs to be performed by the forwarding com-
ponents at each hop. Furthermore, it supposes that the forwarding elements dispose of sufficient
processing capabilities in order to perform complex packet inspection and classification.
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Packet-based traffic steering: This approach assumes that the packet includes header fields that
can be used in order to determine the next hop in the SFC. This identification information can be
added using tag-based methods, where header fields of existing encapsulation methods are used
for traffic steering; and header-based methods, where new encapsulation headers are defined for
SFCs:

• Tag-based methods: The SFP is inserted in the form of MAC [36], VLan [37] or Multi Pro-
tocol Label Switching (MPLS) [38] tags. One commonly used tag-based method is Source
Routing [39] or Segment Routing, where the list of SFs is encoded as a stack of tags or
labels such as MPLS [40]. The disadvantage of these methods lies in the encapsulation size
that increase with SFC length, which could lead to packet fragmentation issues due to small
MTU (Maximum transmission unit) values .

• Header-based methods: Another method consists in adding specific headers that allow the
identification of the SFC. One widely implemented solution is the Network Service Header
(NSH) encapsulation [41], a similar encapsulation is the Service Chain Header (SCH) [42].
Other proposed encapsulation headers leverage on IPv6 and its extension header in order
to encode path information such as in NSH or SCH [43], or by encoding the list of IPv6
addresses of the SFC elements that the packets need to be steered through [44]. However,
the use of IPv6 encapsulations increases the total packet size due to the IPv6 address and
header size.

In the following, two examples of packet-based encapsulation methods are detailed:

Network Service Headers: The Network Service Header [41] encapsulation is illustrated in
Figure 2.2. The SFC Identifier is encoded into the 3-byte Service Path Identifier (SPI) field, and
the position of the packet inside the chain is encoded into the Service Index (SI) field; this tuple
allows the SFFs to determine the next hop for the packets. This encapsulation also allows the
inclusion of metadata, with two metadata types: A fixed 16-byte metadata field for MDType 0x1,
and a variable metadata field that includes its own header for MDType 0x2 that includes Metadata
Class, type, and length information. This header is added upon the classification of packets at the
ingress of the SFC, and each time the packet passes through a Service Function along the chain,
the SI is decremented. Note that the NSH header can encapsulate IPv4,IPv6, Ethernet, MPLS
packets, but also NSH packets (Next Protocol: 0x1,0x2,0x3,0x5,0x4 respectively), which means
that a multi-level NSH can be implemented.
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Figure 2.2: Network Service Header Encapsulation

Segment Routing: In Segment Routing [39, 40, 45, 46] the classifier encapsulates the for-
warding path into a packet as a list of hops, therefore reducing the amount of state information that
needs to be stored on the forwarding devices, as well as the network convergence time and config-
uration messages. However, this method lacks scalability as it significantly increases packet size,
especially for long SFCs; it also lacks flexibility as the path is statically specified at the source
node. In [38], the authors leverage on MPLS tags in order to implement an SDN-based source
routing solution for SFC. The authors address the scalability issue by dividing chains into pathlets
and allowing intermediate nodes to insert source routing information. The authors in [44] also pro-
pose a solution for Service Chaining that leverages on Segment Routing, and the solution provides
support for Segment Routing unaware VNFs.

Traffic Steering Rules: In order to perform traffic steering, the SDN paradigm can be leveraged
on, where Openflow rules are pushed to the SDN enabled switches. Depending on the encap-
sulation, the headers fields are used by the SFFs in order to determine the next hop. Figure 2.3
illustrates the forwarding rules, as well as the encapsulation headers at each hop of the SFC, for
two different SFCs, and both the NSH and Segment Routing encapsulations. For the first SFC,
the packets flow through SF1, SF3, and SF4, and the second SFC is composed of SF2, SF3, and
SF4. The traffic steering rules for NSH allow the Service Function Forwarders to determine the
next interface to forward the packets to based on the SPI and SI values. At each hop, the SFs
decrement the SI value before sending the packets back to the SFF. In contrast, for the Segment
Routing implementation, the list of hops is directly encoded into the packet headers, which means
that the forwarding rules are fewer and less complex, and the next hop computation is shorter. At
each SF, after the processing of packets, the top label in the list of hops is popped, so that the
next hop becomes at the top of that list, and the packet is sent to the connected SFF. However, the
encapsulation size at the beginning of the SFC might be bigger, depending on SFC length.
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Figure 2.3: SFC Forwarding Rules
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2.2.2 Control Plane of SFCs
The implementation of header-based methods such as NSH requires a control plane that ensures
routing consistency within the network by constructing the map of SPIs, as well as communi-
cating SPI values and forwarding policies to Classifiers, Proxies, and SFFs. This function can
be performed by a SDN controller [47]. As shown in Figure 2.4, the controller communicates
the classification and forwarding rules to the SFC components through interfaces that have been
specified in an IETF draft [48] as follows:

• C1 Interface: The C1 interface between the control plane and the classifier is used to man-
age the classification rules.

• C2 Interface: The C2 interface between the control plane and the SFF is used in order to
push the forwarding rules, and collect state information. In the SDN paradigm, this inter-
face represents the southbound interface between the SDN controller, and the OpenFlow
switches.

• C3 Interface: The C3 interface between the control plane and SFC-aware service functions
is used to collect information on the processing of the packets.

• C4 Interface: The C4 interface between the control plane and the SFC proxies is also used
to push forwarding rules and retrieve state information.

Figure 2.4: SFC Control Plane
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Another draft [49] proposes an architecture for SFC implementation in which a SFP Manager is
deployed as an intermediate between the management plane orchestrator and the SDN controller.
This component computes Service Function Paths that interconnect the VNFs of the SFC deter-
mined by the orchestrator, then forwards the configuration to the SDN controller. Davoli et al. [50]
propose an OpenFlow-based NSH control plane implementation where each service plane entity is
assumed to support the OpenFlow protocol. The interconnection is done through tunneling tech-
nologies. Each SPI/SI pair is then associated with an OpenFlow switch port. In [51] the SPI field
is re-purposed in order to identify the service function type only. The network would have to dy-
namically select the best instance according to the service function type, as well as the context
data; this solution reduces the number of SPI values that need to be managed, but doesn’t ensure
end-to-end path visibility.

2.2.3 Management Plane
2.1.3.1 ETSI-MANO Architecture

The European Telecommunications Standards Institute proposed a framework for the Management
and Orchestration (MANO) of Virtual Network Functions [12, 52, 53]. The proposed architecture
is comprised of multiple functional blocks that can interact with other external functional blocks
via reference points as shown in Figure 2.5:

NFV-MANO functional blocks:

Virtualized Infrastructure Manager (VIM): The Virtualized Infrastructure Manager is re-
sponsible for controlling and managing the NFV Infrastructure (NFVI) compute, storage and net-
work resources (allocation/upgrade/release/reclamation), and managing the association of the vir-
tualized resources to the physical compute, storage, networking resources. The VIM is also re-
sponsible for managing VNF Forwarding Graphs (create, query, update, delete), e.g. by creating
and maintaining Virtual Links, virtual networks, sub-nets, and ports, as well as the management of
security group policies to ensure network/traffic access control.

NFV Orchestrator (NFVO): The NFVO has two main responsibilities: the life-cycle man-
agement of Network Services (NS) (instantiation, update, query, scaling, collecting performance
measurement results, event collection and correlation, termination) as well as VNF Managers,
and the orchestration of NFVI resources across multiple VIMs, and governance of VNF instances
sharing resources of the NFV infrastructure.
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VNF Manager (VNFM): The VNF Manager is responsible for the life-cycle management
of VNF instances. Each VNF instance is assumed to have an associated VNFM. VNFMs may be
assigned the management of one or more VNF instances of different types.

Element Management System (EMS): The Element Management System is responsible for
FCAPS (Fault, Configuration, Accounting, Performance, Security) management functionality for
a VNF.

Figure 2.5: ETSI-MANO Architecture

21



CHAPTER 2. STATE OF THE ART

NFV-MANO information elements: An example of a Network Service and the main informa-
tion elements describing its components and their relationships and dependencies, as defined in the
ETSI specification, is given in Figure 2.6. The Network Service is composed of 3 VNFs, that are
interconnected through 2 Virtual Links and 4 Connection Points. The Network Service Descriptor
(NSD) that describes it contains references to the respective VNF Descriptors, VL Descriptors,
VNFFG Descriptors, and Connection Point information. The needed information elements are
detailed below.

Figure 2.6: ETSI-MANO Network Service Descriptor and its Information Elements

Network Service Descriptor: To deploy a given service, a Network Service Descriptor is
created in order to describe the service components such as VNFs and Virtual Links and their re-
source requirements, as well as the required connectivity and dependencies between these compo-
nents. It is used by the NFV Orchestrator to instantiate an end-to-end Network Service. It consists
of static information elements such as the ID, vendor, and version, references to the VNFDs, VLs,
and VNFFGs that are detailed below. The NSD also describes the deployment flavors (i.e compute,
memory, and storage capacity) of Network Services.
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VNF Descriptor: A VNF Descriptor (VNFD) is a deployment template that describes a VNF
in terms of deployment and operational behavior requirements. Some of the base information ele-
ments are the VM image that is used to deploy the VNF, its resource requirements, its connection
points, as well as functional scripts for specific life-cycle events.

Virtual Link Descriptor: A VLD provides the connectivity parameters, and QoS and band-
width requirements for the Virtual Links in the Network Service.

VNF Forwarding Graph Descriptor: The VNFFG is an information element that refer-
ences the different VNFs, PNFs, as well as the virtual Links and Connection Points included in
the Network Forwarding Paths of a given Network Service. Indeed, in order to provide a given
Network Service, packet flows can follow more than one Network Forwarding Path. The VNFFG
Descriptor can optionally specify the applicable forwarding rules over the NS topology; and define
an ordered sequence of connection points to be traversed by the NS packet flow.

SDN Control Plane Integration As mentioned earlier, the SDN paradigm consists of separat-
ing between the network’s control plane and data plane. The forwarding decisions are taken by
a logically centralized controller that communicates those instructions to the data plane. The in-
tegration of the SDN Control Plane (SDN controller) into the ETSI NFV MANO framework has
been explored in a specification [54] that enumerates the different possibilities, where the SDN
controller is integrated into the VIM, the NFVI, the OSS/BSS, or deployed as a VNF. Depending
on the integration option, the communication between the NFVO and the SDN controller would
either use pre-existing interfaces, or require the creation of new interfaces.

2.1.3.2 SFC Support

The different functional components and information elements of the ETSI MANO framework can
be mapped to the IETF notations as follows [55]:

ETSI-NFV IETF
Virtualized Network Function (VNF) Service Function (SF)

Connection Point (CP) Service Function Forwarder (SFF)
VNF Forwarding Graph (VNFFG) Service Function Chain (SFC)
Network Forwarding Path (NFP) Service Function Path (SFP)

Table 2.1: Mapping between ETSI and IETF notations
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Several works presented orchestration frameworks that support Service Function Chaining.
In [56], a resilient SFC orchestrator based on the NFV-MANO framework is proposed. The
architecture is extended in order to integrate an SFC Orchestrator that supports Service Chains.
This additional component is responsible for mapping the SFP with the VNF Forwarding Graph,
and creating policies that will be enforced in the SFFs through the SDN controller. In a subsequent
work [57], a Scaling module is also added to the architecture. This module triggers scaling
actions, and ensures SFP adaptation, as well as QoS-aware Load Balancing. The authors in [58]
also present an orchestration framework for anomaly detection in SFC based on ETSI’s NFV-
MANO reference architecture, where a module is responsible for monitoring and maintaining
SFC integrity. In [59], an orchestration reference architecture supporting SFC across multiple
domains is presented. The architecture includes a Northbound interface for the VIM that allows
the orchestrator to launch SFC creation by communicating its description; SFCs are described
following a JSON template that specifies the source, destination, QoS requirements, as well as the
list of VNFs with their characteristics.

In [60], the authors propose an orchestration framework for SFC that is ETSI-MANO compli-
ant and integrates a user request parser, a request manager, placement and monitoring modules, as
well as a simulator that supports the integration of placement algorithms. Wang et al. [61] propose
an SFC orchestration system for IoT deployments that aims to reduce resource idleness while sat-
isfying performance requirements. Medhat et al. [62] detail X-FORCE, an ETSI NFV-MANO
compliant SFC orchestration framework that enables SFC life-cycle management and orchestration
by integrating an SFC orchestrator to the reference architecture.

2.3 SFC Life-cycle
The life-cycle of a Service Function Chain can be modeled as illustrated in Figure 2.7. It is com-
posed of two main phases: The pre-deployment phase, which concerns resource allocation, is
the phase where the optimal chain composition and placement are determined in order to provide
the requested service to the client, while fulfilling its requirements. The life-cycle management
phase encompasses the deployment operation, the runtime operations such as monitoring and fault
management, as well as the termination of the SFC. The whole process is coordinated by a man-
agement/orchestration entity.
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Figure 2.7: Life-cycle on a Service Function Chain

2.3.1 Pre-Deployment Phase
When a client emits a service request with a given SLA, the service provider must determine
the optimal resource allocation and placement scheme. This challenge is known as the NFV-RA
problem [63], which includes the VNF Chain Composition, and VNFFG embedding operations.

2.2.1.1 VNF Chain Composition

In this stage, the goal is to compose an optimal chain that answers the customer’s request. The
chain composition process defines the types of VNFs that constitute a given SFC, as well as their or-
der (therefore producing the VNFFG), and the required amount of resources. A few works [64–69]
studied the possibility of automatic SFC composition, while taking into account the dependencies
between the VNFs. In [64, 65] the authors also explore the possibility of parallelizing VNFs, and
the authors of [67] use behavior modeling and real-time verification and modification in order to
ensure constraint compliance even after deployment.

2.2.1.2 VNFFG Embedding

Resource Assignment: It is essential to determine the amount of needed resources for each
VNF in order to properly deliver the required service. Indeed, one under-performing VNF would
cause a bottleneck that affects the whole chain, even if the other VNFs are assigned sufficient
resources. Furthermore, resource allocation constraints may require redundancy in order to ensure
resiliency [70]. In [71], bottlenecks in networks are identified using two approaches: power-off
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based where the network state is examined when each node is powered-off to identify the most
important nodes, and utilization-based, where the resource consumption of each node is studied
in order to assign the proper amount of resources. More resources are then supplemented to the
most sensitive nodes in the network. Similarly, in [72–74], key functions of SFCs are identified,
and back-up instances of these functions are deployed. Alternatively, Wen et al. [75] present a
VNF consolidation solution that aims at reducing resource over-provisioning that incurs due to
fluctuations in service requests, while minimizing reconfiguration times and satisfying end-to-end
performance requirements. And in [76], the minimum number of on-site backup Virtual Machines
is provided in order to reach the required end-to-end availability of the SFC.

Resource Placement: This stage considers the mapping of the VNFs and Virtual Links to phys-
ical resources considering one or more optimization objectives. The VNF Placement problem has
been proven to be NP-Hard [77] [78]. Many works have treated this problem using several ex-
act or heuristic approaches; exact methods like Integer Linear Programming are used in order to
formulate the problem, but due to their lack of scalability (due to the combinatorial explosion of
the state space), heuristic algorithms are applied in order to obtain approximate solutions in poly-
nomial times. The solutions take into account different functional and non-functional constraints
in order to optimize the VNF placement. Other contributions such as in [79, 80], also explored
multi-domain Virtual Network Embedding (VNE), which is the embedding of undirected graphs
of connected VNFs. However, VNF placement in an SFC context adds a few more constraints;
indeed, the SFC order and dependencies need to be considered to reduce the network delays, and
optimize the SFP [55,70,81]. Furthermore, Service Function placement and routing might be sub-
ject to affinity and anti-affinity constraints for different reasons such as performance, availability,
or legislation and privacy concerns [82], therefore, the optimization model needs to be adapted to
the SFC framework [83]. In addition, if SFCs are expected to enable the deployment of 5G use
cases, their placement scheme should support the different QoS requirements of these 5G use cases
such as latency, and bandwidth.

A large set of works have addressed the SFC placement issue, with different performance
optimization parameters such as cost [55, 78, 84–86], energy [87, 88], latency [89, 90], resource
consumption [81, 91–94], security [95], or resiliency [20, 56, 96–98].

Some works also considered traffic fluctuations in their placement schemes. The authors of [99]
formulate a model for SFC deployment and readjustment to address user mobility or service request
fluctuations. Li et al. [100] consider the workload correlation between different service requests in
order to avoid mapping requests that have coinciding peaks jointly. Huang et al. [101] propose a
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solution for SFC deployment that also takes into account the correlations between VNFs that can
result from coordination between them or traffic changes. The authors in [102] propose a random-
ized approximation algorithm that performs SFC embedding with the objective of maximizing the
amount of flows processed by network functions.

Joint Composition and Placement: A few works also combined two stages of the NFV Re-
source Allocation problem [77,103–113]. The goal being to take advantage of the order flexibility
for some VNFs, and the possibility of decomposing VNFs into elementary functions, in order to
group VNFs in a way that minimizes resource fragmentation and consumption.

2.3.2 Deployment
As shown in Section 2.2.3, SFC deployment can be performed by ETSI MANO compliant or-
chestration frameworks, by expressing the SFC elements and their requirements and connectivity
in terms of information elements of an NSD. The SFC would then be deployed as an NS on the
Virtual Infrastructure, by leveraging on the standard NS deployment workflows.

Further, in order to perform SFC packet forwarding, the SDN paradigm can be used as detailed
in Section 2.2.1 by pushing the forwarding rules to OpenFlow enabled switches.

2.3.3 Runtime
During runtime, and in order to serve the ingress user service requests in the most effective way
while respecting the client’s SLAs, the SFC processing schedule needs to be optimized; on the
other hand, service requests fluctuations as well as the advent of anomalies may require to trigger
different elasticity mechanisms and/or dynamic path adaptation.

Monitoring and Anomaly Detection

Multiple works proposed anomaly detection frameworks based on periodical analysis of the SFC
state, to detect overload or failure [56, 58, 114]. The works in [115, 116] implement verifica-
tion tools leveraging on the NSH encapsulation in order to verify traffic steering rules, and detect
connectivity issues. In [117] the authors develop a predictive analysis framework for network
troubleshooting and diagnosis. The analysis focuses on the forwarding behavior of VNFs.
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Elasticity Mechanisms

In case an anomaly has been detected, it is necessary to take actions in order to avoid service
disruption, or the degradation of the QoS and QoE. Furthermore, in case the traffic volume in-
creases to a certain point, the service functions might need additional resources in order to deliver
the service properly. Alternatively, resources should be released in case the traffic load decreases.
Multiple elasticity operations can be considered [118, 119]:

• Scale-Up/Down: Allows the addition or removal of resources from a virtual instance.

• Scale-In/Out: Allows the addition or removal of a virtual instance of the same virtual func-
tion, with the implementation of load balancing between the instances to distribute the traffic
to each instance.

• Migration: Migration is a process in which a virtual instance is moved from a physical node
to another, with minimal service disruption, and while preserving its state.

In [120], the authors propose a model to determine whether it’s best to migrate or re-instantiate a
given VNF in order to minimize the downtime, and the authors of [121] present a migration policy
that determines when and where VNF migrations should be performed. Other works [122–125]
propose orchestration schemes that detect and respond to request fluctuations, as well as node and
link failure using mitigation mechanisms such as scaling, migration, or congestion control. Nam
et al. [126] investigate the performance effects of adding VNFs to an SFC, or changing the VNF
sequence and propose an automated analysis approach that identifies the root cause of performance
issues.

Dynamic Service Path Selection

The SFC path selection problem is different from the traditional routing problems; indeed, SFC
paths can require a strict order of visited VNFs, and an SFC flow might need to visit the same VNF
more than once in the case of non-linear SFCs. In [127], the authors argue on the necessity of a
dynamic traffic steering mechanism for existing and arriving flows, that considers the traffic load
as well as the computation load on the nodes. The works in [128–131] implement dynamic SFC
routing schemes and flow prioritization in order to guarantee the required QoS levels. In [132],
the authors development online and offline traffic routing algorithms that also implement load
balancing. Similarly, the work in [133] presents a model for an optimal flow distribution across
the network in order to minimize end-to-end flow latency and flow dropping rate. Yi et al. [134]
propose a solution for path adaptation in case of scale-in and scale-out operations. Two methods
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are implemented: a reactive scheme SFC-RS that doesn’t change the original SFP, and a proactive
scheme SFC-PS that optimizes the SFP

2.4 Multi-Domain Context: Definition and Challenges
As previously detailed, many research works explored Service Function Chaining under different
aspects: composition, resource allocation, as well as placement and chaining, and proposed solu-
tions in order to enable and support SFCs. However, most of these works assume that the SFC is
deployed on a single domain and ignore the multi-domain scenario, which remains an open issue
with many challenges that need to be tackled in order to provide end-to-end services.

The multi-domain scenario occurs when the SFC requires the deployment of its components on
different domains. As previously stated, a domain is defined as an autonomous network infrastruc-
ture, with an orchestration entity that independently implements its own management decisions,
and its own networking protocols. Therefore, the multi-domain context can be applied to multiple
administrative entities, and also to separate divisions of the same entity. This scenario brings out
multiple challenges, caused by the limited visibility and control on the infrastructure of the local
domains, as well as the independent management of the domains. In consequence, during the
life-cycle of an SFC, the multi-domain context needs to be taken into account from its placement
during the VNFFG Embedding operation until its termination, and the placement, deployment, and
runtime operations ought to be adapted in order to support multi-domain SFCs.

2.4.1 SFC Placement
As shown in Section 2.3.1, multiple works tackled the SFC placement issue, with different opti-
mization parameters. However, most of these works consider placement over a single domain, and
assume that the orchestrator performing the placement disposes of full visibility and control of the
underlying network infrastructure. As previously outlined, deploying SFCs on multiple adminis-
trative domains adds more constraints to the placement problem. Indeed, for security reasons, the
cloud providers withhold details on their local infrastructure, which makes it difficult to determine
the optimal end-to-end placement and chaining of services due to insufficient information.

Furthermore, in addition to the support for multi-domain architectures with limited visibility,
multi-domain SFC placement solutions are required to jointly optimize multiple KPI metrics re-
lated to the use case of the SFC, in order to meet the QoS requirements of the service, while
reducing deployment costs.
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2.4.2 Deployment
Once the placement scheme of the multi-domain SFC has been determined, the original NSD needs
to be partitioned into a set of sub-NSDs, and each domain orchestrator undertakes the task of de-
ploying its assigned sub-SFC locally. However, the domain orchestrators should also be able to
identify the SFC and its sub-SFC, as well as the next hop corresponding to the next sub-SFC, in
order to properly configure their forwarding and classification components. This presumes that
a communication protocol between orchestrators is in place to enable the sharing of the required
information. The ETSI framework was extended in its third release [135] in order to support
multi-domain orchestration by adding a reference point (Or-Or) that allows orchestrators to com-
municate. The document defines the exchanged information format between the orchestrators for
service deployment, such as Network Service Descriptors (NSD). Nonetheless, this information is
not sufficient to deploy an end-to-end SFC. Indeed, each domain along the chain ought to be aware
of the global SFC and its sub-SFC, in order to properly identify the packets at its ingress. The local
domains should also be aware of the next domain that the packets should be forwarded to, so that
end-to-end packet steering is ensured.

As for SFC packet forwarding, multiple traffic steering methods have been proposed as previ-
ously detailed in 2.2.1. But although these solutions enable SFC packet forwarding inside a single
domain, they do not support multi-domain SFC packet forwarding. Indeed, since the encapsulation
and traffic steering methods are not always the same in every domain, it is necessary to integrate
interfacing entities in each domain which ensure the end-to-end service delivery, regardless of the
underlying technologies. To this aim, they must perform inter-domain packet forwarding, encap-
sulation/decapsulation or tunneling of packets, as well as communication protocol negotiation.

The RFC 8459 [27] attempts to tackle the multi-domain issue by proposing a hierarchical multi-
level network architecture for SFC, which allows the decomposition of a large network into a set
of independent sub-domains as shown in Figure 2.8. Each sub-domain is viewed by the top-level
as a Service Function along the end-to-end SFC. At the ingress or egress of each sub-domain, the
packets are re-classified in order to be forwarded along the corresponding higher level or lower
level path. This re-classification is performed by an interfacing function called Internal Boundary
Node (IBN) that acts as an SFC-aware Service Function in the higher-level domain, and as a clas-
sifier in the lower-level domain. Nevertheless, the RFC assumes that all the sub-domains are part
of the same administrative domain, and does not consider multi-domain issues related to visibil-
ity and inter-operability. Furthermore, this approach assumes that the interconnection domain is
SFC-aware, which might not always be the case.
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Figure 2.8: Hierarchical SFC Architecture in RFC 8459

Similarly, [136] proposes a horizontal approach for multi-domain NSH. SFCs that span multiple
domains are divided into a set of single-domain segments. The identifier of the next domain’s
classifier is encapsulated in the metadata part of the NSH encapsulation (MDType 0x2) using the
Metadata Class 0x20, and Type 0x1, as shown in Figure 2.9:

Figure 2.9: Multi-domain NSH encapsulation

The next classifier field contains the ID of the classifier in the next domain, and the service
label is used by this classifier in order to properly identify the SFC. However, this architecture can
only be applied to NSH-aware domains and inter-domain interconnections.
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Based on all of the aforementioned challenges, an orchestration and deployment scheme is
needed to enable multi-domain SFCs, with an information sharing mechanism in order to ensure
end-to-end packet forwarding, as well as an encapsulation translation scheme in order to support
heterogeneous encapsulation types.

2.5 Conclusion
In this chapter, we introduced the key concepts related to Service Function Chaining, as well as
its enabling technologies. We also gave an overview of the literature, and identified the main
challenges of SFC deployment over multiple domains for different stages of the SFC life-cycle.
In the next chapter, we propose a framework for multi-domain SFC placement, and implement an
ILP model, as well as a heuristic in order to perform SFC placement while optimizing cost and
latency using the weighted sum approach.

32



Chapter 3

SFC Placement - Weighted Sum Approach

3.1 Introduction
The deployment of an SFC requires the placement of its constituent VNFs, and path establishment
in order to connect those VNFs, in a way to optimize the operator’s objectives while satisfying
its constraints. In the multi-domain context, the SFC is partitioned into sub-chains embedded in
different domains, then chained together in order to ensure the end-to-end service. A few works
have addressed the multi-domain SFC deployment issue with limited visibility on the network.
Two main architectural approaches were proposed:

Distributed

This approach supposes that the infrastructure providers don’t share any details on their network.
Hence, a distributed algorithm is executed on all domains, and messages are exchanged in order
to determine the best option without disclosing information to external parties. However, this ap-
proach falls short in terms of scalability, as communication and convergence time and cost are
considerable. In [137], the authors propose a distributed non-cooperative congestion game model
that performs SFC deployment without full knowledge of the user’s information. Therefore, the
orchestration task is distributed among Network Service Brokers that cover delimited portions of
the network. The work in [138] details a policy-based, distributed, asynchronous election protocol
based on hosting capabilities; the solution allows edge and core cloud providers to cooperatively
instantiate wide-area chains. However, the proposed solution does not support more complex, non-
linear SFCs, where packets pass through certain functions more than once, and its placement evalu-
ation only considers CPU and bandwidth constraints. Zhang et al. [139] also propose a distributed
vertex-centric algorithm that supports SFC flexibility: the request is relayed between orchestrators
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in order to determine the optimal placement combination. The authors in [140] detail DistNSE,
a distributed framework that performs SFC partitioning and placement using a privacy-preserving
bidding mechanism where each Network Function Provider (NFP) competes for the s of the chain.

Centralized

In this approach, a broker/coordinator collects the information disclosed by different IaaS
providers, and reconstitutes an abstract global view of the network. The centralized broker
performs an initial placement using this abstract view, then partitions the request and relays the
sub-requests to the local domains. However, this approach might lead to sub-optimal orchestration
decisions due to the unsufficient information on the infrastructure state. Figueira et al. [141], and
Guerzoni et al. [142] propose a hierarchical architecture for multi-domain SFC orchestration,
where a centralized main orchestrator interfaces with lower-level domain orchestrators. Dietrich
et al. [143] leverage on this architectural approach and detail a solution for SFC mapping across
datacenters that are operated by multiple NFPs. The proposed solution allows NFPs to disclose
minimal information about their infrastructure, and constructs an abstract view of the network
topology. The placement is then performed in two stages: graph partitioning and sub-graph
mapping; however, the solution doesn’t take latency into account, which is a critical requirement
for some upcoming 5G use cases (i.e. Ultra Reliable Low Latency services). Furthermore, the
solution is obtained using Linear Programming optimization, and therefore lacks scalability due
to exponential computation times, which makes it unsuitable for bigger instances of the problem.
Similarly, Xu et al. [144] propose a multi-domain service chain partition and embedding scheme
using a Hidden Markov Model and a Viterbi-based heuristic. However, the proposed heuristic
solution only considers the end-to-end latency while discarding cost. In [145], the authors propose
a multi-domain SFC orchestration scheme that takes into account the issues related to the lack of
visibility over domains. They propose an algorithm that aims to minimize the delay, and improves
the bandwidth cost of the obtained solution. However, this algorithm does not take into account
the service and SLA types of the requests. Indeed, a Best Effort service, for example, would
require the minimization of cost over latency.

In this chapter, we formulate the multi-domain SFC placement problem and elaborate multiple
algorithms that perform placement with limited visibility, while minimizing the end-to-end delay
and cost, and maximizing the bandwidth per user.
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3.2 Proposed Framework

3.2.1 Architecture
In this section, we detail our proposed framework for multi-domain SFC deployment. As illustrated
in Figure 3.1, the architecture is logically centralized. A multi-domain orchestrator acts as a broker
and constructs an abstract view of the topology based on the information that each domain is
disposed to reveal on their network. The orchestrator also interacts with the WAN domain operators
in order to establish inter-domain communication for SFCs. Based on the work in [146], we
suppose that the local domains disclose the following details on their infrastructure:

• The amount of computing capacity that is made available, with the average cost per unit for
each resource type. Note that these amounts are determined through pre-established mutual
agreements between the domain operators.

• The vertices of their WAN links, the available capacity, latency, and the cost per bandwidth
unit.

Figure 3.1: Multi-domain SFC Placement Framework

Note that the centralized approach means that all of the SFC deployment requests are sent to
the Multi-Domain Orchestrator. However, this centralized architecture doesn’t suffer from the
problems related to scalability, as these requests are formulated by tenants who intend to deploy
services that would accommodate multiple users. The number of service deployment requests from
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the tenants is rather small compared to the service requests by the end users. Therefore, we can
consider that the multi-domain orchestrator is able to handle the SFC request flows. Once an SFC
is deployed, it is up to the tenant to provide the service users with an interface that allows them to
have access to the service, without going through the centralized coordinator. The latter doesn’t
process the individual user requests for the service.

Figure 3.2: Request Adjustment for Non-Linear SFC Support

3.2.2 Non-Linear SFC Support
Furthermore, our model supports more complex non-linear SFCs where traffic flows through cer-
tain VNFs more than once, this scenario can be modeled in two ways as shown in Figure 3.2:
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Separate SFC Request with VNF sharing

Each way of the SFC is modeled as a separate SFC request, while allowing the sharing of VNFs
that are visited both ways, which can be required by specific applications (firewall allowing return
traffic only for example). VNF sharing can also be generalized between different SFCs of the same
slice, or different slices of the same tenant. However, if the SFC request of one way of the SFC is
rejected, the second one should also be rejected.

One SFC Request with VNF duplication

If a VNF is visited more than once, it is duplicated by creating a dummy instance, and its link with
the ’original’ instance of the VNF is expressed using an attribute in the dummy node, pointing
to the original VNF. Each VNF and its redundant dummy instances need to be mapped on the
same location, which can be enforced using an affinity constraint. Furthermore, the amount of
computing resources required by the redundant instances are null. Note that during the resource
allocation phase, the required amount of resources for this type of VNFs needs to take into account
the additional resource consumption that occurs when the flow is treated more than once by the
same VNF.

3.2.3 Multi-Domain Placement and Request Partitioning
We provide the pseudo-code of the proposed Multi-Domain Placement procedure in Algorithm 1.

Initial Placement

When the multi-domain orchestrator receives a request req from a user to deploy an SFC, it calls
the function abstractPlacement that performs an initial placement on the previously established
abstract view of the topology Gabs. This placement takes into account the QoS requirements defined
by the SLA of the user, the placement constraints of each VNF such as affinity constraints, and the
allowed locations. It should be noted that the optimization objectives and their levels of priority
are also defined by the SLA.

Request Partitioning

Once the initial placement abstractP l has been obtained, the SFC request is partitioned accord-
ingly (See Figure 3.3), and dummy boundary nodes are added at the extremities of the sub-chains.
These dummy nodes are required to be placed at the boundaries of the domains, to forward the
traffic out of the domains and to the next sub-chain.
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Algorithm 1: Multi-Domain Placement Algorithm
Input : Abstract Topology Gabs , Request req

Set of Authorized DomainsM
Output: Vector containing the placement result

1 eval[’Cost’]← 0; eval[’Latency’]← 0 ;
2 absractPl← abstractPlacement(req,Gabs,M);
3 if abstract placement failed then
4 return False, null, null
5 end
// Perform request partitioning

6 partReq← requestPartitioning(req,abstractPl);
7 for p← 0 to |partReqs|-1 do
8 partialPl[p]← localPlacement(partReqs[p]);
9 if local placement fails then

// Perform backtracking
10 if ∃vnf ∈

⋃p
0 partReqs[n], |Mvnf | > 1 then

11 find one vnf for which |Mvnf | > 1 ;
12 Mvnf ←Mvnf − {abstractPl[vnf]};
13 go to Step 1;
14 else
15 return False, null, null
16 end
17 end
18 end
// Compute E2E cost & latency

19 for i ∈ [’Cost’,’Latency’] do

20 eval[i]←
|partReqs|−1∑

p←0

partPl[p][i] +
|M|−1∑
n←1

Gabs[absPl[n-1]][absPl[n]][i];

21 end
22 send placement confirmation to local domains;
23 update Gabs ;
24 return [True,eval]
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Figure 3.3: SFC Request Partitioning

Local Placement

Next, the sub-requests partReqs are sent to the chosen domains in order to perform a local place-
ment localPlacement as shown in Figure 3.4, while having a full view of their respective local
topologies. Note that each local orchestrator can implement their own placement algorithm. If
the placement of a sub-chain fails, a backtracking mechanism is prompted in order to perform
the initial placement once again, but while ruling out the previous placement solution. Once the
multi-domain orchestrator receives the placement results of all of the domains, it computes the end-
to-end cost and latency of the SFC, then sends a confirmation to the local domain orchestrators in
order to start the sub-SFCs deployment.

3.3 Problem Formulation
We present in this section our ILP formulation of the placement problem. Table 3.1 summarizes
the notations that have been used i the formulation.
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Notation Description
Sets

S Set of SFCs
Vi Set of VNFs in SFC i
Ai/Āi Set of affinity/anti-affinity constraints for SFC i
Mi,j Set of allowed placement nodes for VNF j in SFC i
< Set of computing resources (CPU, RAM, disk)
Nd Set of nodes in domain d
L Set of links

Decision Variables
X n
i,j Placement of VNF j of SFC i on node n (Boolean)

Ẋ n,m
i,j,j+1 Placement of VNF i of SFC i on node n and its successor on node m (Boolean)

Zn,m,qi,j,j+1

Placement of link between VNFs j and j + 1 of SFC i
on qth physical link between nodes n and m (Boolean)

Request
∇r,i,j Required amount of computing resource r for VNF j of SFC i
Wi,j,j+1 Required bandwidth for the virtual link between VNFs j and j + 1 of SFC i

Network Infrastructure
ρi,n,m Number of physical paths between the nodes n and m that are allowed for SFC i
Rr,n Amount of computing resource r available on node n
ζr,n Cost per unit of resource r on node n
τn,m,ql Link l is part of the qth path between nodes n and m (Boolean)
Rω,l Capacity of link l
φl Latency of link l
ζl Cost of using the link l per bandwidth unit

Table 3.1: Notations used

3.3.1 Network Architecture
The network infrastructure is modeled as a weighted undirected graph G = (N ,L), where N =
Nd ∪ Ns is the set of vertices representing the forwarding devices (switches and routers) Ns,
and the Data Center nodes Nd with associated computation, memory and storage capacities; the
vertices are connected by edges representing physical links from the set L, that are characterized
by bandwidth capacity, as well as the induced latency. We will also denote by P the set of pre-
determined physical paths between the physical nodes. We denote by S the set of SFCs, and by Vi
the set of VNFs in the SFC i.
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Figure 3.4: End-to-End SFC Placement

3.3.2 SFC Request Formulation
Each SFC request is modeled as a directed weighted graph. VNFs are represented by the vertices
with associated resource requirements and a set of authorized nodesMi,j on which the VNFs can
be placed. They are connected by the graph’s edges, with associated link requirements. We specify
bandwidth requirements for each individual link, as some VNFs may change SFC’s traffic volumes.
The requests also specify the user’s preferences regarding the optimization objectives (i.e. cost and
latency) according to their SLA. In our model, we enable non-linear SFC placement using dummy
nodes that are bound to the original VNFs using affinity constraints in order to route the traffic
back to these particular VNFs; we assume that the amount of computing resources allocated to
each VNF has been adjusted to the total volume of processed traffic during the resource allocation
phase, which is out of the scope of this work.

3.3.3 Constraints
Placement Constraints

Node Mapping The boolean variable X n
i,j expresses whether the j th VNF of the SFC i has been

mapped to the physical node n.

X n
i,j =

{
1 If VNF j of SFC i is placed on node n

0 Otherwise∑
n∈Mi,j

X n
i,j = 1, i ∈ S,∀j ∈ Vi (3.1)
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X n
i,k1
−X n

i,k2
= 0, i ∈ S,Ai,j ⊂ Ai, k1, k2 ∈ Ai,j, n ∈ Nd (3.2)

X n
i,k1

+ X n
i,k2
≤ 1, i ∈ S, Āi,j ⊂ Āi, k1, k2 ∈ Ai,j, n ∈ Nd (3.3)

i ∈ S, ∀j ∈ Vi,∀n ∈Mj,∀m ∈Mj+1:

X n
i,j · Xm

i,j+1 ≤ ρi,n,m, (3.4)

Constraint 3.1 ensures that each VNF is mapped to only one of its authorized physical nodes. Con-
straints 3.2 and 3.3 express affinity/co-location (i.e. two VNFs must be placed on the same node)
and anti-affinity/anti-location requirements (i.e. two VNFs must not be placed on the same node),
where Ai and Āi represent the set of affinity and anti-affinity constraints for SFC i respectively.
Each set comprising tuples of VNFs k1 and k2 for which the constraints apply. We denote by ρi,n,m
the number of physical paths between the nodes n and m that are allowed for SFC i, constraint
3.4 ensures that two consecutive VNFs are mapped to two nodes if and only if there is at least
one allowed physical path between these nodes. Constraint 3.4 is quadratic, it can be linearized by
introducing a new boolean variable Ẋ n,m

i,j,j+1 which is the product of X n
i,j and Xm

i,j+1:

Ẋ n,m
i,j,j+1 = X n

i,j · Xm
i,j+1 (3.5)

Constraint 3.4 is therefore translated to the following:

Ẋ n,m
i,j,j+1 ≤ X n

i,j (3.6)

Ẋ n,m
i,j,j+1 ≤ Xm

i,j+1 (3.7)

Ẋ n,m
i,j,j+1 ≥ X n

i,j + Xm
i,j+1 − 1 (3.8)

Ẋ n,m
i,j,j+1 ≤ ρi,n,m (3.9)

Link Mapping We will denote by Pn,m,q the qth physical path between nodes n and m. The
boolean variableZn,m,qi,j,j+1 determines whether the logical link between the j th VNF and its successor
in the SFC i has been mapped to the qth physical path between nodes n and m.

Zn,m,qi,j,j+1 =


1 If logical link between VNFs j and j + 1 of SFC i
is mapped to the qth physical path between nodes n and m

0 Otherwise

∀i ∈ S,∀j ∈ Vi, ∀n ∈Mj,∀m ∈Mj+1 :
ρn,m∑
q=1

Zn,m,qi,j,j+1 = X n
i,j · Xm

i,j+1 (3.10)
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Constraint 3.10 ensures that a logical link between two VNFs is mapped to a physical path if and
only if the corresponding VNFs are mapped to the nodes that the path interconnects, and vice
versa; it also ensures that not more than one physical path is allocated to a logical link. Similarly
to 3.4, the constraint can be linearized as follows:

ρn,m∑
q=1

Zn,m,qi,j,j+1 = Ẋ n,m
i,j,j+1 (3.11)

Capacity Constraints

Computing resources We will denote by < the set of computing resource types of physical
nodes (CPU, RAM, disk space...), by ∇r,i,j the required amount of the resource r for the jth VNF
of the ith SFC, and by Rr,n each node n’s remaining capacity for the resource type r. Constraint
3.12 ensures that the total amount of allocated resources on each node for each resource type does
not exceed the amount of available resources remaining on the node.∑

j∈Vi
∇r,i,j · X n

i,j ≤ Rr,n, ∀n ∈ Nd,∀r ∈ < (3.12)

Link resources We will denote byWi,j,j+1 the required bandwidth for the virtual link between
the jth VNF and its successor, and by Rω,l each link l’s capacity; we will also use the boolean
τn,m,ql to express whether the link l is part of the qth path between the nodes n and m. Constraint
3.13 ensures that the total allocated bandwidth on each physical link of an end-to-end physical path
does not exceed its remaining capacity.
∀i ∈ S,∀l ∈ L : ∑

j∈Vi

∑
n∈Mj

∑
m∈Mj+1

ρn,m∑
q=1

Wi,j,j+1 · Zn,m,qi,j,j+1 · τ
n,m,q
l ≤ Rω,l (3.13)

3.3.4 Objective Function
The objective of our model is to minimize the overall cost, as well as the end-to-end latency.
However, these objectives are contradictory: the cost of the physical links is inversely proportional
to their latency (i.e. lower latency links are more expensive). A trade-off is then obtained by setting
weights to both objectives in order to set optimization priorities according to the user’s preferences
as specified in the SLAs (uRLLC, best effort, etc.). Therefore, our optimization objective function
is a weighted sum of normalized values of the overall cost and the end-to-end latency for each
SFC. Let us define the following parts of the objective function:
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Ccomputing =
∑
n∈Nd

∑
r∈<

∑
j∈Vi

ζr,n · ∇r,i,j · X n
i,j (3.14)

Clink =
∑
j∈Vi

∑
l∈L

∑
n∈Mj

∑
m∈Mj+1

ρn,m∑
q=1

ζl · Wi,j,j+1 · Zn,m,qi,j,j+1 · τ
n,m,q
l (3.15)

φ =
∑
j∈Vi

∑
l∈L

∑
n∈Mj

∑
m∈Mj+1

ρn,m∑
q=1

φl · Zn,m,qi,j,j+1 · τ
n,m,q
l (3.16)

Equations 3.14 and 3.15 express computational and link costs for the SFC i respectively, with
ζr,n being the cost of using the resource r on node n per unit, and ζl the cost of using the link l
per bandwidth unit. Equation 3.16 expresses the end-to-end latency for the SFC i, with φl being
the link l’s latency. The end-to-end latency is computed as the sum of the latencies of the used
links, while omitting the processing time of the VNFs. Indeed, their values mainly depend on the
computations that are performed by each VNF, as well as the amount of resources that are assigned
to the VNF. Therefore, we suppose that these times aren’t impacted by the SFC placement, and
can be discarded in this model. The optimization objective is to minimize the following objective
function while satisfying the aforementioned constraints.

minimize αC ·
Ccomputing + Clink

λC
+ αφ ·

φ

λφ

subject to 
Constraints 1 - 3
Constraints 6 - 9

Constraints 11 - 13

With αC and αφ being the weights associated to cost and latency respectively, which are determined
from the users’ SLAs; and λC and λφ the normalization coefficients for cost and latency, which are
determined by computing the mean cost and latency for the topology.

3.4 Heuristic
Although an exact solution for the previously detailed ILP model ensures an optimal placement
of SFC requests considering the provided information and constraints, it lacks scalability. Indeed,
optimal SFC placement has been proven to be an NP-Hard problem [78], which means that com-
putation time increases exponentially on large problem instances as illustrated in our evaluation
results in Section 4.6, thus making this solution impractical for operational use. However the ILP
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model’s optimal solution can be used as a reference in order to evaluate the efficiency of alternative
solutions.

As an alternative, and in order to support bigger instances of the problem, we propose a
memetic heuristic based on a genetic algorithm, combined to a local search method for solution
improvement as shown in Algorithm 2. At first, a set of initial solutions is generated, evaluated,
and classified according to the results of the objective function; the set is then updated at each gen-
eration by introducing new individuals obtained through solution generation, mutation, crossover,
or local search improvement. Afterwards, the set of solutions is evaluated and classified using the
objective function previously expressed in the ILP, and the best individuals are selected for the
next generation. The process is repeated until a fixed number of generations is reached. The best
solution is then returned. Note that all of the operators use intervals in order to reduce request
fragmentation. The main steps of our heuristic are described in the following, and illustrated in
Figure 3.5.

Solution Generation New individuals are generated as follows: the placement of the first VNF is
randomly determined from the list of allowed locations, then each subsequent VNF is also placed
on the same location as long as the VNFs’ affinity, placement constraints, and node’s capacity
allow it, thus reducing link-associated cost and latency. Route mapping is performed by choosing
the best available path according to the request’s optimization objectives’ weights.

Mutation During the mutation phase, a solution is randomly selected, then the placement and
chaining of a random interval of successive VNFs is changed while respecting the aforementioned
constraints.

Crossover Two solutions are selected at random, and are crossed at a random interval (the place-
ment of the VNFs in this inteval are swapped between the two solutions) in order to generate a new
solution, and VNF chaining is also updated.

Local Search Improvement In this phase, a random solution is selected, and its neighbor so-
lutions are explored in order to operate local improvements (e.g. move one or more VNFs to a
nearby node).

45



CHAPTER 3. SFC PLACEMENT - WEIGHTED SUM APPROACH

Algorithm 2: Proposed Placement Heuristic
Input : Local Topology G , Request req

Set of Authorized NodesM
Output: Placement pl, cost, latency

1 Generate initial individuals ;
2 repeat
3 failed← 0 ;
4 repeat
5 operation=random(0,3) ;
6 switch the value of operation do
7 case 0 do Select 2 random individuals;
8 sol← Crossover at a random interval ;
9 case 1 do Select random individual ;

10 sol←Mutation for a random interval;
11 case 2 do sol← Individual generation;
12 case 3 do Select random individual ;
13 sol← Local search improvement;
14 end
15 failed← failed + 1 ;
16 if failed = Threshold then
17 return False, null, null
18 end
19 until sol[0] = True;
20 Compute solution fitness according to SLA;
21 Select the best individuals for next generation;
22 until Number of generations is reached;
23 placement← Get the best individual from set;
24 cost , latency← Get end to end cost and latency
25 of selected placement;
26 return True, cost, latency
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Figure 3.5: Solution Generation Steps of the Proposed Heuristic

3.5 Evaluation

3.5.1 Simulation Environment
We evaluated our solution by conducting simulations on the hardware and software configuration
outlined in Table 3.2.

Component Configuration
CPU Intel Xeon E5-2640 v3 (32 Cores), 2.60GHz
RAM 128GB
OS Ubuntu 16.04, 64 bits

Table 3.2: Testbed Hardware and Software Configuration

The simulation program and heuristic were developed using the Python programming lan-
guage; we also used the Gurobi [147] optimizer in order to find the optimal solution for our ILP
model.
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For the test environment, we generated multi-domain topologies using the networkx [148] li-
brary. Each domain comprises massively connected nodes via intra-domain links where each do-
main comprising n nodes, has n ∗ (n − 2)/2 edges; and is able to communicate with the other
domains via edge routers connected through WAN links. The type of nodes is randomly selected
(Small, Medium, Large), where each type is equivalent to a certain amount of CPU, RAM, and stor-
age resource capacity, with different costs per resource unit, similarly, the inter-domain links can
be Low, Medium, or High latency, with different costs per bandwidth unit. We also pre-computed
the set of paths between nodes for each domain, with a path length limited to 3 hops. After each
placement iteration, the graph’s resource capacity values are updated, by deducing the amount of
consumed link and computing resources from the available capacity of each link and node that
have been used. We evaluate our solution using 3 network topologies of different sizes, as detailed
in Table 3.3.

Features
Topology Small Medium Large

Number of Domains 4 6 8
Number of Nodes per Domain 10 15 30

Number of Links 166 603 3388

Table 3.3: Topology Information

Requests are randomly generated and placed sequentially. Each request specifies the amount
of required resources and a set of allowed placement locations for each VNF and link, as well
as the dependencies between VNFs, and optimization objective’s associated weights (cost and
latency) obtained from the SLA class of the client. For our simulations, we construct the SFC
requests using 5 VNF types (small, medium, large, dummy, boundary) with corresponding resource
and placement requirements, and 5 SLA classes (ultra low latency, low latency, a fair trade-off
between cost and latency, low cost, best effort), with different levels of priority for our optimization
objectives, as shown in Table 3.4. The solution is evaluated for SFC lengths ranging from 4 to 10
in the small and medium topologies, and from 4 to 8 in the large topology.
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SLA Cost weight Latency Weight
Ultra Low Latency 0.1 0.9

Low Latency 0.2 0.8
Equilibrium 0.5 0.5
Low Cost 0.8 0.2
Best Effort 0.9 0.1

Table 3.4: Weights assigned to each objective depending on SLA

3.5.2 Methodology
The simulations for each configuration are run 20 times. At each iteration, the placement algo-
rithms are run for 150 successive requests for the small and medium topologies, and 50 requests
for the large one. In this evaluation, SFC placement is performed using the ILP with full knowl-
edge of the network topology, as well as the proposed heuristic combined to the multi-domain
hierarchical scheme with a limited view on the infrastructure. We vary the number of generations
(iterations) of our heuristic in order to evaluate its effect on efficiency and computational time, the
number of generations depends on each configuration’s parameters, namely the topology size and
SFC length: N1 = |req| ∗ |G|, N2 = N1

4
, N3 = N1

16
. The placement results of the different solutions

are evaluated using two key metrics:

• Placement efficiency, which can be obtained using the aforementioned objective function, by
computing the ratio f(solILP )

f(solh)
between the results of the evaluation function for the heuristic

solution f(solh), and the ILP solution f(solILP ). This ratio then expresses how close the
heuristic solution is to the ILP (optimal) one, if the heuristic solution provides an optimal
solution, the ratio would have a value of 1, and this value decreases when the heuristic
solution provides sub-optimal solutions.

• Scalability, which can be quantified by measuring the algorithm’s computational time.
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Figure 3.6: Relative efficiency of the heuristic solution for the Small Topology depending on the
number of generations N

3.5.3 Results
Efficiency

Figures 3.6, 3.7, and 3.8 illustrate the mean values and 95% Confidence Interval (CI) of the effi-
ciency of our heuristic compared to the exact solution using different topologies and SFC sizes.
Efficiency is measured by computing the average ratio between the results of the evaluation of the
ILP placement and those obtained from the heuristic placement for each request.

We can observe that although the heuristic does not dispose of the full view of the network,
nor does it explore the full set of solutions, it displays an accuracy of 94.3 − 89.1% with a 95%
CI of 0.8 − 1% in the small network as illustrated in Figure 3.6, and 96.5 − 92.2% with a CI of
0.6 − 0.9% in the medium network as shown in Figure 3.7 when the number of generations is
fixed to N1. Whereas in the large topology (Figure 3.8), the heuristic’s efficiency decreases to
96.9− 89.8% with a CI of 1− 3% for the number of generations N1.
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Figure 3.7: Relative efficiency of the heuristic solution for the Medium Topology depending on
the number of generations N

Increasing the SFC length also causes a decrease in efficiency. We can notice a reduction
of 4 − 6% when increasing the SFC length for numbers of generations N1 and N2 regardless
of the topology size. Indeed, efficiency merely decreases from 94.3% and 93.6% to 89.1% and
87.3% respectively in the small topology, from 96.5% and 96% to 92.2% and 89.9% respectively
in the medium topology, and from 96.9% and 96.6% to 90.1% and 87.4% respectively in the large
topology. When setting the number of generations to N3, we notice that increasing SFC length has
a more significant impact on efficiency as it is reduced by 7− 11%, reaching a ratio of 84.4% with
a CI of 1.2% in the small network, 84.5% with a CI of 1.1% in the medium topology, and 81.7%
with a CI of 3.2% in the large one. In contrast, for small SFC lengths, decreasing the number of
generations does not have a significant effect on efficiency as it remains above 90% regardless of
the topology.
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Figure 3.8: Relative efficiency of the heuristic solution for the Large Topology depending on the
number of generations N

Scalability

Table 3.5 features the mean computation times for the ILP and the heuristic solutions when varying
the topology size and the SFC length, as well as the number of generations for the heuristic. The
exact solution demonstrates its lack of scalability as it takes up to many hours in order to produce
a solution in the large network case as well as the medium-sized network when the SFC length is
increased, which makes it impractical for operational deployment. In contrast, the heuristic proves
its scalability as it provides solutions in realistic times regardless of the topology and SFC size:
81ms and up to a second in the small topology, 422ms to less than 4 seconds in the medium net-
work, and 2.94s to 65s in the large network when the number of generations is fixed to N2, which
is an improvement of up to 600 times compared to the ILP. When setting the number of genera-
tions to N1, execution time increases to a range between 241ms and 3.46s in the small topology,
between 1.32s and 13s in the medium topology, and between 10s and 222s in the large one. Com-
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putational time can be further reduced by setting the number of generations of the heuristic to N3.
In this case, it ranges between 37ms and 429ms in the small topology, 166ms and 1440ms in the
medium topology, and between 994ms and 19s in the large topology depending on SFC length.

SFC Length

Topology Method 4 5 6 7 8 9 10

Small

ILP 1.48 2.14 3.09 5.38 7.68 11.59 17.05
N1 0.241 0.350 0.631 1.03 1.25 2.22 3.46
N2 0.081 0.113 0.201 0.322 0.391 0.678 1.06
N3 0.037 0.052 0.088 0.138 0.167 0.278 0.429

Medium

ILP 16.29 27.74 103 224 376 1016 2623
N1 1.32 1.93 3.16 4.43 7.72 10.02 13.94
N2 0.422 0.588 0.938 1.30 2.21 2.88 3.98
N3 0.166 0.233 0.361 0.491 0.819 1.06 1.44

Large

ILP 1381 2234 3468 6434 7364 - -
N1 10.25 27.81 69.31 123 147 154 222
N2 2.94 7.92 19.47 33.55 40.57 42.13 65.47
N3 0.994 2.72 6.51 11.71 12.63 13.12 19.76

Table 3.5: Comparison of computation times (in seconds)

3.5.4 Results Discussion
In light of the obtained results, three main observations can be made:

• The heuristic associated with the multi-domain SFC placement and partitioning framework,
with limited visibility, provides close to optimal results with 96.5−89.1% of efficiency com-
pared to the formulated ILP with full visibility on the network infrastructure. Furthermore,
these results are obtained in significantly lower computational times, with a reduction of up
to 400 times.

• The heuristic’s efficiency is mainly affected by the length of the SFC, as well as the number
of generations/iterations. Indeed, the increase of the SFC length, as well as the decrease
in the number of generations cause a degradation in the heuristic’s efficiency. However,
topology size doesn’t seem to have a negative impact. In fact, the heuristic’s efficiency
increases with topology size, which could be explained by the fact that a larger topology
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provides a larger choice of solutions, thus making it easier to find one or more optimal
solutions.

• The computational times for the heuristic are affected by SFC length, topology size, as well
as the number of generations. Indeed, the increase of any of these parameter leads to an
increased number of iterations for the heuristic and therefore a longer execution time, as the
first two parameters also affect the number of generations of the heuristic. However, while
the ILP’s computational times increase exponentially, the heuristic’s remain in the range of
seconds for the biggest problem instances.

We can therefore conclude that the heuristic is sufficiently efficient and scalable for use in
different configurations. Furthermore, the number of generations for which the algorithm is run
can be tuned in order to find a satisfactory trade-off between computational cost and closeness to
the optimal placement solutions.

3.6 Conclusion
In this chapter, we proposed a multi-objective solution for joint node and link mapping of multi-
domain SFCs using an ILP model, as well as a memetic algorithm. The results of our heuristic with
limited visibility on the network are close to the optimal one by 96.5−89.1% with a computational
time improvement of up to 400 times. However, the weighted sum approach doesn’t accurately
reflect the preferences of the user, and some objectives might be optimized at the expense of the
others. Furthermore, an iterative process is required in order to set the weights associated with
each objective.

In the next chapter, we develop a solution that allows a finer grained specification of user pref-
erences using Physical Programming.
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Chapter 4

SFC Placement - Physical Programming

4.1 Introduction
In the context of 5G and its use cases, the SFC placement process requires the optimization of
different QoS metrics such as bandwidth, where a minimum value needs to be guaranteed, and
latency, that needs to be kept at a minimum. Furthermore, the deployment cost needs to be min-
imized in order to maximize profit. Therefore, the SFC placement process is a Multi-Objective
Optimization problem. Multi Objective Optimization (MOO) is a process where more than one
optimization objectives are considered simultaneously. This process requires the articulation of
the Decision Maker’s (DM) preferences regarding the objectives, which will influence the prior-
ity that each objective would have over the others in the optimization process. Many methods
have been proposed in order to express the preferences of the DM before or after the optimization.
Most of these methods rely on the assignment of weights to each objective, and the optimization
of the weighted sum of these objectives [149]. However, these weights are generally determined
through trial and error, and do not reflect the specific preferences of the DM as they are not phys-
ically meaningful. Furthermore, as each objective has a different scale, a normalization process is
required.

In this chapter, we dive deeper in the multi-objective optimization aspect by proposing a more
detailed formulation that enables the expression of the user’s preferences in terms of meaningful
physical values, using Physical Programming.
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4.2 Physical Programming
The Physical Programming Optimization approach was proposed by Messac et al. in its Non-
Linear [150] and Linear [151] forms. It allows the use of physically meaningful parameters in
order to express preferences for each objective using preference ranges, and different classes that
can be hard (H) or soft (S), as shown in Figure 4.1:

• Hard Classes: These classes are constraints by definition, because solutions are rejected if
they are not in the acceptable range.

• Soft Classes: As illustrated in Figure 4.2, these soft classes objective functions include 6
preference ranges: Highly desirable, where improvement past the ideal value is of minimal
additional value, Desirable, Tolerable, Undesirable, Highly Undesirable, and Unacceptable,
which is expressed using a constraint.

Figure 4.1: Physical Programming Preference Classes
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Figure 4.2: Region Boundaries For Preference Classes

Multiple methods have been proposed for Physical Programming: Linear Physical Program-
ming [151] (LPP), Non-Linear Physical Programming (NLPP) [150], Global Physical Program-
ming (GPP) [152], and Fuzzy Physical Programming (FPP) [153]. Each method expresses the
objective function for each criterion as a combination of piece-wise convex functions (one func-
tion for each range) using the values of the range boundaries, and the global objective function is
defined as the sum of these functions. The approaches for obtaining the objective functions for
each Physical Programming method are explained in more details in Section 4.3.2.

Physical Programming optimization enforces the One vs Others Criteria (OVO) Rule, which
states that a full reduction for one criterion across a given range is better than a full reduction for
all of the other criteria across the next better range. In practice, it means that between the options of
improving on criterion from the Tolerable range to the Desirable range, and improving all the other
criteria from the Desirable to the Highly Desirable range, the first option would be preferred. This
ensures a fair trade-off between objectives, and avoids improving certain objectives at the expense
of others, as could be the case with the weighted method. This rule also ensures that the value of the
objective function for range boundaries is the same across criteria (and therefore that each region’s
objective function’s amplitude is also the same across criteria), which has a normalizing effect.
Furthermore, once a certain objective has reached the ideal value, instead of further improving it
past the ideal value, the focus would be on the remaining objectives.
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A few works have leveraged on the Physical Programming method for Multi-Objective Opti-
mization in different fields [154]: aircraft parameter design [155] [156], trajectory planning [157],
mechanical engineering [158], as well as electromagnetic and transmission related problems [159]
[160]. The results obtained with Physical Programming in each of the aforementioned works are
closer to the user’s preferences than the results obtained with the usual MOO methods.

4.3 Problem Formulation
We formulate in the following the model of the multi-domain SFC placement problem using Phys-
ical Programming, on both levels: the initial placement on the abstracted view, and the local place-
ment performed by the domains. We first define the different placement, resource, latency, and
cost constraints. Then, we express the objective function using Linear, Non-Linear, and Global
Physical Programming. Table 4.1 features the notations that are used in our model.

4.3.1 Constraints
In this formulation, we use the same placement constraints, and capacity constraints for the com-
puting resources as in the ILP formulation in the previous chapter in Section 3.3. However, the
constraints for link resources are updated in order to support variable bandwidth values, and con-
straints related to bandwidth, relative cost, as well as the end-to-end latency are added.

Link resources We designate by Ui the number of users that the SFC i should be able to serve,
and by Rω,l each link l’s capacity; we will also use the boolean τn,m,ql to express whether the link
l is part of the qth path between the nodes n and m or not. We will denote by Wi the allocated
bandwidth per user for the SFC i, depending on the SLA of the request,Wi could be a fixed value
for the strict SLAs, or variable in cases of SLAs with more relaxed constraints, with a minimal
value for the bandwidth. We can therefore discern two different cases:

• The bandwidth value is fixed: Wi is a constant. Constraint 4.1 ensures that the total
allocated bandwidth on each physical link of an end-to-end physical path does not exceed its
remaining capacity.
∀i ∈ S,∀l ∈ L :

∑
j∈Vi

∑
n∈Mi,j

∑
m∈Mi,j+1

ρn,m∑
q=1

Wi · Zn,m,qi,j,j+1 · τ
n,m,q
l · Ui ≤ Rω,l (4.1)
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Notation Description
Sets

S Set of SFCs
Vi Set of VNFs in SFC i

Ai/Āi
Set of affinity/anti-affinity

constraints for SFC i
Mi,j Set of allowed placement nodes for VNF j in SFC i
< Set of computing resources (CPU, RAM, disk)
Nd Set of nodes in domain d
L Set of links

Decision Variables
X n
i,j Placement of VNF j of SFC i on node n (Boolean)

Ẋ n,m
i,j,j+1

Placement of VNF i of SFC i on node n
and its successor on node m (Boolean)

Zn,m,qi,j,j+1

Placement of link between VNFs j and j + 1 of SFC i on
qth physical link between nodes n and m (Boolean)

Wi Allocated bandwidth per user for SFC i (Integer)
Request

∇r,i,j
Required amount of computing resource r

for VNF j of SFC i
Ui Number of users in SFC i
ψ−i Minimal required bandwidth value per user for SFC i
ψ−i Maximal allowed bandwidth value per user for SFC i
Cpaid Amount paid by the SFC owner to deploy the Service Chain

Network Infrastructure

ρi,n,m
Number of physical paths between the nodes n and m

that are allowed for SFC i
Rr,n Amount of computing resource r available on node n
ζr,n Cost per unit of resource r on node n

τn,m,ql

Link l is part of the qth path between
nodes n and m (Boolean)

Rω,l Capacity of link l
φl Latency of link l
ζl Cost of using the link l per bandwidth unit

Physical Programming
nsc Number of soft criteria.
gi Objective value for criterion i.
ḡi Class function value for criterion i.
˜̄gk Amplitude of interval k on y-axis.
λki Amplitude of interval k on x-axis for the criterion i.

gis
Upper/lower limit of interval k on x-axis

for the criterion i (Class 1-S/2-S).
β Convexity parameter

Table 4.1: Notations used
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• The bandwidth value is variable: In that caseWi is an integer optimization variable, and
we will denote by ψ−i the minimal amount of bandwidth per user that is required by the SLA
of the SFC i, and by ψ+

i the maximum amount of bandwidth that is allowed for the SLA of
the SFC i. Constraints 4.2 and 4.3 ensure that the allocated bandwidth per user for this SFC
is within the allowed range of values for the selected SLA of the SFC i:

Wi ≤ ψ+
i ∀i ∈ S (4.2)

Wi ≥ ψ−i ∀i ∈ S (4.3)

On the other hand, Constraint 4.1 becomes quadratic as it features the product of a binary
variable and an integer variable. It can be linearized using the big M method [161] as follows:
we introduce the variableHn,m,q

i,j,j+1 which will take the value of the product ofWi andZn,m,qi,j,j+1.
Constraint 4.1 then becomes: ∀i ∈ S,∀l ∈ L :∑

j∈Vi

∑
n∈Mi,j

∑
m∈Mi,j+1

ρn,m∑
q=1

Hn,m,q
i,j,j+1 · τ

n,m,q
l · Ui ≤ Rω,l (4.4)

Constraints 4.5 to 4.8 ensure that the variableHn,m,q
i,j,j+1 effectively takes the value of the prod-

uct ofWi and Zn,m,qi,j,j+1. ∀i ∈ S,∀j ∈ Vi,∀n ∈Mi,j,∀m ∈Mi,j+1:

Hn,m,q
i,j,j+1 ≤ ψ+

i · Z
n,m,q
i,j,j+1 (4.5)

Hn,m,q
i,j,j+1 ≤ Wi (4.6)

Hn,m,q
i,j,j+1 ≥ Wi − (1−Zn,m,qi,j,j+1) · ψ+

i (4.7)

Hn,m,q
i,j,j+1 ≥ 0 (4.8)

Latency Constraint

Depending on the SLA of the SFC owner (Low Latency, Best Effort...), latency constraints may
apply. As a reminder, in the previous chapter, the end-to-end latency for an SFC i was computed
using the expression in 4.9, with φl being the link l’s latency. Constraint 4.10 ensures that the
end-to-end latency doesn’t exceed the maximum allowed value for SFC i, which is denoted by φ+

i .

φi =
∑
j∈Vi

∑
l∈L

∑
n∈Mi,j

∑
m∈Mi,j+1

ρn,m∑
q=1

φl · Zn,m,qi,j,j+1 · τ
n,m,q
l (4.9)

φi ≤ φ+
i (4.10)
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Cost Constraint

In order to ensure a profit margin to the SFC provider, the cost of deploying an SFC should not
exceed a certain value. Similar to the previous contribution, computational and link costs for the
SFC i respectively are computed as expressed in Equations 4.11 and 4.12, with ζr,n being the cost
of using the resource r on node n per unit, and ζl the cost of using the link l per bandwidth unit.
The overall cost Ci is the sum of the computational and link cost.

Ci,computing =
∑
n∈Nd

∑
r∈<

∑
j∈Vi

ζr,n · ∇r,i,j · X n
i,j (4.11)

Ci,link =
∑
j∈Vi

∑
l∈L

∑
n∈Mi,j

∑
m∈Mi,j+1

ρn,m∑
q=1

ζl · Wi · Ui · Zn,m,qi,j,j+1 · τ
n,m,q
l (4.12)

Ci = Ci,link + Ci,computing (4.13)

We will denote by Ci,paid the amount paid by the SFC owner in order to have its Service Chain
deployed, and by γ the minimal margin of profit that the operator requires. Constraint 4.14 ensures
that the operator keeps its margin above the minimal value.

Ci ≤ (1− γ) · Ci,paid (4.14)

4.3.2 Objective Function
The objective of our model is to minimize the cost Ci and end-to-end latency φi, and maximize
the allocated bandwidth per userWi. Since increasing the allocated bandwidth increases cost, and
lower latency links are more expensive, the optimization’s goal is to find a fair trade-off between
all of these objectives while taking into account the tenant’s preferences as expressed in the SLAs.

As stated earlier, we use Physical Programming in order to obtain the multi-criteria objective
function. We use the variable i to designate a given criterion (in our case the criteria are the cost,
latency and bandwidth), and the variable k to designate a class function interval or range. Figure
4.3 features examples of class functions ḡi of the objective values gi for all three methods. As
illustrated in Figure 4.3a, we will denote by λki the x-axis amplitude of each criterion i in a given
range k, and by ˜̄gk the y-axis amplitude for the range k. Note that the λki are given by the chosen
SLA associated with the SFC to deploy. The class function value for each range limits is the same
across criteria as expressed in relation 4.15.

ḡk ≡ ḡi(gi,k)∀i; (2 ≤ k ≤ 5); ḡ1 ≡ 0 (4.15)
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(a) Linear Physical Programming (b) Non Linear Physical Programming (c) Global Physical Programming (n=2)

Figure 4.3: Examples of class functions ḡi of the objective values gi for the different Physical
Programming methods

This means that the y-axis amplitude for each range ˜̄gk is also the same across criteria. Note that
since the objective of our optimization is to reduce cost and latency, they are expressed using the
Physical Programming class 1-S, and bandwidth per user is expressed using the class 2-S as the
optimization aims to increase it.

Once the function for each criterion i has been defined, the global objective function G(x) is
formulated as follows:

minG(x) = log10

{
1
nsc

nsc∑
i=1

ḡi[gi]

}
(4.16)

The individual objective function ḡi[gi] for each criterion i is expressed differently depending on
the chosen Physical Programming method as will be shown in the following.

Linear Physical Programming

This method has been proposed by Messac et al. in [151]. The piece-wise functions for each range
are convex and linear as illustrated in Figure 4.3a.

Interval limits on the y-axis

ḡ1 = 0, ḡ2 = ˜̄g2 is a small positive number (e.g 0.1) (4.17)

In order to enforce the One Vs Others rule, the following relationship is applied:

˜̄gk = β(nsc − 1)˜̄gk−1; (3 ≤ k ≤ 5);nsc > 1; β > 1 (4.18)

Where β is a convexity parameter that needs to be determined.
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Convexity In a contribution from Ma et al. [162], a simplified method is proposed for obtaining
the appropriate value of β for each criterion in one iteration using the following inequality system:{

β > 1
β >

gi,k
gi,k−1(nsc−1) ; (3 ≤ k ≤ 5)

Solving this system produces a value for β that satisfies the OVO-rule as well as the convexity
requirement.

Class Function Taking the example of the class 1-S, the piece-wise linear function is expressed
as follows:

ḡi =

{
ḡk−1 + ˜̄gk

(
gi−gi,k−1

λki

)
If gi ∈ [gi,k−1, gi,k], 2 ≤ k ≤ 5

0 If gi < gi,1
(4.19)

Non Linear Physical Programming

This method has been detailed in [150]. The piece-wise functions are convex but non-linear, and
can be arbitrarily shaped in order to reflect the priorities of the Decision Maker as illustrated
in Figure 4.3b. This method is the most flexible compared to the LPP and GPP methods, and
allows the most accurate depiction of the Decision Maker’s preferences. However, it is also the
most complex mathematically. In the following, we provide the mathematical formulation of the
NLPP class functions, as well as the equation system that allows the computation of the convexity
parameter β. More details on the method that was employed to obtain these equations can be found
in the original NLPP paper.

Range limits on the y-axis

ḡ1 = ˜̄g1is a small positive number (e.g 0.1) (4.20)

˜̄gk ≡ ḡi[gi(k)]− ḡi[gi(k−1)] = βnsc ˜̄g
k−1, 2 ≤ k ≤ 5 (4.21)

Convexity The convexity parameter β must be greater than 1 and ensure that both constants a
and b are strictly positive. β is first set at 1.5 then gradually increased by 0.5 until strictly positive
values are obtained for the following a and b values for each range of each criterion:

a =
3[3si,k+si,k−1]−12s̃ki

2(λki )
3 (4.22)
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b =
12s̃ki−3[si,k+3si,k−1]

2(λki )
3 (4.23)

Where s̃ki is a characteristic slope for the kth range of the criterion i as expressed in Eq 4.24. ski
allows the computation of the slope of a range according to the slope of the preceding range as is
shown in Eqs 4.25-4.26.

s̃ki = ˜̄gk/λki (4.24)

si1 = α · s̃2i , 0 < α < 1 (4.25)

si,k =
(8α+4)s̃ki−(8α+1)si,k−1

3
, 2 ≤ k ≤ 5 (4.26)

Note that the constant α should be kept at a relatively small value (<0.1) in order to maximize the
range of acceptable slopes at the range boundaries.

Class Functions For each objective i: Taking the example of the soft class 1-S, the following
function is given:

– For the first range ((gi ≤ gi,1))

ḡi = ḡ1 · e
[
(si,1/gi,1)(gi−gi,1)

]
(4.27)

– For each other range

ḡi = T0(ξ
k
i )ḡk−1 + T1(ξ

k
i )ḡk + T̄0(ξ

k
i ;λki )si,k−1 + T̄1(ξ

k
i ;λki )sik (4.28)

ξki =
gi−gi,k−1

λi,k
(4.29)

Where 0 ≤ ξki ≤ 1, k = 2, ..., 5, and

T0(ξ) ≡ 1
2
ξ4 − 1

2
(ξ − 1)4 − 2ξ + 3

2
(4.30)

T1(ξ) ≡ −1
2
ξ4 + 1

2
(ξ − 1)4 + 2ξ − 1

2
(4.31)

T̄0(ξ, λ) ≡ λ[1
8
ξ4 − 3

8
(ξ − 1)4 − 1

2
ξ + 3

8
] (4.32)

T̄1(ξ, λ) ≡ λ[3
8
ξ4 − 1

8
(ξ − 1)4 − 1

2
ξ + 1

8
] (4.33)
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Global Physical Programming

Global Physical Programming is an adaptation of the Physical Programming method proposed by
Sanchis et al. [152], which allows a simpler formulation of the problem than the NLPP method,
while still satisfying the previously detailed PP rules such as the OVO-rule. It also allows more
flexibility in defining N , the number of preference ranges for each criterion.

Interval limits on the y-axis The images ḡk at the range boundaries gki are calculated as follows:

ḡ0 = 0, ḡ1 = ḡini, ḡini ≥ 0 (4.34)

ḡk = ḡk−1 · nsc(2 ≤ k ≤ N) (4.35)

With N being the number of preference ranges, and ḡini a pre-defined parameter.

Class Function The class function for the class 1-S is illustrated in Figure 4.3c and formulated
as follows:

ḡi =

{
ḡk−1 + ˜̄gk

(
gi−gi,k−1

λki

)n
If gi ∈ [gi,k−1, gi,k], 2 ≤ k ≤ 5

0 If gi < gi,1
(4.36)

Where n is a pre-defined parameter.

4.4 Exact Solution
The problem as formulated is a set of piece-wise functions, and contains exponentiations that can
reach the value of 4 in the case of Non-Linear Physical Programming. Therefore, the traditional
ILP optimizers can’t be used in order to solve the problem, as they are limited to quadratic models
(polynomial with degree of 2). Although it is possible to implement the LPP method on one of the
traditional solvers, such as CPLEX [163] or Gurobi [147], we preferred to use the same platform
and configuration for all three methods for consistent results. In order to implement the exact
resolution of the problem using the given formulation, we propose a Branch and Bound based
algorithm that recursively constructs solutions while eliminating branches that don’t satisfy the
constraints, as well as those with a fitness (objective function value) that is worse than the one of
the current best complete solution.
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Topology
The algorithm takes as input the topology graph G which comprises the resource information of
the nodes and links, the pre-computed set of paths P , the request req which contains the resource
requirements for each VNF, the number of users of the SFC, and its SLA class from which we can
determine the latency and bandwidth constraints. The set of authorized nodes for placementM is
also provided. The output of the algorithm is the optimal solution bestSol.

Solution Encoding
The solutions are encoded as a vector where the first value isWi the allocated bandwidth per user
for the SFC i, and each value at the index 2 ∗ j + 1 represents the ID of the node where the VNF j
has been placed, while each value at the non-zero index 2 ∗ j represents the index Pn,m of the path
that will be used for the virtual link between the nodes where VNFs j−1 and j have been mapped.

Branch and Bound Algorithm
Algorithm 3 features the pseudo-code of the proposed method. First, an initial valid solution
is generated, and serves as the best solution reference in order to eliminate the partial solutions
that are already worse. Then, as shown in Figure 4.4, the set of possible solutions is recursively
constructed and evaluated level by level as follows: At the level zero, solutions using all of the
possible bandwidth values are added, then for each subsequent level (i.e. VNF), solutions using
the possible placement nodes for that VNF are created, while also computing the best path between
the VNF and its predecessor. Once the partial solutions for each level are generated, if they satisfy
the constraints, their fitness is calculated according to the SLA of the request and the Physical
Programming method that is enforced. This fitness value is then compared to the fitness of the
best solution found so far. If the fitness is worse, the solution is withdrawn and the branch is cut;
otherwise, if the solution is complete, it becomes the best solution found so far. After all of the
possible solutions for a level have been explored, the function solGen is recursively called again
in order to compute the solutions of the next level. At the end of the algorithm (the last level is
reached), the best solution is returned.
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Figure 4.4: Branch and Bound Recursive Algorithm
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Algorithm 3: Branch and Bound Placement Algorithm
Input : Topology G , Paths P , Request req

Set of Authorized NodesM
Output: Placement pl

1 Function solGen(partS,lvl,M,req,G,P ,partC,partL) :
2 newPartS ← [] ;
3 for sol← 0 to |partS|-1 do
4 for j ∈M[lvl] do
5 currSol← [i for i ∈ partS[sol]];
6 if lvl= 0 then
7 currSol← currSol + [j];
8 else
9 Compute path the index of the best path between the last node in currSol

and j;
10 currSol← currSol + [path, j];
11 end
12 if currSol satisfies the constraints then
13 Compute currF it the fitness of solution currSol;
14 if currF it < bestF it then
15 newPartS ← nwPartS + [currSol] ;
16 if lvl = maxLvl then
17 currBestSol← currSol;
18 bestF it← currF it;
19 end
20 end
21 end
22 end
23 end
24 if lvl = maxLvl then
25 return currBestSol
26 else
27 solGen(newPartS,lvl+1,M,req,G,P)
28 end
29 end
30 Generate one initial solution currBestSol that satisfies the constraints, and save its fitness

in currF it ;
31 Determine the set of allowed bandwidth values B from the SLA of the request;
32 partSol ← [[b] for b ∈ B];
33 lvl←0;
34 bestSol← solGen(partS,lvl,M,req,G,P)
35 return bestSol
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4.5 Heuristic Solution
Similar to the previous chapter, we develop a memetic algorithm that implements the different
constraints that were formulated in Section 4.3. For a number of generations N , new placement
combinations are explored using solution generation, mutation, crossover, or local improvement
operations, the obtained solutions are then evaluated, and the best ones are retained for the next
iteration of the heuristic. However, in this contribution, we employ the Physical Programming
objective function, in order to evaluate our solution, thus optimizing the relative cost, the end-to-
end latency, and the bandwidth per user.

4.6 Evaluation

4.6.1 Test Environment
Our simulations were conducted on a server with 32 Intel Xeon 2.60 GHz CPU cores, 128 GB of
memory, hosting an Ubuntu Server 16.04 x64 OS. The evaluation scripts, as well as the Branch
and Bound and memetic algorithms were developed using the Python programming language, and
the Gurobi solver [147] was used in order to implement the ILP model.

4.6.2 Topology and Requests
In order to evaluate our solutions, we leveraged on the networkx [148] library, which allows gener-
ating multi-domain topologies where each domain is a 3-level Fat Tree network, which is a network
topology that is used in data-centers [164]. The physical servers are connected to edge switches
that are connected to aggregate switches, and are in turn connected to core switches that ensure the
inter-domain communication. We also use this library in order to compute the set of paths between
nodes.

The generated multi-domain topologies are of three types, as depicted in Table 4.2. For the
link characteristics, we follow the fat tree concept by allocating more bandwidth to the links as
we go higher in the topology [165]. In terms of latency, two types of links are used: low latency
links, and less expensive high latency links. The servers that host VNFs can be of 3 types with
different computing resource capacities, the hardware configurations of each server and link type
are detailed in Table 4.2. Note that these types for each component are randomly selected with
equal probabilities.
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Topology Configurations
Topology Domain Number Node Number Link Number

T1 4 144 240
T2 6 216 368
T3 8 288 496

Link Configurations
Link Type Bw (Gbps) Latency (ms) Price per unit

Server-Edge 10 0.1-0.5 10-20
Edge-Aggregation 10 0.5-1 40-80

Aggregation-Core (Low Latency) 40 0.5-1 480-960
Aggregation-Core (High Latency) 40 10-20 160-320

Inter-domain (Low Latency) 100 1-5 1920-3840
Inter-domain (Medium Latency) 100 10-15 1280-2560

Inter-domain (High Latency) 100 25-50 640-1280
Node Configurations

Node Type CPU RAM (Gb) Disk (To)
Large 500 1024 256

Medium 250 256 64
Small 100 64 16

Cost Per unit 10-20 10-20 1-2
VNF Resource Requirements

VNF Type CPU RAM (Gb) Disk (Go)
Large 4 6 80

Medium 2 4 40
Small 1 2 20

Table 4.2: Topology and Request Characteristics

As for the SFC requests, they are randomly generated with VNF lengths of 4 to 10. Each
VNF can be of one of three types (Large, Medium, Small) with different resource requirements as
detailed in Table 4.2. Each SFC serves as a slice that accommodates a certain number of users, and
we randomly set the maximum number of users for each SFC in the interval 10-5000.

In order to support the 5G use cases, we also set different SLA types to each request based on
the 5G service types (URLLC, mMTC, eMBB), and different SDO documents [166–169]. We can
identify many SLA classes with different requirements regarding the QoS metrics:
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• Low Latency - High Throughput: Such as Augmented/Virtual Reality applications, live
video streaming with strict latency and bandwidth requirements.

• Low Latency - Low Throughput: For mission-critical signaling in scenarios such as Au-
tonomous Driving (V2X messages) and Smart Factories, with strict latency requirements.

• Medium Latency - High Throughput: For buffered video streaming and general file shar-
ing applications.

• Medium Latency - Low Throughput: For other TCP-based services such as web browsing,
messaging etc.

Additionally, in the general case of classic internet usage, operators provide different offers of level
of service to their customers that vary in cost (Platinum, Gold, Silver, Best Effort). In this vein, we
set 6 different SLA classes with strict and non-strict QoS requirements, as described in Table 4.3.

SLA Class Use Case Latency Bandwidth

0
Real-time video applications

Strict: < 10ms Guaranteed: > 1 Gbps
(AR,VR,live streaming)

1
Mission-Critical Signaling

Strict: < 10ms Guaranteed: > 10 Mbps
(V2X, Smart Factories)

2 Internet Usage, Platinum < 100ms > 100 Mbps
3 Internet Usage, Gold < 200ms > 50 Mbps
4 Internet Usage, Silver < 300ms > 25 Mbps
5 Internet Usage, Best Effort Best Effort Best Effort

Table 4.3: SLA Classes

These requirements will next be translated to Physical Programming classes for use in the multi-
objective optimization scheme:

• In the case of SLA classes 0 and 1, latency and bandwidth requirements are strict and are
therefore equivalent to Physical Programming hard classes 1-H (Must be smaller) and 2-H
(Must be greater) respectively. They can be modeled as linear constraints.

• For SLA classes 2 to 4, latency and bandwidth requirements are less strict; they can be
translated to Physical Programming soft classes 1-S (Smaller is better) and 2-S (Greater is
better), respectively.
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• SLA Class 5 is best effort; hence only the cost is minimized.

• The cost objective for all of the classes will need to be minimized and is equivalent to the
Physical Programming soft class 1-S (Smaller is better).

Given these values, and considering that a tenant with a certain SLA shouldn’t be able to benefit
from a service level that corresponds to a higher nor to a lower level than its own, we can define the
intervals of allowed values for the latency and bandwidth. However, the deployment cost always
has to be inferior to 95% of the amount paid by the SFC owner irrespective of the SLA class, in
order to guarantee a profit margin of at least 5% to the operator. Once the allowed intervals have
been defined, we can determine the values of preference ranges for each objective and each SLA
class. Table 4.4 details the intervals for the Physical Programming ranges that will be used in order
to generate the evaluation functions of each objective. We denote by - the Unacceptable SLA
range, by H-U the Highly Undesirable SLA range, by U the Undesirable range, by T the Tolerable
range and by D and H-D the Desirable and Highly Desirable ranges respectively.

SLA Class - H-Undesirable Undesirable Tolerable Desirable H-Desirable
Latency (ms)

2 > 105 95-105 90-95 85-90 75-85 < 75
3 > 210 190-210 180-190 ms 170-180 170-150 < 150
4 > 315 285-315 270-285 255-270 225-255 < 225

Bandwidth per User (Mbps)
2 < 95 95-105 105-115 115-125 125-135 > 135
3 < 47.5 47.5-52.5 52.5-57.5 57.5-62.5 62.5-67.5 > 67.5
4 < 23.75 23.75-26.25 26.25-28.75 28.75-31.25 31.25-33.75 > 33.75

Relative Deployment Cost (%)
All SLAs >95 85-95 70-85 60-70 50-60 <50

Table 4.4: Physical Programming Ranges

Based on these SLA classes, we also set the deployment cost per SFC and per user for the SFC
tenant as illustrated in Table 4.5:

SLA Class 0 1 2 3 4 5
Cost per User 3500 3000 2750 2500 2000 1500

Table 4.5: SLA deployment cost per SLA Class
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Additionally, convexity parameters also need to be defined for each Physical Programming
method. For NLPP, we set the constant α at 0.05, and the convexity parameter β at 1.5. In LPP,
β is set at 1.1, and in GPP, αinit is set at 0.1 and the exponent n is set at 2. By applying these
values, we obtain the objective functions for each objective and each SLA. Figure 4.5 illustrates
the obtained functions for SLA class 2 for latency, bandwidth, and cost, respectively. For each
figure, the blue line represents the Linear Physical Programming function, the red line represents
the Non-Linear Physical Programming function, and the green line represents the Global Physical
Programming function. It can be noticed that the objective function results for each objective at
the preference ranges limits are equal, which normalizes the objectives.

4.6.3 Algorithms
In our simulations, we evaluate 3 different optimization algorithms:

• The heuristic algorithm combined with the SFC hierarchical partitioning framework and
applied to both levels of placement with the three Physical Programming methods, and with
a limited visibility on the domains at the first step (since the algorithm performs the initial
placement on an abstracted view of the topology). Note that the number of generations N
for which the heuristic is run is varied, in order to study its effect on the efficiency of the
algorithm, depending on the SFC length and topology size. We use the following values:
N1 = |req| ∗ |G|, N2 = N1

4
, N3 = N1

16
. Where |req| is the length of the request, and |G| is the

size of the topology. Furthermore, since each local domain only receives part of the original
SFC, the cost and latency limits for each sub-SFC are recalculated according to the sub-SFC
length’s proportion to the original SFC’s length.

• In order to evaluate the efficiency of the heuristic algorithm we also implement the Branch
and Bound algorithm applied on the full topology with the three Physical Programming
methods.

• In order to evaluate the efficiency of Physical Programming compared to weighted sum
MOO methods, we implement an ILP applied on the full topology using constraints ex-
pressed in Section 4.3, but where the objective function is a weighted sum of the normalized
objectives:

minimize αC ·
Cs
λC

+ αφ ·
φ

λφ
− αW ·

Wi

λW

With αC , αφ, and αW being the associated weights to cost, latency, and bandwidth respec-
tively, which are determined from the tenant’s SLA as shown in Table 4.6. For SLA classes
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0 and 1, the latency and bandwidth requirements are strict, which means that they are ex-
pressed as constraints. Their associated weights are therefore set to 0, and only cost is
minimized in the objective function. The SLA classes 2 to 4 represent different levels of ser-
vice for internet usage, where depending on the subscription, the operator would give more
or less priority to the QoS related objectives (allocated bandwidth and latency) over the cost
objective. The last SLA class is best effort, which means that only cost is considered, and
the weights associated to latency and bandwidth are set to 0. We also denote by λC , λφ, and
λW the normalization coefficients for cost, latency, and bandwidth which are set as the opti-
mal values for each objective for the selected SLA. The ILP is also applied on the complete
multi-domain topology.

SLA Cost αC Latency αφ Bandwidth αW
0-1 (Strict QoS reqs.) 1 0 0

2 (Platinum) 0.2 0.4 0.4
3 (Gold) 0.5 0.25 0.25
4 (Silver) 0.8 0.1 0.1

5 (Best Effort) 1 0 0

Table 4.6: Weights associated to the optimization objectives for the ILP depending on the SLA

For the three algorithms, 150 requests of different SLAs are generated and placed sequentially, and
after each SFC placement, the capacity values of the topology are updated. Note that since the
output of the heuristic can vary from an experiment to another, we repeat the experiment 20 times.

4.6.4 Results
In the following, we present the results obtained from the different simulations. We evaluate the
performance of our algorithms using two metrics:

• Efficiency, which can be quantified by classifying each solution in the corresponding SLA
satisfaction class according to the obtained results, and comparing the overall results. We
also evaluate the relative difference between the obtained results and the optimal value for
each optimization objective. Note that for the cost objective, we evaluate the relative deploy-
ment cost, which is the ratio between the deployment cost, and the amount paid by the tenant
in order to deploy its SFC.
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• Scalability, which can be estimated by measuring the evolution of runtime for each
algorithm when increasing SFC length and topology size.

Figure 4.5: Physical Programming class functions for the SLA class 2

Efficiency

Overall Satisfaction Rate First, we evaluate the efficiency of the Physical Programming method
compared to the ILP by classifying the placed solutions according to the preference ranges pro-
vided by the SFC owner. Table 4.7 provides the classifications of all of the requests regardless of
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SFC length and topology type. It can be observed that while the ILP provides the best placement
solutions in terms of latency with 100% of the solutions in the Highly Desirable range, it falls
short in terms of allocated bandwidth per user where the minimum value is allocated in 100% of
the time. For the relative deployment cost, 30% of the solutions are classified at the Highly Un-
desirable range. Only 65% of the request placements are classified at the Highly Desirable range,
even when higher weights are assigned to the cost and bandwidth objectives. In comparison, the
Physical Programming results maintain relatively good results across all objectives. Indeed, the
Branch and Bound algorithm combined with Physical Programming provides solutions where the
latency is in the Highly Desirable range 91 to 94% of the times, the cost is always kept at a minimal
value, and the optimal value for bandwidth is reached for 95% to 97% of the requests. The reason
for this difference between the results of the Physical Programming methods and the ILP lies in the
fact that in Physical Programming, if a solution reaches the optimal value for an objective, the eval-
uation function keeps outputting the same value even if the objective is further optimized. Thus,
giving preference to solutions that also improve the other objectives. However, the weighted-sum
ILP might give preference to solutions that minimize a certain objective past its ideal value, while
disregarding the other objectives.

Physical Programming methods It can also be noticed that among the Physical Programming
methods, the Linear method is the most efficient. Although all of the methods perform similarly in
terms of cost, the LPP method keeps the number of solutions in the Highly Undesirable range to a
minimum with 0.58% of solutions for the latency and 1.08% of solutions for bandwidth, as opposed
to 1.47% and 4.07% respectively for NLPP, and 1.59% and 2.8% of solutions for GPP respectively.
The number of Highly Desirable solutions for LPP is also the highest with 94.99% of solutions as
opposed to 91.31% and 91.62% of solutions for NLPP and GPP respectively regarding the latency,
and 97.15% of solutions as opposed to 95.69% and 95.81% for NLPP and GPP respectively in
terms of bandwidth. However, this difference remains in the range of 2 − 3% of the produced
solutions, which isn’t a significant difference.

The Heuristic Since the LPP method performs better than the other two, and for the sake of
brevity, we will only display the results of the heuristic using LPP, while varying the generation
number. It can be noticed that the solutions from the heuristic are less optimal than those obtained
using the Branch and Bound algorithm, with more solutions that are classified on the least desirable
ranges. However, the heuristic still outperforms the ILP with results that remain at the Highly
Desirable range for 93 − 96% of the placement results. The change in the number of generations
does not significantly affect on the overall results, as the results classification remains consistent
with a slight decrease in the number of solutions classified in the Highly Desirable range, as the
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number of generations decreases. Similarly to the Branch and Bound algorithm applied to the
Physical Programming method, all objectives are uniformly optimized and no objective is given
preference over the two others.

SLA Class H-Undesirable Undesirable Tolerable Desirable H-Desirable
Latency

B&B - LPP 0.58% 0.96% 2.29% 1.21% 94.99%
B&B - NLPP 1.47% 2.10% 2.54% 2.61% 91.31%
B&B - GPP 1.59% 2.04% 2.61% 2.16% 91.62%

ILP 0% 0% 0% 0% 100%
Heuristic - N1 1.15% 0.77% 0.85% 0.58% 96.68%
Heuristic - N2 1.16% 0.88% 0.98% 0.55% 96.46%
Heuristic - N3 1.05% 0.78% 0.85% 0.46% 96.89%

Bandwidth per User
B&B - LPP 1.08% 0% 1.78% 0% 97.15%

B&B - NLPP 4.07% 0% 0.26% 0% 95.69%
B&B - GPP 2.8% 0% 1.40% 0% 95.81%

ILP 100% 0% 0% 0% 0%
Heuristic - N1 0.70% 0.38% 0.43% 0.52% 98%
Heuristic - N2 0.67% 0.46% 0.61% 0.52% 97.77%
Heuristic - N3 0.70% 0.41% 0.60% 0.58% 97.74%

Relative Deployment Cost
B&B - LPP 0% 0% 0% 0% 100%

B&B - NLPP 0% 0% 0% 0% 100%
B&B - GPP 0% 0% 0% 0% 100%

ILP 29.97% 2.07% 1.57% 1.76% 64.64%
Heuristic - N1 0.30% 0.42% 0.29% 0.41% 98.61%
Heuristic - N2 0.36% 0.43% 0.36% 0.47% 98.40%
Heuristic - N3 0.23% 0.41% 0.31% 0.44% 98.63%

Table 4.7: Results Classification using Preference Classes

Effect of the SFC Length and Topology Size Next, we study how the efficiency of the 3 solu-
tions is affected by the changes of SFC length, as well as topology size. Figures 4.6, 4.7 and 4.8
illustrate the obtained results for latency, bandwidth, and cost, respectively. The 0 value on the
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y-axis represents the optimal value for each request, which is the Highly Desirable value for that
SLA class, and the different results represent the relative mean difference between the obtained
value for each algorithm and the optimal one. Depending on the optimization objective, it would
be preferable to have results either above or below the optimal value threshold. Indeed, since
the optimization model aims to reduce the end-to-end latency and relative cost, the best solutions
should be below the threshold. In contrast, as the bandwidth per user is a Larger-is-Better Physical
Programming class, the best solutions are above the threshold. The blue line represents the average
ILP results, the orange, green and red lines represent the mean Branch and Bound results for the
LPP, NLPP, and GPP methods respectively, and the purple, brown and pink dashed lines repre-
sent the mean and 95% Confidence Interval (C.I) of heuristic results using LPP for the generation
numbers N1, N2, and N3 respectively.

Latency Looking at the end-to-end latency results in Figure 4.6, we can first confirm the results
in Table 4.7, where the ILP gives preference to latency over the other objectives. The latency values
for the ILP are under the optimal threshold with a mean value of around 95 − 100% less than the
objective value across SFC lengths and topology sizes. The same behavior can be observed from
the values obtained from the Physical Programming algorithms regardless of the topology size
and SFC length. As for the Branch and Bound and heuristic results, we can observe that latency
values slowly increase proportionally with SFC length and topology size while still remaining
under the optimal value threshold, and therefore within the Highly Desirable preference class with
values increasing from −81.5% to −38.4% for the topology T1, −80.72% to −29.04% for the
topology T2, and −68.75% to −20.33% for the topology T3. It can also be noticed that although
all of the Physical Programming plots are similar, the NLPP latency results are slightly lower
than those of the other two methods for the Branch and Bound algorithm for the shorter SFCs
with values of −83.63%,−80.72%, and −68.75% for SFC length of 4 SFCs and topologies T1,T2,
and T3 respectively. However, as SFC length increases, the LPP method provides solutions with
slightly lower latencies with values of up to −45.45%,−35%, and −32.81% for SFC length 10
and topologies T1,T2, and T3 respectively. Another observation that can be made on the heuristic
results is that the highest generation numbers N1 and N2, provide, on average, lower latencies than
those obtained with the generation number N3. This can be explained by the fact that the longer a
heuristic is run, the more solutions are explored and the better the results are.

Bandwidth In contrast, the ILP results for bandwidth (Figure 4.7) remain stable and under the
optimal value threshold for all SFC lengths and all topologies with mean values of around −25%.
Note that in Table 4.7 all of the placement solutions are classified as Highly Undesirable. As for
the Branch and Bound results, they also remain stable but slightly over the optimal value threshold,
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which is consistent with the results in Table 4.7 where the majority of solutions are classified as
Highly Desirable. The NLPP method provides the highest bandwidth values with an average of
values that are 8% higher than the optimal value for lower SFC lengths, and slowly decreasing to
0.9% as the number of VNFs increases, as opposed to 6− 2% for LPP and 7− 0.1% for GPP.

However, the bandwidth values for the heuristic algorithm fluctuate more depending on SFC
length and topology size. Indeed, for topology T1, the mean values of bandwidth per user for the
heuristic algorithm are higher than the optimal value and those of the Branch and Bound solution.
The values oscillate between 0.04% and 79% over the Highly Desirable threshold, with C.Is of
0.4 − 21% respectively, with a general tendency to decrease as the SFC length increases. The
heuristic results for bandwidth stabilize as topology size increases. For topology T2, the mean
values of the bandwidth per user are reduced, but are still close to the optimal value with results
that are between 6% below the threshold, and 23% over the threshold, and C.Is of 0.4 − 12%. As
for topology T3, the mean bandwidth values are very similar to those of the Branch and Bound
algorithm for the shorter SFCs with values of around 2− 4%, and a peak at SFC lengths 9 and 10
that reaches 40% over the optimal value with a C.I of 11% for generation number N3; while the
mean values for generation numbers N1 and N2 reach the values 20% and 24% over the threshold
respectively for the SFC length of 10 VNFs, with C.Is of 8% and 9% respectively.

Relative Cost Moving on to the relative cost, we can see in Figure 4.8 that once again the Branch
and Bound results remain stable and way under the optimal value across configurations with mean
values of −96% to −80%. We can also observe that for this objective, the GPP method slightly
outperforms the LPP and NLPP methods. The heuristic algorithm also displays values that slowly
increase as SFC length increases, but the results remain similar to those obtained by the Branch
and Bound algorithm. In contrast, as the ILP provides lower latency values, hence using higher-
cost links compared to the other solutions, its cost results are higher than those of the algorithms
that leverage on Physical Programming. For topology T1 the relative cost increases proportionally
to the SFC length with a mean relative cost of −82% to −49%; while for topology T2 the ILP
provides results with relative costs of 79% to 49% lower than the optimal value. For topology T3
the relative cost oscillates between −75% and −60%.
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Figure 4.6: Relative Difference Between the Placement Solutions and the Optimal Value for the
End-to-End Latency
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Figure 4.7: Relative Difference Between the Placement Solutions and the Optimal Value for the
Bandwidth per User
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Figure 4.8: Relative Difference Between the Placement Solutions and the Optimal Value for the
Relative Cost

Runtime

During our simulations, we also measured the mean runtime of the algorithms in order to evaluate
their scalability in terms of computing time. The results are gathered in Table 4.8. Note that de-
pending on the quality of the first generated solution, the execution times of the Branch and Bound
algorithm might vary. Indeed, a relatively good first solution might allow the elimination of mul-
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tiple branches at the first levels, therefore significantly reducing the solution space to explore. In
contrast, the heuristic runtimes are stable, as they depend essentially on the number of generations
that has been set as an input of the algorithm.

Exact Solutions Due to the complexity of the exact formulation, the ILP displays high computa-
tion times for all of the simulation configurations. For topology T1, the runtime for the ILP starts
at 19 seconds for SFC length of 4 and increases to up to 122 seconds for SFC length 10. Similar
behavior is observed for topologies T2 and T3 with an increase from 24.58s and 24.19s for SFC
length 4 to 110s and 102s for SFC length 10 respectively.

The Branch and Bound algorithm turns out to be more costly than the ILP in terms of runtime;
indeed, the runtime for longer SFC lengths increases to up to 249s. Overall, the NLPP method is
the one with the highest runtime values starting at 25.95 seconds for SFC length of 4 and increasing
to 186 seconds for SFC length 10 when used on topology T1, when for topologies T2 and T3 with it
increases from 24.58 and 24.19 for SFC length 4 to 110s and 102s for SFC length 10 respectively.
The LPP method comes second with a runtime from 21s to 174s for topology T1, and 24s and
42s to 249s and 234s respectively for topologies T2 and T3. Lastly, Global Physical Programming
displays runtimes from 20s, 24s, and 45s to 144s, 205s, and 209s for topologies T1, T2, and T3,
respectively.

Heuristics In contrast, the heuristic proves the most scalable as it outputs results in significantly
lower times compared to the exact solutions. The heuristic algorithm with the highest generation
number N1 outputs results after 2.1s and up to 11.05s depending on the SFc size for the topology
T1, while for the topologies T2 and T3 the proposed heuristic returns results after 2.89s to 11.65s
and 8.09s to 19.46s respectively. Reducing the number of generations to N2 further reduces the
runtime, with values of 1.06s to 3.5s for topology T1, and between 1.21s and 5.36s for topology
T2, while for topology T3 the runtime ranges between 2.24s and 6.29s. The generation number N3
produces the lowest runtimes with 0.71s to 1.64s, 0.65s to 2.38s, and 1.73s to 2.24s for topologies
T1, T2, and T3 respectively. We can therefore conclude that the proposed exact solutions are not
scalable, and are not suitable for use at runtime, while the heuristic approach allows results within
less than 20 seconds for the biggest instances, and less than a second for the small instances when
reducing the number of generations.

83



CHAPTER 4. SFC PLACEMENT - PHYSICAL PROGRAMMING

SFC Length 4 5 6 7 8 9 10
Topology T1

ILP 19.36 30.54 44.16 55.13 78.76 82.94 122.26
B&B - LPP 21.02 25.23 47.8 65.67 97.69 149.04 174.67

B&B - NLPP 25.95 33.89 64.5 86.48 118.65 173.86 186.96
B&B - GPP 20.73 25.74 47.82 62.19 86.6 124.81 144.41

Heuristic - N1 2.87 2.1 4.2 6.21 6.66 9.11 11.05
Heuristic - N2 1.27 1.06 1.76 1.52 2.81 2.75 3.5
Heuristic - N3 0.86 0.71 0.93 0.91 0.95 1.41 1.64

Topology T2
ILP 24.58 33.44 45.97 60.24 72.53 98.24 110.6

B&B - LPP 24.28 51.58 82.21 123.2 146.36 151.73 249.4
B&B - NLPP 27.34 63.15 95.22 129.86 146.12 154.96 218.9
B&B - GPP 24.22 51.74 79.21 112.72 129.12 137.25 205.17

Heuristic - N1 2.89 4.49 7.31 6.79 7.54 11.65 11.57
Heuristic - N2 1.21 2.64 2.83 2.01 3.29 5.36 4.22
Heuristic - N3 0.65 0.95 1.54 1.32 1.86 2.38 2.38

Topology T3
ILP 24.19 35.29 45.13 56.22 77.96 102.43 102.95

B&B - LPP 42.49 60.92 98.14 143.99 171.21 232.39 234.92
B&B - NLPP 49.61 74.82 118.66 164.38 195.13 241.01 236.18
B&B - GPP 45.2 65.68 102.73 140.63 172.14 210.5 209.1

Heuristic - N1 8.09 10.84 13.43 12.4 19.46 16.93 15.84
Heuristic - N2 2.24 3.83 5.12 4.58 6.29 3.66 3.83
Heuristic - N3 1.73 1.86 1.61 1.85 3.15 2.74 2.24

Table 4.8: Comparison of computation times (in seconds)

4.6.5 Results Discussion
Comparison between Physical Programming and ILP

Thanks to our extensive evaluations with different simulation configurations, we are able to assess
the efficiency of the Physical Programming method compared to the weighted-sum ILP. Indeed,
simulation results demonstrate how our proposed method equally optimizes all three objectives
and provides solutions that best reflect the DM’s preferences. The results also indicate that the
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Branch and Bound algorithm is relatively scalable in terms of efficiency. They remain consistent
and within the Highly Desirable interval of preference across all configurations.

Comparison between the Physical Programming Methods

The main difference between the three methods lies in the complexity of the class function’s for-
mulation in order to obtain a more or less smooth curve, so that the class functions translate the
preferences of the Decision Maker as accurately as possible. The original NLPP formulation al-
lows the most accurate depiction of the Decision Maker’s preferences, with a smooth curvature,
but at the cost of very complex formulations. The GPP method simplifies the formulation while
keeping the Physical Programming properties. Finally the LPP method allows a linear formulation
of the class functions, which not only reduces the computational complexity, but also allows its
use with traditional linear solvers that are more efficient than the proposed exact algorithm.

In light of the results that we have obtained from our different simulations, we were able to
determine that the three methods provided similar results, but the Linear version slightly outper-
formed the other methods with a difference of efficiency of 2 − 3%. Therefore, we can conclude
that the LPP method is more suitable for this problem, as it is simpler in terms of computational
complexity, and provides results that are closer to the preferences of the designer.

Comparison between the Exact Solutions and the Heuristic

The evaluation of the heuristic shows its efficiency with results that, on average, remain within
the desirable intervals, while exploring only parts of the solution space, and with limited visibility
on the domains. However, its efficiency decreases as SFC length increases, especially in terms of
bandwidth per user. In terms of runtime, the exact solutions show relatively high runtimes that
quickly increase as the SFC length and topology size increase, thus making their use unsuitable
for real time SFC placement. On the other hand, the heuristic solution proves to be more scalable
with significantly lower computation times. This can be explained first by the fact that the heuristic
explores a smaller set of solutions, and second by the SFC partitioning process that takes place,
thus further reducing the number of possible combinations for each sub-SFC. Furthermore, the
runtime for the heuristic can be controlled by increasing or decreasing the number of generations
for which the algorithm is run, and a fair trade-off between efficiency and runtime can be obtained
depending on the Decision Maker’s priorities.
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4.7 Conclusion
In this chapter, we proposed a centralized framework in order to support SFC placement over
multiple domains while allowing the domain operators to disclose minimal information on their
infrastructure. We modeled the SFC placement problem as a multi-objective optimization problem
where the end-to-end latency, individual bandwidth, and relative deployment cost are optimized us-
ing Physical Programming in order to express preferences through meaningful parameters. Three
Physical Programming methods were used: Linear, Non Linear, and Global. We implemented
our model using an exact algorithm, and also formulated a scalable and efficient heuristic solu-
tion. The evaluation of the framework as well as the proposed algorithms proved our solution’s
effectiveness, with limited visibility on the network, and the scalability of the heuristic that pro-
vided results within the desirable ranges in relatively low runtimes. Furthermore, we were able to
demonstrate the benefits of using Physical Programming as opposed to the weighted-sum method
by comparing our results to those obtained from an ILP, indeed, the results showed that the Physi-
cal Programming method provided solutions that optimized all of the objectives, as opposed to the
ILP. The comparison between the three Physical Programming methods also provided insights on
the results of each one.

In the next chapter, we detail a scalable multi-domain SFC deployment and orchestration frame-
work that ensures the end-to-end SFC forwarding, and manages the differences in encapsulation
between the domains.
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Chapter 5

SFC Deployment and Orchestration

5.1 Introduction
In the previous chapters, we studied multi domain SFCs mapping with limited visibility, and pro-
vided a framework that allows orchestrators to determine the optimal placement of the SFCs while
satisfying a set of deployment constraints. However placement is only a part of the SFC deploy-
ment process, and is not sufficient for ensuring the effective end-to-end deployment, as it requires
additional configuration steps. Indeed, to ensure the end-to-end forwarding of SFC packets, the
domain orchestrators need to identify the SFC that ingress packets belong to, as well as the next
hop, to properly configure their forwarding and classification components. This presumes that a
communication protocol between orchestrators ought to be in place in order to enable the sharing
of the required information. Furthermore, to support heterogeneous encapsulation types in the lo-
cal domains, an interfacing entity should be deployed to apply the required encapsulation at the
ingress of the domain and to add the encapsulation that would allow the next domain to identify
the SFC at the egress of the domain.

Multiple contributions have been made in multi-domain service orchestration, multi-domain
SFC, and SFC packet forwarding. They can be classified as follows:

5.1.1 Multi-Domain SFC Placement
As shown in the previous chapters, a number of contributions [140,143,145,170–172] studied SFC
placement with limited visibility, with two main architectural approaches. With the first approach,
a distributed algorithm is executed on all of the domains, and messages are exchanged in order to
determine the best option without disclosing information to external parties. The second approach
allows a logically centralized coordinator to collect the information disclosed by the domains, and
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reconstitutes an abstract global view of the network in order to perform placement. In the chapters
3 and 4, we proposed centralized solutions for SFC placement. However, these works only solve
the multi-domain SFC placement problem, which is only a part of the SFC orchestration process,
and is not sufficient for ensuring the effective end-to-end deployment, as it requires additional
configuration steps.

5.1.2 Multi-Domain Service Orchestration
The ETSI framework for NFV-MANO has been extended in its third release [135] in order to
support multi-domain orchestration by adding a reference point (Or-Or) that allows orchestrators to
communicate. The document defines the exchanged information format between the orchestrators
for service deployment, such as NSDs. Nonetheless, this information is not sufficient to deploy
an end-to-end SFC; indeed, each domain along the chain ought to be aware of the global SFC that
its sub-SFC belongs to, in order to properly identify the packets at its ingress. The local domains
should also be aware of the next domain that the packets should be forwarded to, so that the end-to-
end packet steering is ensured. In a position paper, Rosa et al. [173] proposed a multi-domain NFV
orchestration architecture, presented a few use cases, and identified challenges and open research
directions such as control plane placement, resource capability discovery, policy enforcement, and
security. In [174], a reference architecture for multi-domain NFV orchestration is proposed, and
an overview of the remaining open issues and challenges is provided. Similarly, an orchestration
architecture for multi-domain Network Slice deployment and resource management is depicted
in [175]. Figueira et al. [141] proposed a hierarchical architecture for multi-domain SDN Control
and orchestration. The framework comprises a main domain that contains the main orchestration
and control components, and that interfaces with lower level domains (Region and leaf domains).
[142] presented the 5G Exchange framework for end-to-end multi-domain orchestration. Single
domain orchestrators of a single operator are connected to an upper-level logically centralized
multi-domain orchestrator, which communicates with other operator’s multi-domain orchestrators
in a distributed manner. However, these works don’t consider SFC and the related constraints on
the packet processing order.

5.1.3 SFC Orchestration
Multiple contributions proposed SFC orchestration solutions that extend the ETSI MANO [52] ref-
erence architecture. The authors of [60] introduce ETSO, a modular ETSI NFV-MANO compliant
framework that ensures an end-to-end SFC orchestration. Likewise, Medhat et al. [62] detail
X-FORCE, an ETSI NFV-MANO compliant SFC orchestration framework that integrates an SFC
orchestrator in the reference architecture, and Ding et al. [36] present OpenSCaaS, a platform that
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leverages on SDN and NFV to provide SFC as service. Nevertheless, these works ignore the issues
related to the multi-domain aspect of SFC deployment, such as the end-to-end packet forward-
ing and identification at each domain, or the possible heterogeneity in packet encapsulation and
traffic steering methods. A few works tackled the multi-domain SFC deployment issue: In [176],
the authors present Cloud4NFV, a platform for SFC orchestration across data-centers; the solution
adopts a non-tagging classification approach, in which classification is performed at each hop of
the SFC. However, this approach generates considerable latency as each packet needs to be clas-
sified at each hop. Furthermore, it considers that the distributed data-centers belong to the same
domain. An IETF draft [177] proposes two methods for inter-data-center SFC deployments:

• With multiple SFC domains: Where each domain’s management is constrained to itself,
meaning that each SFC domain is only aware of the sub-SFC that is deployed within its
infrastructure, as well as the next hop, and is unaware of the higher-level SFC details and
configuration, as well as the other SFC domains. The SFC is fragmented, and a sub-chain
is deployed in each domain. In this scenario, classification needs to be performed at the
entry of each sub-chain, which increases delays; this scenario also doesn’t allow context
data sharing.

• With a single SFC domain: In this scenario, classification is performed only once and
context data can be shared, but control and orchestration complexity increases as all domains
have to be managed at once by a single logical entity. Furthermore, this approach supposes
that the local domains delegate enough control and visibility to the centralized coordinator in
order to operate the multi-domain SFC from end to end, which might not always be possible,
as stated previously.

5.1.4 SFC Packet Forwarding
As for SFC packet forwarding, multiple traffic steering methods have been proposed, such as
header-based methods, like Network Service Headers (NSH) [41, 178], tag-based methods [179]
[180], and programmable switch-based methods [181]. A comprehensive survey on traffic steering
methods for SFC can be found in [30]. However, these solutions enable SFC packet forwarding
inside a single domain only. The RFC 8459 [27] attempts to tackle the multi-domain issue by
proposing a hierarchical multi-level network architecture for SFC that allows the decomposition
of a large network into a set of independent sub-domains. The proposal also introduces the IBN
that acts as an SFC-aware Service Function in the higher-level domain, and as a classifier in the
lower-level domain. Nevertheless, the RFC assumes that all the sub-domains are part of the same
administrative domain, and does not consider multi-domain issues related to visibility and inter-
operability. Indeed, the multi-domain context is much more complex, especially when the domains
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belong to different administrative entities, which would be reluctant to disclose details on their in-
frastructure, and operate their domains independently. Another draft in [136] proposes a horizontal
approach for multi-domain NSH. SFCs that span multiple domains are divided into a set of single-
domain segments, and the identifier of the next domain’s classifier is encapsulated in the metadata
part of the NSH encapsulation. However, this architecture can only be applied to NSH-aware do-
mains. Indeed, since the encapsulation and traffic steering methods are not always the same in
every domain, it is necessary to integrate interfacing entities in each domain that would ensure the
end-to-end service delivery, regardless of the underlying technologies by performing inter-domain
packet forwarding, encapsulation/decapsulation or tunneling of packets, as well as communication
protocol negotiation.

In this chapter, we tackle the aforementioned issues by presenting a novel ETSI-compliant ref-
erence architecture for SFC orchestration that enables the deployment of Service Function Chains
spanning multiple administrative domains, agnostically to the SFC encapsulation methods that are
implemented by each domain. First, we propose an architectural framework that leverages on ex-
isting standardization efforts in order to ensure an end-to-end orchestration of multi-domain SFCs
regardless of the internal communication protocols used by each domain. Afterwards, we imple-
ment a Proof of Concept of our architecture, and perform an extensive evaluation based on various
KPIs using different encapsulation protocols.

5.2 Architecture
In this section, we describe our proposed multi-domain orchestration architecture for Service Func-
tion Chaining. It extends existing standardization efforts, namely the third release of the ETSI
NFV MANO specification [52] [135], as well as the hierarchical SFC principle proposed by the
IETF [27]. We assume that prior to SFC deployment, an enrollment procedure is performed by
the domains in order to participate in the multi-domain SFC deployment, under the supervision of
the multi-domain orchestrator. We suppose that this procedure is performed by the administrative
entities, where mutual agreements are made in order to set the amount of resources made available
by the local domains, as well as the cost per unit, SLA and security requirements may also be
negotiated between the operators. Further, this procedure is also meant to perform authentication,
and establish mutual trust between the different entities, as the local domains are delegated partial
control over the SFCs. At the end of the enrollment procedure, secure communication channels
are established between the orchestrators.
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Figure 5.1 illustrates our proposed architecture, where two SFCs are deployed on three inde-
pendent domains. The first SFC spans domains A and B, while the second SFC is deployed on
domains B and C. At the physical layer level, each domain disposes of a set of computing and
forwarding elements that are connected through the physical network. At the virtualization layer,
Virtual Network Functions are deployed on the computing nodes and are connected through Virtual
Links. These VNFs will act at the SFC layer as Service Functions, IBNs, and classifiers, and the
SFC packet steering is ensured by the Service Function Forwarders (SFFs). Traffic steering relies
on SDN, where the SDN controller of each domain is responsible for the configuration of each
network element in order to perform the desired forwarding of packets. For the sake of brevity,
these layers are only detailed for the first domain.

Local Domain Orchestration: At the orchestration level, each domain possesses its own NFV
Management and Orchestration entities as defined by ETSI’s specification, and is independent
in its SFC management (identification, encapsulation, and so on). Therefore, we consider that
each domain is only aware of its local sub-SFCs and the next hop, and ignores details on the
global SFC and its other sub-chains. Note that although the Virtual Infrastructure Manager and
WAN Infrastructure Manager are separate entities, they are connected to the other MANO blocks
through similar reference points. Therefore, for the sake of simplicity, we represent them as one
block. Moreover, the local domain orchestrators are connected to a Multi-Domain Orchestrator
(MDO) through an interface that extends the Or-Or reference point, as it supports the exchange of
additional information that is required for multi-domain SFC deployment, additional information
that isn’t supported by that reference point (see Section 5.4).

Multi-Domain Orchestrator: The MDO is responsible for ensuring the end-to-end deployment
of the global SFC, and could also be a local domain orchestrator. During the SFC deployment, the
MDO first performs an initial placement of its VNFs, and partitions the NSD accordingly. Then,
the sub-NSDs are sent to each local domain orchestrator, along with additional information in order
to configure the local IBNs, as will be further discussed in Section 5.3. That information allows
the IBNs to perform the inter-domain packet forwarding, by identifying the SFC of the incoming
packets, as well a the next hop at the end of the SFC.

Internal Boundary Node: We leverage the hierarchical SFC proposal of the IETF [27] by in-
corporating the IBN as the interfacing entity mentioned above. However, the RFC supposes that
the WAN domain (higher level) is SFC-aware, which is not always the case in a multi-domain sce-
nario. Therefore, we study in this contribution the case where the WAN domain is not SFC-aware,
which means that our IBN implements a different method for the inter-domain packet steering:
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Figure 5.1: Architecture for Multi-Domain SFC Orchestration
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At the domain’s egress, the IBN strips off the local domain encapsulation of the packets, and
sends them to the next domain’s IBN in the global chain through the border gateways. At a do-
main’s ingress, the IBN acts as a classifier by identifying the global chain and sub-chain that each
packet belongs to, and adding the corresponding local domain encapsulation. In order to perform
these operations, the IBN should keep a mapping table of the global service path that each sub-
chain belongs to, as well as the next hop after the end of the sub-chain as will be illustrated in
Section 5.4. This mapping table is constructed using information obtained from the MDO, and the
local NFVO through the WIM and VIM, respectively.

It is important to highlight that the classification that is performed by the ingress IBNs is different
than the one performed by the classifier at the beginning of the chain. Indeed, the classifier receives
the original packets, and determines the SFC (first sub-SFC in our case) that they belong to using
information that is provided by the client, then encapsulates them accordingly. On the other hand,
the ingress IBN performs classification using the encapsulation that is inserted by the egress IBN of
the previous domain, and that is either determined by the MDO, or from an inter-IBN negotiation
protocol. Furthermore, the SFC classifiers are configured by the local NFVO through the VIM,
while the classification components of the IBNs are configured by the WIM, which is responsible
for the WAN (inter-domain) configuration. Therefore, we consider them as two separate logical
entities as illustrated in domain B.

Thanks to this multi-level setting, our architecture is agnostic to the encapsulation and forward-
ing protocols used internally by the local domains. Each domain is independent and able to use
whichever protocol to ensure the forwarding for its sub-chains as long as the QoS requirements of
the Service Level Agreement (SLA) are respected. The IBNs would undertake the task of applying
the necessary changes to the packet’s encapsulation in order to forward them to the outer domains.
Therefore, the only compatibility that needs to be ensured is the one between consecutive IBNs for
inter-domain packet forwarding.

5.3 Multi-Domain SFC Instantiation Process
We hereby describe the SFC Instantiation process over multiple domains. Figure 5.2 illustrates
the workflow that takes place when instantiating a multi-domain SFC. At first, the customer, who
wishes to deploy its SFC, sends the corresponding Network Service Descriptor (NSD) to the multi-
domain orchestrator (see chapter 3); in turn, the latter will perform an initial placement of the
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chain, which will determine the domains where each Service Function will be placed based on the
information that has been disclosed by each domain as will be discussed in Section 5.3.1. Once
the initial placement has been determined, the request is partitioned to sub-chains depending on
the domain where each VNF of the SFC has been assigned as will be detailed in Section 5.3.2.

Once the sub-NSDs are created, and the global service path is determined, the multi-domain
orchestrator creates a mapping between the global service path ID and the position of the sub-
chain in that path with the domain where it will be deployed. Taking the example of the NSH
encapsulation [41], the path ID would correspond to the Service Path Identifier, and the position in
the path would correspond to the Service Index. The multi-domain orchestrator then proceeds by
sending to each local domain orchestrator the corresponding sub-NSD, as well as the global path
ID that the sub-SFC belongs to, its position, and the identifier of the next domain that the packets
should be forwarded to if applicable.

Upon receiving that information, each local orchestrator performs a local placement of its sub-
SFC and deploys it, then instructs its local SDN controller to create the local Service Path of the
sub-chain using the sub-VNFFG. The SDN controller then creates the Service Path, and installs the
flow rules on the Service Forwarders of the domain in order to route the packets according to the
Service Path. The controller will then return the local Service Path ID to the local orchestrator that
will in turn add an entry to the IBN’s mapping table that is comprised of the global Service Path ID
and the position of the sub-SFC, the corresponding local Service Path ID, and the next domain to
send the packets to, if applicable. These mappings will allow the IBN to identify the packets at its
ingress on one hand, and on the other hand, to forward the packets to the next domain at the end of
the sub-chain. Afterwards, the local orchestrator confirms to the multi-domain orchestrator that the
sub-SFC has been deployed. In turn, the multi-domain orchestrator will confirm the deployment
of the complete SFC after receiving confirmation from each domain.

5.3.1 Request Placement
As previously explained in Chapter 3, request placement is performed by both the MDO and the
local domain orchestrators. During the first placement, the MDO determines where each VNF of
the SFC should be placed, using information from the NSD, such as the resource and functional
requirements of VNFs, or the deployment constraints. Regarding the local placement of the sub-
SFCs by each domain orchestrator, the sub-NSD information is also taken into account. Note that
this placement is performed by dedicated algorithms and methods, which have been explored in
the previous chapters.
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Figure 5.2: Multi-domain SFC instantiation workflow
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5.3.2 Request Partitioning
NSD partitioning is performed as follows: The consecutive VNFs that have been placed on the
same domain are grouped, in order to create sub-SFCs, with connection points in order to link
those sub-SFCs to the rest of the global SFC, and forward the traffic out of the local domain.
Based on these sub-SFCs and connection points, new sub-NSDs are created as detailed in figures
5.3, 5.4, and 5.5.

In this example, we provide two scenarios for NSD partitioning, depending on the SFC place-
ment. The NSD is modeled using the standardized Topology and Orchestration Specification for
Cloud Applications (TOSCA) data model [182], which is also simplified in order to only keep
the information that is relevant to our case, namely the VNF Forwarding Graph (VNFFG) and the
Forwarding Path (FP). As illustrated in Figure 5.3, the original SFC comprises 3 VNFs which are
connected by Virtual Links VL1 and VL2 through their respective Connection Points: CP11 for
VNF1, CP21 and CP22 for VNF2, and CP31 for VNF3. The forwarding Path is composed of an
ordered list of the Connection Points the packets are forwarded to.

Figure 5.3: Original SFC and its VNFFG before partitioning
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Figure 5.4: Sub-SFCs and their VNFFGs for the first partitioning option

After the initial placement has been performed by the orchestrator, we consider two placement
possibilities: in the first scenario, we suppose that VNF1 and VNF2 are mapped to one domain,
and VNF3 is mapped to a second one. The second scenario supposes that each VNF is mapped
to a different domain. According to that placement, the original NSD is then partitioned as shown
in Figures 5.4 and 5.5: each sub-SFC except the last one ends in an external Connection Point
that will ensure that the packets are routed out to the domain’s IBN, and every sub-SFC except
the first one will start with an external Connection Point that will forward the packets from the
domain’s IBN. Note that each domain’s respective IBNs are not included in the NSD as they are
not deployed with the SFC. Furthermore, this NSD partitioning essentially depends on the output
of the SFC placement process. Indeed, for other SFC placement scenarios, the NSD would have
also been partitioned differently.
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Figure 5.5: Sub-SFCs and their VNFFGs for the second partitioning option
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Figure 5.6: End-To-End SFC Packet Forwarding Mechanism
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5.4 End-To-End Packet Forwarding
In the following, we detail how the end-to-end packet forwarding is ensured. Note that we assume
here that each domain is independent in its SFC management (identification, encapsulation, and so
on). Figure 5.6 shows the color-coded mapping tables of the different architecture components in
our framework after a Service Chain’s deployment. The multi-domain orchestrator keeps track of
where each part of each SFC is deployed, and each SDN controller manages the packet forwarding
for the local sub-chains by pushing the forwarding rules into the SFFs. Through the SFC instan-
tiation workflow, the IBNs have been made aware of the mapping between the higher level and
lower level encapsulations, as well as the next domain to forward the packets to at the end of the
sub-chain.

In this example, the SFC packet flow originates from VNF1 in the first domain. It is forwarded
by the SFFs to the second VNF, then out to the IBN by relying on the NSH encapsulation as
well as the installed forwarding rules. Once the packets reach the IBN, the latter identifies the
global service path and index, and using its mapping table, determines the next hop for the global
SFC, which in that case is the domain B. The IBN then proceeds to strip off the lower-domain
encapsulation, and forwards the packets to the border gateway in order to route them to the IBN of
domain B. At this point, we can identify two possibilities for inter-domain packet forwarding:

The WAN domain is SFC aware: In this case, the IBN re-encapsulates the packets using the
higher level (WAN level) SFC encapsulation, and the border gateways as well as the WAN routers
act as higher level SFFs and forward the packets to the IBN of the next domain. The receiving
IBN would then act as a SF at the higher-level, and as a classifier at the lower-level, stripping off
the higher level encapsulation then adding the required sub-chain encapsulation upon receiving the
packets. In order to perform SFC packet forwarding, the inter-domain forwarders (border gateways
and WAN routers) would need to be connected to a control plane that manages the higher level
chains, such as a SD-WAN controller that would be connected to the multi-domain orchestrator.

The WAN domain is not SFC aware: A more general and realistic scenario supposes that the
SFC encapsulation is not supported by the WAN domain forwarders. In that case, the packets need
to be tunneled between the IBNs of each domain, which supposes that a discovery protocol has
been performed in order to identify the IBNs of each domain, and that at least each pair of consec-
utive IBNs in the higher level path are able to exchange packets using the same protocol. Once an
IBN receives the packets, the sub-chain that they belong to is identified through re-classification,
and the corresponding lower level encapsulation is added before forwarding to the first local SFF.
However, since the packets are processed by different VNFs along the path, the packet state at the
egress of a domain’s sub-chain might differ depending on the higher-level placement of the VNFs
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performed by the MDO. Indeed, VNF processing of packets alters their content, which means
that the payload and/or header fields of packets at the egress of a VNF N are different than those
of packets at the egress of the VNF N+1, thus making it difficult to keep track of the changes.
Therefore, the classification at an IBN’s ingress can be performed in two manners:

• By determining the classification rules for each IBN depending on the higher-level place-
ment, which supposes that the MDO is aware of the state of the packets at the egress of each
Service Function of the chain.

• By including in the inter-domain packet encapsulation information that allows the IBN to
identify the global SFC of the packets and their position.

In the PoC of this work, we assume that the WAN domain is not SFC aware, and that the sub-SFC
of each packet at a domain’s ingress is determined by including the higher-level SFC ID in the
inter-IBN encapsulation, which can be translated to the sub-chain encapsulation using the IBN’s
mapping table.

5.5 Multi-Domain SFC Deletion Process
In the following, we detail the deletion process of the multi-domain SFC. Figure 5.7 depicts the
associated workflow. The process is triggered by the customer’s request to delete the SFC that is
sent to the MDO. Using the SFC ID and the previously described mapping table, the MDO is able
to retrieve the corresponding sub-SFC IDs, as well as the domains where the sub-SFCs have been
deployed. The MDO would then send deletion requests to each local domain with the associated
sub-SFC IDs.

Upon receiving that request, each local domain orchestrator instructs its local VIM and SDN
controller to stop and delete the VNFs of the SFC, and the associated classification and forwarding
rules, respectively. Finally, through the WIM, each local orchestrator deletes the SFC’s associated
mapping entry from the ingress and/or egress IBN’s mapping table, then sends a confirmation to
the MDO. After receiving the successful deletion confirmation from all of the local orchestrators,
the MDO concludes the process.
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Figure 5.7: Multi-domain SFC deletion workflow

5.6 Proof of Concept Implementation
Next, to validate our framework, we implement the proposed architecture to deploy multi-domain
SFCs, and run multiple experiments in order to evaluate the performance of the components that
have been deployed.
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Figure 5.8: Proof of Concept Testbed Implementation

Testbed Setup
In the following, we depict our Proof of Concept of the proposed framework. As illustrated in
Figure 5.8, our deployment testbed is built over two physical hosts that represent two different
domains. Note that in the following, the terms domain and server can be used interchangeably. We
also leverage on LXC [183] containers that are used in order to host the different Service Func-
tions connected through OVS (Open vSwitch) [184] switches that ensure packet forwarding using
OpenFlow rules. Version 2.11.0 of OVS is used in order to support the NSH encapsulation. The
physical hosts are interconnected using VXLAN tunnels. Packet processing in the classifiers, IBNs
and VNFs was developed using the Python-based library scapy [185], and the traffic is generated
using the hping3 packet assembler [186]. We implemented, using Python scripts, our multi-domain
orchestrator that performs NSD partitioning, as well as local domain orchestrators that ensure the
sub-SFC deployment. In addition, we used a basic SDN controller that constructs the classification
and forwarding rules for each SFC, and enforces them at the switch level, at the classifier’s level,
and in the IBNs at the domain’s borders. The hardware and software setup is outlined in Table 5.1.
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Multi Domain Orchestrator
CPU Intel Core (2 Cores), 2.40GHz
RAM 8GB
OS Ubuntu 16.04, 64 bits

Domain 1
CPU Intel (32 Cores), 2.60GHz
RAM 128GB
OS Ubuntu 16.04, 64 bits

Domain 2
CPU Intel Xeon (4 Cores),

2.93GHz
RAM 16GB
OS Ubuntu 16.04, 64 bits

Table 5.1: Testbed Hardware and Software Configuration

In order to support Service Chaining, two different encapsulation methods are used; a header-
based encapsulation with NSH, and a tag-based encapsulation with Segment Routing (SR):

• The Network Service Header [41]. In this implementation, we use the NSH MD-Type 1,
which is the fixed-length metadata type. Therefore, the Network Service Header’s size is
fixed to 24 bytes.

Figure 5.9: MPLS-Based Segment Routing Encapsulation
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• Segment Routing [39] using Multi Protocol Label Switching (MPLS) headers as depicted
in Figure 5.9, where each Service Function ID is encoded into a 20-bit MPLS label. The
SFFs determine the next hop by reading the label field of the outer MPLS header, and each
time a packet passes by a Service Function, the outer MPLS header is stripped off, so that
the packet can be routed to the next SF in the SFC. The MPLS header is 4-bytes in size,
which means that the encapsulation size at any position in the SFC is 4 ∗ n bytes, with n
being the number of remaining SFs that the packet has to be forwarded to. Therefore, the
encapsulation size decreases as packets get further into the Service Chain.

We evaluate our implementation using four key metrics. First, we observe the overall de-
ployment and deletion time of the end-to-end SFCs. The deployment time is measured from the
reception of the NSD up to the successful configuration of all of the SFs and forwarding elements
(classifier, SFF, IBN). The SFC placement time is disregarded as it is dependent on the placement
algorithm, which has been explored in the previous chapters, furthermore, a larger multi-domain
topology would be needed to obtain meaningful results. Additionally, we evaluate the SFC dele-
tion time, from the reception of the deletion request from the user, to the effective deletion of all of
the SFC elements and configurations. The second evaluation metric will be the end-to-end latency
for each SFC length and each encapsulation scenario; additionally, we measure the delay added
by the encapsulation and forwarding of the packets. We will therefore ignore the time consumed
by the specific processing of each Service Function and only consider the encapsulation/decapsu-
lation processing time. Finally, we observe the CPU load that is generated from the processing of
packets by the SFC components.

5.7 Results

5.7.1 End-to-End Deployment time
For this experiment we generate NSDs for SFCs of lengths that range between 4 to 30 Service
Functions. Since our deployment doesn’t include the SFC placement process, we set pre-defined
placement combinations for each SFC. Each SFC of 4 to 20 VNFs is split in equal halves between
the domains; and for the other SFCs, due to hardware limitations, the first 10 VNFs are deployed on
the first domain, and the remaining VNFs on the second one. The classifier and IBN of each domain
are also deployed on separate containers. The experiment is performed for 20 iterations. Figure
5.10 features the average deployment times as well as the 95% Confidence Interval (C.I). Further,
the green bars represent the mean time for the orchestration operations, which encompasses the
NSD partitioning by the MDO, the sub-NSD file transfer to the local orchestrators, as well as the
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Figure 5.10: End-to-End SFC Deployment Time

Service Function, Classifier and IBN configuration by the local domains; while the orange bars
represent the OVS configuration time, and the blue bars illustrate the mean VNF deployment time
at the VIM level. The total end-to-end deployment time is the sum of all three bars, and can be
measured as the time elapsed from the reception of the SFC request by the MDO until the reception
of the last confirmation message from the local orchestrators, as illustrated in Figure 5.2.

It can be noticed overall that the total deployment time gradually increases with SFC length, but
it remains within the range of seconds with a total average time of 13.29s at the SFC length of
4 VNFs, and up to 86.93 seconds at SFC length of 30. By breaking down these total times, it
can be observed that the VNF deployment process makes up for the largest portion of the SFC
deployment time. Indeed, it represents 56.7% of the total time, with 7.5s for SFC length 4 and up
to 78.16s representing 89.91% of the total deployment time. In contrast, the OVS rule deployment
process only makes up for 3-8% of the total time, ranging from 1.16s at SFC length 4, up to 2.79s
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Figure 5.11: End-to-End SFC Deletion Time

at SFC length of 30 VNFs. The remaining time is consumed by the orchestration operations with
values that remain stable, ranging between 4.5s, representing 33.86% of the total time, and 6.5s
making up for 7.4% of the total deployment time of the SFC. It is worth noting that since the
sub-SFC deployment is parallelly performed by each domain in parallel, the MDO waits for the
confirmation of all of the local orchestrators before concluding the end-to-end deployment process,
which means that the total deployment time is affected by the hardware configuration of the least-
performing domain.

5.7.2 Deletion Time
Following the successful deployment of each SFC described above, we trigger the deletion process.
Similar to the previous experiment, we perform the evaluation for each SFC length 20 times. We
provide in Figure 5.11 the mean and 95% C.I values for each SFC length. The green bar represents
the mean orchestration time, and the orange and blue bars represents the flow rule deletion time
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and the VNF deletion time respectively. The summed values of the three bars represent the total
multi-domain SFC deletion time.

Similar to the deployment time, it can be seen that the deletion times increase proportionally to
the SFC length, with values ranging from 6.22s to 58 seconds for SFC length of 30, which is lower
than the deployment times. This difference is mainly due to the orchestration time and network
rule deletion times that are significantly lower, and that remain stable across SFC lengths with
values of 800ms to 1.27s, and 273ms to 291ms, respectively. In contrast, the VNF deletion times
are similar to the VNF deployment times, with values ranging between 4.69s for the SFC length of
4 VNFs, and 57.4s for the SFC length of 30, thus making up for 75-98% of the total deletion time.

5.7.3 End-to-End Latency
For this metric, we deploy different numbers of SFCs with lengths of 4 to 30 VNFs, where multiple
combinations of SFs are used in order to generate the SFPs, and VNF sharing between SFCs is
enabled, meaning that a given VNF can serve as a Service Function for multiple SFCs. For this
experiment, we evaluate the end-to-end latency for 50, 150, and 450 SFCs. Therefore, we generate
the SFPs, and the corresponding traffic steering rules for the virtual switches as follows:

• Segment Routing: This encapsulation doesn’t require SFP knowledge from the SFFs. As
the list of hops is encoded by the classifier into the packet header in the form of MPLS labels.
For each SFF, a rule is added to forward the packets to the connected SF if the top MPLS
label comprises its ID, and otherwise, a second rule is added to forward the packets to the
next SFF. Since the IDs of the SFs are the same, one set of rules can be used by all of the
SFCs. For this simulation with 30 SFFs, 63 rules in total were needed, with an average of 2
rules per SFF.

• Network Service Header: With NSH, for each SFC, a different SPI and SI combination is
assigned to the SFs, which means that each SFC should have a different set of forwarding
rules to be enforced on the SFFs. Table 5.2 shows the total number of rules, the mean number
of rules per SFF, and the rule deployment time for each number of SFC.

Once the SFCs have been deployed, we generate packets from each SFC and send them to the first
domain’s classifier, then compute the time that it takes for a packet to be received by the last node
of its corresponding SFC depending on the SFC length as well as the packet rate. We generate
6GB of traffic for SFCs of lengths 4 to 30 and send it to the classifier at rates of 2MB/s, 10MB/s,
and 50MB/s. The process is repeated 10 times. Note that different traffic flows are generated and
that each SFC is classified using its IP and transport header fields.
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Number of SFCs Total Number of Rules Number of rules per SFF
50 1533 51
150 4533 151
450 13533 451

Table 5.2: Number of forwarding rules per number of SFCs for NSH

(a) Traffic Rate = 2MB/s (b) Traffic Rate = 10MB/s (c) Traffic Rate = 50MB/s

Figure 5.12: End-to-End Latency with 50 SFCs

We will also use three different encapsulation approaches: Network Service Headers on both
domains, Segment Routing encapsulation based on stacked MPLS labels on both domains, as well
as a hybrid approach where each domain uses a different encapsulation. In all scenarios, we assume
that the IBN at the end of the first domain strips off the SFC header and adds a MPLS label that
can be used by the second domain’s ingress IBN in order to identify the global SFC as well as
the sub-SFCs position, and insert the local domain’s corresponding headers. Each SFC can be
identified by the classifier using the packet headers and payload. Figures 5.12, 5.13, and 5.14
feature the measured latency in milliseconds as well as the 95% Confidence Interval for each SFC
number and packet rate. The blue line represents the latency of the full-NSH scenario, the green
line represents the latency of the full Segment Routing implementation, and the red line illustrates
the latency for the hybrid scenario.
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(a) Traffic Rate = 2MB/s (b) Traffic Rate = 10MB/s (c) Traffic Rate = 50MB/s

Figure 5.13: End-to-End Latency with 150 SFCs

(a) Traffic Rate = 2MB/s (b) Traffic Rate = 10MB/s (c) Traffic Rate = 50MB/s

Figure 5.14: End-to-End Latency with 450 SFCs
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We can observe that the end-to-end latencies range between 12ms and 125ms depending on
the encapsulation type and SFC length, with slight variations related to the number of SFCs and
packet rate. Indeed, as SFC length increases, it can be noticed that the full NSH scenario exhibits
the lowest latency values, with around 12-14ms for the shorter SFCs, and up to 61ms for the longer
ones regardless of traffic rates and SFC number, with little increase in latency between successive
SFC lengths. In contrast, the latency values for the full Segment routing and hybrid scenarios
increase at higher rates, reaching 125ms, and 109ms respectively.

This behavior can be explained by the total size of headers. Indeed, the NSH header is fixed
regardless of SFC length with 24 bytes for MD-Type 1, while the Segment Routing encapsulation
relies on stacked MPLS headers of 4 bytes, where each header contains the ID of one SF in the
chain; meaning that the total packet size using the Segment Routing encapsulation becomes larger
as SFC length increases. It can also be observed here that SFC number also affects the difference in
latency for the longer SFCs (≥ 20 SFs), since the latency values for the hybrid scenario are closer to
the ones obtained with the Segment Routing scenario when the number of SFCs increases. Indeed,
the gap between the hybrid and Segment Routing scenario’s latency values gradually decreases
from 12-17ms for 50 SFCs, to 11-15ms for 150 SFCs, and only 2-5ms for 450 SFCs. In contrast,
for the shorter SFCs (< 20 SFs), similar latency values can be observed across traffic rates for SFC
numbers of 50 and 150. For 450 SFCs, the hybrid scenario latency values exceed the ones obtained
using the Segment Routing encapsulation with up to 5ms, as for shorter SFCs, the NSH header is
still larger than the Segment Routing one.

5.7.4 Packet Processing Time
In addition to the end-to-end latency, we also measured during the previous experiment the pro-
cessing time by each component of the SFC from the reception of a packet until the emission
of the new encapsulated packet, which corresponds to the process of adding encapsulation to the
packets by the classifier, ingress and egress IBNs, and changing the packet encapsulation in order
to forward it to the next hop by the SFs. This allows us to determine the latency added by the
packet processing operations necessary in order to implement both encapsulation types. Figure
5.15 features the mean and 95% C.I of packet processing time for the classifier, service functions
and both ingress and egress IBNs of both domains, and both encapsulation types regardless of the
number of SFCs, and packet rate; these two factors did not affect the results. For the classifier and
egress IBN of the first domain, the figure features the processing times for the NSH and Segment
Routing encapsulations when the sub-SFC is composed of 4, 6, and 10 SFs. For the ingress IBN
on the second domain, the values are provided for the NSH encapsulation, and Segment Routing
when sub-SFC length is of 4,10, and 20 SFs. For the Service Functions, the values are provided for
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NSH, and Segment Routing when the received packets have 20, 10, 5, or one label, which matches
the first, middle, and last position of the longest sub-SFC in each domain.

The figure shows that the processing times for the Service Functions are similar for both do-
mains, where the mean processing time for the NSH encapsulation reaches 1.03ms and 1.16ms,
respectively. For Segment Routing, the processing time decreases as the number of labels de-
creases, with values that range between 3.83ms and 0.29ms for the first and last SF, respectively.
Note that the difference in processing times between the domains is due to the different hardware
configurations of the servers as shown in Table 5.1. The same observation can be made for the
classifier and ingress IBN as the mean processing time using Segment Routing increases with SFC
length. The processing time reaches the value of 17.84ms when 20 labels are added by the ingress
IBN as opposed to 5ms for 4 labels. As for the NSH encapsulation, the process time remains
minimal with 2.84ms and 1.03ms for the classifier and ingress IBN, respectively.

This difference can be imputed to the encapsulation process performed by both components,
and which differs depending on the encapsulation type. Indeed, once the sub-SFC is identified
by the classifier and ingress IBN, if the NSH encapsulation is enforced, the fixed-length header is
added, and the packet is directly sent to the first SF in the chain. However, for the Segment Routing
encapsulation, the ID of each SF in the SFP is encoded into an individual MPLS label, meaning
that for each SF in the chain, a 4-byte MPLS header is stacked over the original packet. Therefore,
the longer the SFC is, the longer it takes for the classifier and ingress IBN to construct the MPLS
encapsulation of the packet before sending it to the next Service Function. Finally, the egress IBN
exhibits similar results for all SFC lengths in Segment Routing with a processing time of 1.76-
2.08ms, which is due to the fact that the packets reaching the IBN always have only one label left,
regardless of SFC length. For the NSH encapsulation, similar to the classifier, the processing time
reaches 2.54ms.

Another observation that can be made from comparing these results to the end-to-end latency is
that the processing time of a single Service Function represents 1-10% of the total latency when
the ingress IBN’s processing time represents 8-14% of the total time for Segment Routing, and
1-10% for NSH. Depending on the encapsulation type, the classifier processing time makes up for
5-25% of the total time for NSH, while it represents 12-40% of the total time for Segment Routing,
depending on SFC length, as for the ingress IBN’s processing time, it makes up for 4-20% of the
end-to-end latency using NSH and 2-16% using Segment Routing.
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Figure 5.15: Processing Time per SFC Component

5.7.5 Processing Load
For this last metric, we probe the CPU load for each of the SFC components in order to determine
the CPU consumption of the classification, encapsulation, and decapsulation operations for both
NSH and Segment Routing headers. We considered two scenarios, one where the CPU load is
probed when the SFC components are processing packets for all SFCs in the same run, similar to
the previous metrics. For the second scenario, we generate traffic for only one SFC, which allows
us to observe the effect of the SF position in the SFP on the CPU load. Indeed, in the previous
scenario, since VNF sharing is enforced, a VNF might have different positions in the SFP of each
Service Chain.

Figures 5.16a and 5.16b illustrate the CPU loads for the different components, for all of the
deployed SFCs for NSH and Segment Routing respectively, while Figures 5.17a and 5.17b show
the CPU consumption values for an SFC comprised of 30 SFs for NSH and Segment Routing
respectively, where 10 SFs are deployed on the first domain, and the remaining 20 SFs are deployed
on the second domain. In all figures, the first part gathers the mean CPU consumption values of the
SFC components deployed on the first domain, namely, the classifier, egress IBN, and SFs. While
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(a) Encapsulation: Network Service Headers

(b) Encapsulation: Segment Routing

Figure 5.16: CPU Usage of the SFC components for all rates and all SFCs
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the second part comprises the remaining SFs, and the ingress IBN that are deployed on the second
domain. We measure the CPU values for the traffic rates of 2MB/s, 10MB/s, and 50MB/s.

In all figures, and for all of the components and encapsulations, we can notice a slight increase
in the CPU load when the traffic rate increases. It can also be observed that for the NSH encap-
sulation, the CPU load remains stable across components, while it fluctuates for Segment Routing
depending on the component, its function, and position along the SFC. Looking at the CPU values
for all SFCs in Figure 5.16, we can determine that for NSH, the classifier and egress IBN are the
components that consume the most CPU, with values between 53% and 84%, while the ingress
IBN consumes 26-28% of CPU, and the Service Functions consume 11-66% depending on the
deployment server. For Segment Routing, the CPU consumption for Service Functions are simi-
lar for both servers, with values approximating 30% despite the difference in resources between
servers, which can be imputed to the fact that longer SFCs are deployed on the second server. The
egress IBN also consumes around 30% of CPU, while the classifier and ingress IBN consume the
most resources with values of 92-99%, which is due to the process of adding the MPLS labels to
the packets at the entry of the domains.

Next, we consider the CPU usage results for the SFC comprising 30 VNFs, as shown in Figure
5.17. For the NSH encapsulation, it can be seen that the CPU load for all of the components of each
server are similar, with values of 57-65% for the first server, and 17-19% for the second server,
except for the last SF of the SFC, which only receives packets, consuming 5-6% of CPU. For the
Segment Routing encapsulation, the CPU usage is at its peak at the entry of each domain, with
values that exceed 90% for both the classifier, and the ingress IBN. Then, the CPU usage gradually
decreases from 60% in the first SF, to 41% in the middle SF, then finally 28% in the last SF and
egress IBN of the first domain, and 6% in the last SF of the second domain.

These values correlate to the size of the packets that each Service Function needs to process,
as for each Service Function that a packet passes through, the outer MPLS header is stripped
off, thus decreasing the size of packets as they approach the end of the sub-SFC as opposed to
the NSH encapsulation, where the size of the headers remains fixed while the value of the SI is
decreased. Furthermore, the traffic rate didn’t have a significant effect on the CPU usage for both
encapsulations.
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(a) Encapsulation: Network Service Headers

(b) Encapsulation: Segment Routing

Figure 5.17: CPU Usage of the SFC components for all rates, for SFC of 30 VNFs
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5.7.6 Results Discussion
Scalability

By synthesizing the obtained results, it can be concluded that the workflow of our proposed frame-
work enables an end-to-end deployment and deletion across domains with minimal additional time
compared to the time consumed by VNF deployment and deletion at the VIM level. It is dependent
on the hardware configuration of the infrastructure and the virtualization technology deployed by
the operator. Moreover, the orchestration and network rule deployment/deletion times remain sta-
ble as SFC length increases, which proves the scalability of our framework regarding SFC length.
As for the scalability related to the number of domains, since the deployment or deletion process is
performed by each local orchestrator in a parallel manner, the number of domains would not have
an effect on the end-to-end time. The overall time would only be affected by the deployment or
deletion time on the least efficient domain, since the MDO waits for the confirmation messages of
all of the local orchestrators before concluding the process.

Encapsulations

Comparing the different results for the NSH and Segment Routing encapsulations, and looking
at the end-to-end latency, it can be noticed that the values for the full Segment Routing and the
hybrid scenarios increase at a higher pace than those of the full NSH scenario as the SFC length
increases regardless of packet rate. Furthermore, by analyzing the individual processing times
of the different SFC components, we can observe that the values for NSH remain stable across
components, while they get multiplied by a factor of 5 to 17 for Segment Routing on the classifier
and ingress IBN, depending on SFC length. Both of these differences are due to the difference
in size between the Network Service Header and the Segment Routing header; the latter getting
larger as the SFC increases in size. This gap is at its peak value at the ingress of a domain, because
the Segment Routing encapsulation size decreases along the chain as the MPLS tags are popped at
each hop, this explains why the greatest difference in time is observed at the classifier and ingress
IBN level.

Therefore, the choice of the implemented encapsulation type can be made based on the typical
length of the sub-SFCs that need to be deployed by each domain: a shorter sub-SFC may benefit
from the Segment Routing encapsulation as the number of forwarding rules, and total encapsulation
size would remain minimal, thus ensuring a lower traffic overhead, and lowering the amount of
stored forwarding rules in the SFFs. However, the NSH encapsulation should be considered for
longer SFCs despite the number of rules, since the Segment Routing encapsulation is not scalable.
Indeed, the header size for Segment Routing increases proportionally to SFC size, thus multiplying
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the encapsulation times at both the classifier and ingress IBNs of each domain, and increasing the
end-to-end latency compared to NSH, as well as packet overhead which in turn would consume
higher bandwidths. Additionally, as the header size increases, the total packet size might exceed
the Maximum Transfer Unit (MTU), causing fragmentation issues. In terms of CPU usage, the
results detailed in section 5.7.5 were consistent with the previous metrics, where the CPU usage for
NSH was similar for the SFC components, with relatively low values, while for Segment Routing,
the CPU usage decreased as packets were forwarded along the SFC, with higher consumption
values at the entry of the domains, and minimal values at the end of the chain. Therefore, more
CPU resources should be allocated to the SFC components at the entry of the SFC. However,
more testing may be required in order to study the CPU usage of these components in larger-scale
networks.

5.8 Conclusion
In this chapter, we introduced a novel framework that enables multi-domain SFC deployment.
The architecture is ETSI-MANO compliant, and leverages the hierarchical SFC principle using
the IBN as an interfacing entity for the local domains. We also detailed the SFC instantiation
process, and the partitioning of the NSDs in order to perform the deployment of the sub-chains
on each local domain. We devised on an SDN-based technology-agnostic end-to-end packet for-
warding mechanism that ensures cross-domain compatibility by adding interfacing components.
We assessed its effectiveness with a Proof of Concept implementation that has been evaluated by
measuring different Key Performance Indicators for SFCs. The obtained results demonstrated our
framework’s scalability and efficiency, which allowed us to draw conclusions related to the most
suitable encapsulation type depending on SFC length.
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Chapter 6

Conclusions and Perspectives

6.1 Conclusions
The new 5G networks are set to enable multiple heterogeneous use cases such as Augmented
Reality, autonomous vehicles, or IoT, with different requirements such as a very low latency, or
support for a high density of connected devices. The average throughput per user is also signifi-
cantly increased, thus allowing the streaming of high quality videos. In order to satisfy all of these
requirements, multiple technologies are developed such as Software Defined Networks, Network
Function Virtualization, Network Slicing, or Service Function Chaining. This latter is a concept
by which, to deliver an end-to-end service, the packets are steered in an ordered manner through a
set of functions that perform specific processing operations.

In some cases, the components of a Service Function Chain are required to be placed on more
than one domain, for multiple reasons such as the lack of resources, the mobility of users, or for
functional or security considerations. The multi-domain context introduces a set of new challenges,
in particular, the lack of visibility on the domain’s infrastructure makes the placement procedure
more difficult, and the end-to-end packet forwarding needs to take into account the possible hetero-
geneity in the packet encapsulations that are employed by each domain. Besides, the independence
between the domains in terms of orchestration and management introduces complexity in the life-
cycle management operations of the multi-domain SFC.

This thesis investigates different solutions to achieve multi-domain SFC. In particular, we tackle
the placement issue with a limited visibility, with a joint optimization of multiple QoS metrics
as well as the deployment cost for different SLA classes. We model the problem’s constraints
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and objectives, and propose exact solutions and heuristics. Further, we elaborate a scalable multi-
domain SFC orchestration framework that leverages on ETSI and IETF standards. The framework
enables SFC deployment, end-to-end packet forwarding, and deletion, and the framework is also
agnostic to the encapsulation type that is employed by each local domain.

The contributions of this thesis can be summarized as follows:

• In Chapter 3 we present a hierarchical placement scheme with limited visibility over multiple
domains that supports complex non-linear SFCs, with a backtracking mechanism to handle
local placement failure. Additionally, we model the multi-domain SFC placement as a multi-
objective ILP, then propose a scalable and efficient memetic algorithm that performs SFC
mapping according to the client’s SLAs.

• The work in Chapter 4 elaborates a more accurate formulation of the user’s preferences using
three Physical Programming approaches (Linear, non-linear, global). Three optimization
objectives are consideredo: the end-to-end latency, the bandwidth per user, and the overall
cost. We propose an algorithm to find the exact solution based on a Branch and Bound
approach as well as a scalable heuristic algorithm.

• In Chapter 5, we propose an architectural framework that leverages on existing standardiza-
tion efforts in order to ensure an end-to-end orchestration of multi-domain SFCs regardless
of the internal communication protocols used by each domain. Afterwards, we implement a
PoC of our architecture, and perform an extensive evaluation based on various Key Perfor-
mance Indicators (KPI) using different encapsulation protocols.

Figure 6.1: Contributions Mapped to the Multi-Domain SFC Life-cycle
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Mapped to the multi-domain SFC life-cycle as shown in Figure 6.1, these contributions form
a system that manages multi-domain SFCs during the pre-deployment and deployment stages as
shown in 6.1. Indeed, the placement algorithm, and the SFC partitioning scheme can be incorpo-
rated to the Multi-Domain Orchestrator described in Chapter 5, in order to determine the optimal
placement scheme that allows the MDO to perform the NSD partitioning. Therefore, this thesis
provides a complete deployment mechanism for multi-domain SFC deployment, from the recep-
tion of the original request in form of an NSD by the MDO, until the effective deployment and
configuration of the sub-SFCs on the local domains, as determined by the placement scheme.
Furthermore, the proposed architecture can be extended in order to support life-cycle SFC man-
agement operations post-deployment.

6.2 Future Perspectives
In this thesis, we propose solutions for the multi-domain SFC placement and deployment. How-
ever, some challenges related to cross-domain SFC implementation remain untackled, and new
research directions are worth exploring. In the following, we outline some future contribution
perspectives.

End-to-End Life-cycle Management
In this work, we propose solutions for multi-domain SFC placement and deployment, but regard-
less of the level of control that the owner disposes of (monitoring only, limited control, or full
control), the SFC owner should be able to monitor and perform life-cycle management operations
on its service chain at runtime.

Monitoring

Post-deployment, the SFC tenants should dispose of an interface that allows them to monitor their
SFC, as well as the KPIs of their service, and the resource consumption of its components. Further,
should a problem occur, the tenant should be able to determine the source of the problem.

Fault Management and Elasticity

Several 5G use cases are characterized by the mobility of users, such as autonomous vehicles, and
e-Health. In both use cases, cameras and/or sensors capture information on the environment/patient
and send that data to the cloud for processing, and pre-processing functions are deployed on edge
clouds. However, since the users are in constant mobility, they might move away from the edge
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cloud, far enough to increase the latency past the accepted limit. In that case, the operator might
have to migrate the edge VNFs to edge clouds that are closer to those users, thus re-computing the
SFC placement post-deployment.

Furthermore, in the context of fault management, cases of link or node failure would prompt
the operator to re-compute the optimal link and node mapping of the affected SFC, and carry
out flow re-routing, VNF migration or VNF re-instanciation. These operations can be performed
locally by the domain orchestrator, or by the MDO that also gives instructions to the different
local orchestrators. This raises the question of the scope of actions of the local orchestrators.
Therefore, it should be clearly determined when the local orchestrators can make decisions and act
independently, and when the MDO or the tenant (through the MDO) should be notified.

Additionally, the Or-Or reference point provides interfaces that support basic Network Service
life-cycle management operations, but SFC life-cycle management requires support of additional
operations such as the addition, deletion, or reordering of service functions. Indeed, if one of
the aforementioned operations leads to the addition, or deletion, or the reordering of complete
sub-chains, which would alter the higher level Service Function Path, a mechanism should be
implemented in order to allow the re-configuration of the local domain IBNs (see chapter 5).

Machine Learning for SFC Management
Recently, Machine Learning has gained popularity as a result of the availability of large sets of
data, as well as the improvement in computational capabilities. Indeed, with the help of sufficient
data, models can be trained in order to efficiently solve multiple problems. Machine Learning
can be applied to the operations and management of networks in several ways: traffic prediction,
classification and routing, and also congestion control, resource management, and fault manage-
ment [187].

Multiple works have applied Machine Learning for SFC. In [188], Liu et al. propose a Quantum
Machine Learning scheme for resource allocation in mobile edge SFCs. In [189,190] Deep Learn-
ing is applied to traffic control in SDN/NFV enabled environments. Machine Learning is also used
for SFC life-cycle management [191], and dynamic SFC routing [192].

Furthermore, Reinforcement Learning, which is a branch of ML, has gained a lot of attention
[193]. With Reinforcement Learning, the agent leverages on the rewards from past experience
and the environment’s feedback in order to define a decision policy that would be continuously
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improved at runtime. In [194–197], Reinforcement Learning is leveraged in order to perform SFC
placement, it is also used in [198–200] for dynamic adaptive SFC placement, as well as traffic
prediction and proactive resource allocation in [201].

Future works should investigate the benefits of applying the ML techniques for multi-domain
SFC both in the placement and runtime operations, whether for the prediction of traffic fluctuations
to proactively perform elasticity operations, or in the definition of policies for the multi-domain
placement and life-cycle management while taking into account the limited visibility and control
on the local infrastructure. These techniques would be

End-to-end Packet Forwarding
As previously stated, if we suppose that the WAN domain is not SFC aware, each IBN needs to
directly send the packets at the end of its sub-chain to the IBN of the next domain. Thus each
IBN is required to dispose of information on how to reach the IBN of the next domain for each
sub-chain that has been deployed. This can be achieved either by means of a discovery protocol
that would be run by the IBNs in order to identify the IBNs of the other domains, or by obtaining
that information from the multi-domain orchestrator. In turn the multi-domain orchestrator would
have to keep track of the address of the IBN of each domain. Furthermore, when deploying sub-
SFCs, each pair of consecutive IBNs should also run a negotiation protocol in order to determine
the communication protocol that would be used in order to exchange SFC packets, as well as the
means to identify the higher-level SFC that the packets belong to.

If we consider the scenario where the WAN domain is SFC-aware, the IBN strips off the higher
level encapsulation of packets at each domain’s entry and replaces it by the domain’s encapsulation
for the identified sub-chain; the IBN should also be able to retrieve and restore that same higher
level encapsulation at the egress of the domain. Note that the higher-level encapsulation might
contain specific metadata that could not be restored by a simple re-classification of the packets
by the IBN. The hierarchical SFC document by the IETF [27] lists a few methods that could be
envisaged to retain these metadata such as header nesting, flow state saving, or pushing the upper
level encapsulation into the metadata field of the lower level encapsulation. However, at the time
of this writing, these methods have not yet been evaluated, and new ones could also be proposed
by future research works.
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Security
As with any service, the confidentiality and integrity of data, as well as the SFC’s availability must
be ensured. To this end, at the entry of the SFC, security functions should examine traffic in order
to avoid attacks and intrusions, then, each SFC component and link should be secured, indeed, a
compromised SF or SFF would allow an attacker to access and/or change the content of packets, or
change the forwarding path of packets through packet header or forwarding rule modification. This
task is more challenging in a multi-domain scenario, due to the independent management of each
domain, as well as the inter-domain forwarding part. Therefore, each local domain should guar-
antee the confidentiality and integrity of the SFC data that is processed by its sub-SFC, and allow
the implementation of end-to-end consistency verification measures. Furthermore, since the SFC
packets are forwarded between the domains through untrusted networks, encrypted tunnels should
be set between the IBNs in order to ensure the confidentiality and integrity of the packets. Finally,
at the orchestration level, an authentication procedure should be run between the orchestrators of
each domain and the MDO, and the communication channel should be secured.
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