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Abstract—Federated Learning (FL) is a recent distributed
technique to extract knowledge, i.e. an abstract understanding
obtained from a set of information through experience and
analysis. Vehicular networks are highly mobile networks in
which a large spectrum of data types is distributed. So far,
no mechanisms have been defined that distribute FL model
updates in vehicular networks based on which nodes are likely
to hold the right data for training, and when. In turn, this
potentially limits FL model training speed and accuracy. In this
paper, we describe protocols to exchange model-based training
requirements based on the Vehicular Knowledge Networking
framework. Based on this understanding, we define vehicular
mobility and data distribution-aware FL orchestration mecha-
nisms. An evaluation of the approach using a federated variant
of the MNIST dataset shows training speed and model accuracy
improvements compared to traditional FL training approaches.

Index Terms—vehicular, federated, knowledge, orchestration

I. INTRODUCTION

KNOWLEDGE plays an increasingly important role in
vehicular networks. In applications such as platoon-

ing, object recognition or navigation, knowledge extracted
from sensor information can be generated, stored and shared
to augment the capacities of connected vehicles. Machine
learning has increasingly been used as a tool for generating
knowledge, as part of multiple use cases. Traditionally, model
training is performed by a single, centralized organization
after all training information has been gathered in a single
point. This mode of operation potentially raises privacy and
bandwidth issues as large amounts of training information are
transferred over the network to third-party training servers.
Federated Learning (FL) is a novel machine learning paradigm
aimed at addressing these issues. Instead of gathering all
training information in a single point, model training is directly
performed by data-collecting nodes. The result of each local
training is then aggregated.

Mechanisms have been studied that optimize FL training in
vehicular networks based on heterogeneous computing powers
and link quality of vehicles. However, vehicular networks are
highly mobile and involve large amounts of information of
different nature. Vehicular mobility introduces a specific set
of challenges for the efficient application of FL in vehicular
networks. Because of mobility, the nature and amount of
available training information on-board vehicles varies dynam-

ically. What is more, as vehicles are bound by predefined
and nonrandom mobility patterns, mobility induces a biased
distribution of training data among vehicles.

As such, a vehicular mobility-based orchestration mecha-
nism for FL is required to improve training performances. In
this article, we suggest an approach of mobility-based FL or-
chestration based on Vehicular Knowledge Networking (VKN),
a framework for knowledge description, creation, storage and
distribution in vehicular networks. Through two complemen-
tary use case studies, we demonstrate the need for and define a
mobility-based FL orchestration mechanism. The contribution
of this paper lies in FL orchestration through training client
selection in vehicular environments where training input is
unevenly distributed, rather than in FL algorithms themselves.
In the evaluation section, we show performance improvements
of VKN-orchestrated FL while training a classifier model for
the digits-only FEMNIST dataset [1]. It is a federated version
of the MNIST dataset of handwritten digits, grouped by writer.

The rest of the article is organized as follows: Section II
introduces the concept of FL, in both centralized and de-
centralized settings. Section III introduces the challenges that
mobility introduces for vehicular FL through two use cases.
Based on this understanding, Section IV describes the need
for a vehicular mobility-based orchestration of FL. Section V
introduces Vehicular Knowledge Networking (VKN) as a po-
tential technical candidate to realize FL orchestration. Finally,
Section VI shows performance improvements linked to VKN-
orchestrated FL, while Section VIII summarizes the article.

II. FEDERATED LEARNING

A traditional approach to training a machine learning model
is to upload all training information from multiple local
sources to a centralized training organization. A learning
algorithm, e.g. Stochastic Gradient Descent (SGD), is then
applied to the full input set to train a model. Once fully trained,
the model is spread to local nodes so it can be used in vehicular
applications. However, this approach notably raises privacy
issues, as it requires exposing the training information from
each local source to a central authority.

FL has emerged in the past years to address the issue as an
alternative approach to traditional machine learning. Instead
of gathering information from local nodes in a centralized
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Fig. 1: A Round of Federated Learning Training

data center for subsequent training, FL training is directly
performed by local nodes using local information.

As illustrated in Figure 1, training a FL model is decom-
posed into training steps:

1. A subset s ∈ S of local nodes is selected to perform local
training.

2. The current global model mglob hosted by the coordinator
is downloaded to each node in s (see Figure 1, step 1).

3. Each node si ∈ S performs one or several steps of
training of the received model with local information (see
Figure 1, step 2).

4. The parameters of each locally-updated model are sent
back to the coordinator, which aggregates the local model
parameters to update mglob (see Figure 1, step 3).

The FL approach allows training a model from distributed
input information while preserving user privacy. Alternatively,
decentralized approaches eliminating the FL coordinator such
as Gossip Learning (GL) have been studied in the literature [2].
As shown in Figure 2, during a session of GL training, each
node implements two procedures:

• Local training and distribution: Each local node i runs
a few steps of local training of their local copy of the
model mi. The updated local model parameters are then
sent to a random other node (see Figure 1, step 1).

• Local model merging: When receiving a model update, a
local node merges the received parameters with those of
its own copy of the model (see Figure 1, step 2). Then, it
repeats a step of local training and distribution (step 3).

After multiple rounds of local training and local model distri-
bution to random neighbors, models in the network converge.

III. VEHICULAR MOBILITY CHALLENGES FOR FL

Theoretically, FL/GL allows comparable training perfor-
mance to that of traditional machine learning, while ensuring
stronger training information privacy [3]. However, practical
challenges must be addressed in order to reach such perfor-
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mance in real mobile applications. Typical challenges faced in
applications of FL to mobile networks include:

• Resource constraints [4, 5]
– Non-perfect network channel quality
∗ Link quality-aware training node selection [6].
∗ Irrelevant updates discarding mechanism [7].
∗ Compression mechanisms [8, 9].

– Computational power.
– Access to training input.
∗ Heterogeneous sensing capabilities.
∗ Limited storage capacity.

• Non independent and identically distributed (IID) training
input.

• Security concerns
– Protection against forged model updates [10].
– Privacy of training input [11].

• Optimal convergence of the distributed gradient descent
algorithm [12, 13].

• Incentive mechanisms for FL model training [14, 15].
When training a FL/GL model, each node is associated

with a training context. An uneven distribution and access
to training data, as well as nodes’ training ability, linked to
computing power and network link quality must be taken
into account. A key feature of vehicular networks is the
high mobility of vehicles. As introduced in [16], vehicular
mobility brings specific challenges for FL training. It implies
a dynamically evolving training environment and distribution
of training data among nodes. In this section, we exemplify
the vehicular mobility-related challenges for FL training in
vehicular networks through two complementary case studies.

A. Case Study 1: Commonly Observable Input

We consider the use case of a FL model that can be trained
from input that can be observed by vehicles at all times while
driving. Vehicles sense training input as they drive using on
board sensors and are then connected with a FL coordinator
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to train a model from their locally observed data. In that case,
the trained model uses input data that can be collected at any
time of driving by vehicles, e.g. road-state related information.

For example, [17] describes a machine learning model
of road roughness estimation from vehicles’ front camera.
Although the authors train the model using traditional machine
learning, the model can be adapted for FL training, where
sensed training information is kept on board vehicles.

At each step of FL training, the coordinator performs client
selection and chooses a set of vehicles to locally compute a
model update. The nature of mobility in vehicular networks
brings additional challenges to perform efficient FL client
selection. As illustrated by Figure 3, mobility in vehicular
networks is non random. Two originally distant vehicles are
likely to drive the same roads at some point in their journey,
as they drive through main arteries e.g. in cities.

As such, the unequal distribution of vehicles on the road
network leads to many vehicles sensing similar training input
in similar areas – e.g. camera images of main roads. A mecha-
nism must be designed to unsure that nodes possessing diverse
training data sensed in secondary roads also get represented in
FL training, in order to avoid over fitting the model to typical
main axes mobility.

B. Case Study 2: Sparsely Observable Input

We consider the use case of a FL model that can be trained
from input that can only be observed by vehicles at punctual
times and locations. For example, [18] presents a machine
learning model to predict near-crash situations from observed
vehicles’ kinematics. Near-crashes are reasonably rare events,
that can only be observed at punctual points of space and time.
In the hypothesis of training this model using FL, only vehicles
having sensed kinematics data of another vehicle experiencing
a near-crash should be leveraged as local training nodes. As
vehicles are moving, the ability of vehicles to take part in
training dynamically evolves through time.

In order to accurately train the model, the selected clients
should be nodes having witnessed a near-crash event and
sensed the accompanying kinematics information. As illus-
trated by Figure 4, an orchestration mechanism must be
defined in order to allow the coordinator and training vehicles
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to communicate training capacities and allocate training re-
sources to vehicles that hold meaningful input.

IV. A NEED FOR MOBILITY-BASED FL ORCHESTRATION

Various orchestration mechanisms have been defined to
increase the efficiency of FL in mobile networks to account for
heterogeneous capacity and resources access in the network.
For example, [6] shows performance improvement of FL in
mobile networks by favoring the selection of training nodes
with good channel link quality.

In the previous section, we exemplified the vehicular
mobility-related challenges inherent to the application of FL
in vehicular networks. In this work, we aim at defining FL
orchestration mechanisms to address challenges related to
vehicular mobility, leading to varying training environments,
rather than varying training capabilities of vehicles.

A. Requirements for Mobility-based Orchestration

Mechanisms of mobility-based orchestration of FL in ve-
hicular networks must account for the dynamically evolving
training environment of vehicles, in order to:

• Increase the likelihood that nodes selected for model
training are able to train the model – i.e. possess the
right input for the right model.

• Ensure a dynamic and balanced selection of vehicles for
model training. It should ensure to (i) avoid over fitting
the trained model with training input sensed in similar
contexts, and (ii) avoid missing valuable and original
training input sourced from some vehicles.

Protocols should be defined so that training nodes and
coordinators can communicate about required training envi-
ronments to train a given model.

On the one hand, training nodes e.g. vehicles should
communicate information about the nature of training data
they hold and the context in which it was gathered. Without
leaking training data, a vehicle should be able to indicate what
category of information it possesses through semantics and
information naming standards.

On the other hand, coordinators must indicate the necessary
context and necessary nature of input training data needed for



participating in a FL model training, so as to avoid contacting
vehicles that lack required training input.

Once the coordinator was provided with contextual in-
formation about the current training context vehicles and
training nodes are facing, mechanisms should be defined to
dynamically allocate client selection to avoid over representing
or missing valuable training input.

B. Technical Definitions

In order to allow communication of contextual knowledge
between training nodes, the following technical requirements
must be met:

1. A message format should be defined to describe the
nature of information sensed by vehicles, and the context
it is sensed in. This message should include at least:
• A standard, semantically-defined name to identify the

nature of sensed information.
• The time and position of information collection.
Additional pertinent contextual information includes (i)
the status of the vehicle: driving, idle, (ii) data on vehicle
kinematics and destination.

2. A message format should be defined to formally describe
FL models and their required input. Through a formal
definition of the conditions of application of a model,
coordinators can perform efficient training node selection
by targeting the nodes that possess the required training
input in the right format. Elements to formally describe
a model should at least include input and output infor-
mation types and nature.

3. A message format should be defined for coordinators to
request for vehicles that possess the right context for
training a model.

V. INTEGRATION WITH VEHICULAR KNOWLEDGE
NETWORKING

Vehicular Knowledge Networking (VKN) is a framework
for knowledge description, creation, storage and distribution
within vehicular networks [19]. VKN aims at providing a
framework for standard knowledge description, in turn al-
lowing cooperative and interoperable knowledge creation and
distribution. As such, VKN can provide for the technical re-
quirements of mobility-based orchestration of FL in vehicular
networks.

As illustrated by Figure 5, vehicular mobility-based orches-
tration of FL requires the three aspects of VKN: knowledge
description, distribution and storage.

A. VKN Semantics & Input Description

VKN allows the description of a model’s input and output
parameters. As defined in [19], the use of semantics standard
allows vehicles to know which input to provide to a model
in order to apply or train it. Using this format, training nodes
and coordinator can reach a common understanding on what
context is required to train a model.

Figure 6 illustrates an example model description applied
to the model of road surface condition estimation described
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in [17] and introduced in Case Study 1. The nature of required
input to the model is a front camera image, the output of the
model is a class for the road surface condition, as detailed
in [17]. Additionally, description of model weights as well
as training parameters allow nodes to take part in a training
process for the model.

model_name: model.road_surface_condition

model_description:
INPUT(camera_image: #Image.FrontCamera),
OUTPUT(road_surface_condition: #RSC.ClassID)

model_training_parameters:
MODEL_PARAMETERS(... [Neural Network

Weights Description]),
LOSS_FUNCTION(loss.cross_entropy)

Fig. 6: Example of a VKN Model Description applied to [17]
(Case Study 1)

B. VKN Knowledge Distribution: Environment Description

Coordinator and training vehicles must communicate in
order to orchestrate FL training:

• Vehicles communicate their training environment to the
coordinator.

• The coordinator issues training environment requests to
vehicles to get a list of vehicles able to train a model.

As exemplified in pseudo code in Figure 7, using the Vehic-
ular Knowledge Query format introduced in [19], coordinator
and vehicles can communicate on training environments. The
description of a training environment includes the nature of
sensed information – i.e. a semantically-defined name –, as
well as the time and location of information collection. In
a decentralized GL setting, vehicles can directly query and
exchange training environments with other vehicles.

C. VKN Knowledge Base: Coordinator

Finally, as shown in point 3 of Figure 5, the coordinator
receives training environment descriptions from vehicles and
stores them in a local Knowledge Base (KB). Using the content
of the KB, while training a model, the coordinator is able to
select vehicles that are most likely to feature the required train-
ing input. Alternatively, in a decentralized GL setting where



Coordinator requests:
REQUEST TRAINING_ENV(#Image.FrontCamera)

IN [Area] AT [Time Range]

Vehicle answers:
AVAILABLE TRAINING_ENV(#Image.FrontCamera)

IN [Area] AT [Time Range],
VEHICLE ID: [vehicle address]

Fig. 7: Training Environment Request and Answer, based
on [17] (Case Study 1)

vehicles directly exchange training environments, vehicles can
store that content in an on-board KB and use it to directly
transfer model updates to other pertinent vehicles.

VKN integration provides a support for the definition
of mobility-based FL orchestration mechanisms in vehicular
networks. In Section VI, we provide and evaluate a VKN-
based orchestration mechanism for centralized FL. Vehicles
and coordinator are training a model whose VKN description
is commonly available. As vehicles sense information that
qualifies as input for the model being trained, they inform the
coordinator of their updated training environment and ability to
train the model. Finally, at each iteration of model training, the
coordinator performs clustering of potential training vehicles
based on the location of their last reported training input
sensing. Then, for each cluster, the coordinator selects the
vehicle having most recently reported an updated training
environment to perform a model update for that iteration.

VI. EVALUATION SETUP

We implement mobility-based orchestration of FL through
VKN and investigate potential performance improvements for
both case studies described in Section III. We simulate a set of
vehicles in a fixed size area, whose movements follow standard
mobility models. As they move, vehicles sense information
about their environment, that can be used as FL training input.
We use vehicles as training nodes to train a classifier based
on the digits-only FEMNIST dataset.

For the first case study, we investigate on mobility-based or-
chestration on FL training process for models with commonly
observable input, e.g. the road surface condition estimation
model in [17]. All vehicles periodically sense information from
their environment that is usable in the model’s FL training.
As vehicular mobility is not random, two vehicles that are
originally distant are likely to drive the same road at some
point, and thus provide similar input to the model’s training,
potentially triggering overfitting.

For the second case study, we implement mobility-based
orchestration for the class of models that can be trained on
input sourced from sparse, rare events. The model described
in [18] fits this category. Due to vehicular mobility, in this
case study, only a fraction of vehicles owns the required input
for training the model at a given time.
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A. MNIST Dataset Choice

In order to assess the performance of FL training with VKN
orchestration, we train a classifier based on the digits-only
FEMNIST dataset [1]. It is a federated version of MNIST, and
consists of a dataset of handwritten digits associated with a text
version of the character. In this federated version, digits are
grouped by writer. As such, digits-only FEMNIST replicates
the non-IID data distribution that one should expect in FL
training.

Rather than in FL algorithms themselves, the contribution of
this paper lies in FL orchestration through training client selec-
tion in vehicular environments. While digits-only FEMNIST is
a simple dataset, it provides flexibility in terms of choosing and
modifying the distribution of training data, which is necessary
to verify the performance of the VKN-orchestrated FL scheme.
Therefore, as an initial application and proof of concept, we
use the FEMNIST dataset to compare the performance of
training with and without VKN orchestration.

B. General Setup

We simulate the FL training of a digits-only FEMNIST
classifier in a vehicular environment. V = 750 vehicles are
simulated in a one square kilometer area over the course
of T = 1h simulated time. Each vehicle is a potential
training node, reachable by a central coordinator at all times
to compute local model updates upon request. For both case
studies, the training algorithm and evaluation processes are
identical. However, the mobility model followed by vehicles
as well as the data sensing mechanism are different, to
simulate the mobility challenges described in Section III. We
use the tensorflow federated library to implement the model
training through the Federated Averaging algorithm, which is
an implementation of FL.

1) Mobility & Data sensing: Vehicles move according to
a standard mobility model that is specific to each of the two
case studies. The first simulation uses the Random Waypoint
(RWP) mobility model, whereas the second uses the Reference
Point Group (RPG) mobility model. Moreover, training input
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sensing mechanisms are simulated differently in both cases,
respectively a grid-based observation mechanism for the first
case study and a rare events generation mechanism for the
second.

2) Model Training: The FL coordinator holds the current
global state of the FEMNIST-based model to be trained. The
training is divided into sequential steps in which:

1. The coordinator samples a set of N = 10 vehicles to
which it transmits the current global state of the model.

2. Upon receiving the model:
• If the vehicle holds training input for the model in its

local storage, a model update is locally computed and
returned to the coordinator.

• If not, the vehicle is not able to train the model due to
a lack of training data, and discards the model.

3. After a simulated delay of ∆t = 15s, the coordinator ag-

gregates the model updates received for the current step.
It then starts a new step and repeats until convergence.

3) VKN Orchestration: In both simulations, we compare
the efficiency of ’traditional’ FL as opposed to mobility-
based VKN-orchestrated FL by analyzing model accuracy and
training loss per training iteration. The VKN orchestration
process takes place at the training client selection level in
the coordinator. Thus, the difference between the traditional
and VKN-orchestrated approaches lies in the training vehicle
sampling mechanism at each step.

On the one hand, in the traditional approach, no mechanisms
are implemented to anticipate which vehicle is likely to hold
which type of training information. At every training step, the
coordinator samples N = 10 randomly chosen vehicles to
perform local model training.

On the other hand, in the VKN-orchestrated approach,
vehicles inform the coordinator of their training environment
respectively (i) every ∆t = 10s in case study 1 where the
trained model requires commonly observable input, and (ii)
each time a relevant input is sensed in case study 2 where
the trained model requires rarely sensed input. Thus, the
coordinator is fitted with a KB containing the last observed
pertinent input of each vehicle if any, as well as the time
and location of sensing. Training environment information
is discarded from the coordinator’s KB after a timeout of
∆t = 5min.

Using this contextual knowledge, the coordinator clusters
the training vehicles by the location of their last documented
training input sensing in N = 10 clusters using a K-Means
algorithm. Then, the coordinator sends a model update to the
vehicle having most recently filed a training environment item
in each of the N clusters. Through that clustering process, the
coordinator maximizes the diversity of training input, while
reducing the likelihood to request training to vehicles that do
not possess the required input data.
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VII. PERFORMANCE EVALUATION

In this section, we describe the specific parameters of
the simulations performed to represent each case study, and
discuss evaluation results.

A. Case Study 1: Commonly observable input

Figure 8 illustrates the specific setup of Simulation 1.
The vehicles in the simulation follow the RPG mobility
model. Mobility is divided into one major and nine minor
groups of vehicles. In order to represent commonly observable
training input, the simulation area is divided into a grid
of 10x10 cells. Each cell is permanently associated with a
single, constant training sample extracted from the digits-only
FEMNIST dataset. Vehicles periodically sense the training
sample associated with the cell they are located in, every
T = 10s of simulated time.

As described in the evaluation’s general setup, at each
step, the coordinator performs clustering of potential training
vehicles in order to select N = 10 clients most likely to feature
diverse training input. In this case study, as an optimization,
if two selected vehicles are separated by a distance of 50
meters or less, one of them is discarded from the selection.
Thus, in the VKN-orchestrated approach, for some training
iterations, the number of selected vehicles can potentially be
below N = 10.

Figure 9 shows the obtained result in terms of model
accuracy and training loss per training iteration. The results
are bounded by 95% confidence intervals obtained after av-
eraging the results from S = 25 simulations. In this case
study, orchestration resulted in: (i) a minor but consistent
improvements in terms of model accuracy of about 4% while
(ii) reducing the amount of nodes selected for training to an
average of 9 instead of 10 training vehicles per iteration. Thus,
VKN orchestration combines improved training accuracy with
reduced bandwidth usage in terms of model update exchanges.

As a trade off, vehicles inform the coordinator of their training
environment every ∆t = 10s. Thus, the actual variation
of bandwidth usage depends on the trained model and the
difference between the size of model updates and that of
training environment messages. In complex neural networks
models encoding numerous weights, the bandwidth saved
through the reduction of model update exchanges is likely
to be significant over the overhead of training environment
messages exchange.

B. Case Study 2: Sparsely Observable Input

Figure 10 illustrates the specific setup of Simulation 2.
Vehicles in the simulation follow the RWP mobility model,
with a pause probability of 0.5, a maximal pause duration of
5 minutes, and a speed range of [5; 20]m/s. As the simulation
aims to represent situations of sparsely observable training
input, events are randomly generated within the simulation
area.

Events occur following a Poisson distribution at a constant
mean rate of 1.5 events per simulated minute. Each event
has a circular shape and appears in the simulated area for
a limited amount of time. Namely, an event is composed of
(i) a start time, (ii) a duration sampled from a normal law
N (60, 10) seconds, (iii) a center point sampled uniformly in
the simulated area, (iv) a radius r ∼ N (50, 1) meters, and (v)
a single training data sample extracted from the digits-only
FEMNIST dataset that passing vehicles will be able to sense.

Everytime a vehicle drives within the bounds of the circular
representation of an active event, the vehicle senses the train-
ing data sample associated with the event and saves it in local
storage, erasing any previous sensing. Moreover, to account
for existing vehicular database maintenance features [20], data
samples stored on-board vehicles are removed if:
Time relevance The last sensed sample was obtained more

that 5min of simulated time ago.



Space relevance The last sensed sample was obtained more
than 500m away.

Figure 11 illustrates the obtained results in terms of model
accuracy and training loss per training step. The results are
bounded by 95% confidence intervals obtained after averaging
the results from S = 25 simulations. The orchestration of the
FL training through VKN results in significant improvements
in terms of convergence time as well as model accuracy. After
convergence, the model training through VKN orchestration
shows a significance increase in label prediction accuracy of
about 15%.

VIII. CONCLUSION

Federated Learning shows potential for knowledge creation
and distribution in vehicular networks, while avoiding the
transfer of training data. However, the patterns of vehicu-
lar mobility introduce specific challenges for FL, such as
a dynamically evolving training environments for nodes in
vehicular networks. In this paper, we exemplified vehicular
mobility-related challenges for FL through two complemen-
tary case studies. On the one hand, models with commonly
observable input require educated training node selection in
order to avoid over fitting models to a majority of input
sourced from main roads axes. On the other hand, models
that require rare observations as input, e.g. models studying
near-crash events require communication between training
nodes, to avoid requesting model updates to vehicles that
do not own the required input data. We introduce Vehicular
Knowledge Networking as a candidate framework to answer
needs of mobility-based orchestration in vehicular FL. Fi-
nally, we evaluate the described approach by running two
complementary simulations representing each case study. We
observe that mobility-based FL orchestration through VKN led
to improvements in terms of model training speed and model
accuracy, as opposed to unorchestrated training.
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[2] István Hegedűs, Gábor Danner, and Márk Jelasity.
“Gossip Learning as a Decentralized Alternative to
Federated Learning”. In: Distributed Applications and
Interoperable Systems. Ed. by José Pereira and Laura
Ricci. Cham: Springer International Publishing, 2019,
pp. 74–90.

[3] L. Giaretta and Š. Girdzijauskas. “Gossip Learning: Off
the Beaten Path”. In: 2019 IEEE International Confer-
ence on Big Data (Big Data). 2019, pp. 1117–1124.

[4] Ahmed Imteaj et al. Federated Learning for Resource-
Constrained IoT Devices: Panoramas and State-of-the-
art. 2020. arXiv: 2002.10610 [cs.LG].

[5] Wei Yang Bryan Lim et al. Federated Learning in
Mobile Edge Networks: A Comprehensive Survey. 2019.
arXiv: 1909.11875 [cs.NI].

[6] Takayuki Nishio and Ryo Yonetani. “Client Selection
for Federated Learning with Heterogeneous Resources
in Mobile Edge”. In: ICC 2019 - 2019 IEEE Inter-
national Conference on Communications (ICC) (May
2019).

[7] Luping Wang, Wei Wang, and Bo Li. “CMFL: Miti-
gating Communication Overhead for Federated Learn-
ing”. In: 2019 IEEE 39th International Conference
on Distributed Computing Systems (ICDCS) (2019),
pp. 954–964.

[8] Richeng Jin, Xiaofan He, and Huaiyu Dai. On the
Design of Communication Efficient Federated Learn-
ing over Wireless Networks. 2020. arXiv: 2004.07351
[cs.LG].

[9] Jinjin Xu et al. Ternary Compression for
Communication-Efficient Federated Learning. 2020.
arXiv: 2003.03564 [cs.LG].

[10] Eugene Bagdasaryan et al. How To Backdoor Federated
Learning. 2018. arXiv: 1807.00459 [cs.CR].

[11] Z. Li, V. Sharma, and S. P. Mohanty. “Preserving
Data Privacy via Federated Learning: Challenges and
Solutions”. In: IEEE Consumer Electronics Magazine
9.3 (2020), pp. 8–16.

[12] B. Swenson et al. “Distributed Gradient Descent: Non-
convergence to Saddle Points and the Stable-Manifold
Theorem”. In: 2019 57th Annual Allerton Conference
on Communication, Control, and Computing (Allerton).
2019, pp. 595–601.

[13] S. Wang et al. “Adaptive Federated Learning in Re-
source Constrained Edge Computing Systems”. In:
IEEE Journal on Selected Areas in Communications
37.6 (2019), pp. 1205–1221.

[14] Yuan Liu et al. FedCoin: A Peer-to-Peer Payment Sys-
tem for Federated Learning. 2020. arXiv: 2002.11711
[cs.CR].

[15] Han Yu et al. “A Fairness-Aware Incentive Scheme for
Federated Learning”. In: Proceedings of the AAAI/ACM
Conference on AI, Ethics, and Society. AIES ’20. New
York, NY, USA: Association for Computing Machinery,
2020, pp. 393–399. ISBN: 9781450371100.

[16] Ahmet M. Elbir, Burak Soner, and Sinem Coleri. Fed-
erated Learning in Vehicular Networks. 2020. arXiv:
2006.01412 [eess.SP].

[17] S. Roychowdhury et al. “Machine Learning Models
for Road Surface and Friction Estimation using Front-
Camera Images”. In: 2018 International Joint Confer-
ence on Neural Networks (IJCNN). 2018, pp. 1–8.

[18] Osama A. Osman et al. “Prediction of Near-Crashes
from Observed Vehicle Kinematics using Machine
Learning”. In: Transportation Research Record 2673.12
(2019), pp. 463–473.

[19] Duncan Deveaux et al. A Definition and Framework for
Vehicular Knowledge Networking. 2020. arXiv: 2005.
14505 [cs.NI].

[20] ETSI EN 302 895 V1.1.1 : Intelligent Transport Systems
(ITS); Vehicular Communications; Basic Set of Appli-
cations; Local Dynamic Map (LDM). Sept. 2014.


