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Abstract. This paper proposes a method and empirical pieces of evi-
dence to investigate the claim commonly made that proxy services used
by web scraping bots have millions of residential IPs at their disposal.
Using a real-world setup, we have had access to the logs of close to 20
heavily targeted websites and have carried out an experiment over a two
months period. Based on the gathered empirical pieces of evidence, we
propose mathematical models that indicate that the amount of IPs is
likely 2 to 3 orders of magnitude smaller than the one claimed. This
finding suggests that an IP reputation-based blocking strategy could be
effective, contrary to what operators of these websites think today.

1 Introduction

This work has been realised in close collaboration with a major IT provider for
the airline industry which hosts several dozens of airline websites. These sites
are protected by one of the leading commercial anti-bots services, placed in front
of them. This service checks the origin and the fingerprints associated with each
request against a large number of “signatures”1.

Bots have been a plague for the Internet for more than 20 years. Early warn-
ings date back to the 2000s with the early DDoS attacks against major websites
[3]. Since then, they have continuously evolved from relatively rudimentary pieces
of software to very sophisticated components such as the numerous “all in one
sneaker bots” (e.g., aiobot.com) that automate the buying process of luxury
goods in high demands. To increase their resilience, the bots take advantage of
proxy services publicly available on the web, for a fee. Thanks to these services,
the bots use temporarily IP addresses that are owned and used by legit users.
There are, supposedly, tens of millions of such IPs made available to bots. Would
the targeted websites decide to block each IP which is considered to behave like
a bot, they would quickly deny access to millions of IPs, some of them belonging
to potential customers. Clearly, an IP blocking solution does not appear to be a
viable approach due to the, supposedly, sheer volume of IPs, available all over
the world.

1 This is a simplistic explanation. We refer the interested reader to [23] for more
information on such existing commercial offerings.
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In this paper, we use empirical evidence to investigate the conjecture that
such IP blocking strategy will always fail. We reach the conclusion that the
situation might not be as bleak as it might seem.

In order to present our findings, the paper is structured as follows. In Section
2, we outline the problem faced and our contributions. Section 3 presents the
state of the art on web scraping bots prevention. Section 4 describes the experi-
mental setup and the data it produced. Section 5 briefly describes the raw results
obtained over a period of 56 days. Section 6 assesses the credibility associated
with the belief that these botnets have millions of IP addresses at their disposal.
Mathematical analysis confronted with the empirical pieces of evidence leads us
to adjudicate against that belief. In Section 7, we gather additional information
about the IPs observed in order to consolidate the ideas developed in Section
6. In Section 8, we discuss the lessons learned thanks to our experiment and
analysis. A conclusion as well as thoughts for future work are offered in Section
9.

2 Problem definition and contributions

A 2019 Imperva report [6] describes how the airlines industry is heavily impacted
by large armies of bots. In 2017, according to that report, the proportion of bad
bots traffic to airline websites was 43.9%. Almost all these bots are used to
gather free information from the airlines’ sites about flights and ticket prices. It
is commonly agreed that the actors behind these bots activities are unauthorized
business intelligence companies, online travel agencies and data aggregators. In-
deed, a large part of their business relies on web scraping and using bots instead
of having a paying agreement with the targeted websites is much more profitable
for them. They harness information, increasing dramatically the amount of re-
quests to be served by airlines websites. Responding to these requests, due to the
price ticketing process, is an expensive task which well-behaving organisations
normally pay for. The bots aim at getting the same service for free. By doing
so, they misuse the service provided by airlines companies to individual users.

An arms race exists between bot makers and anti-bot providers. The bot
detection relies on a number of different fingerprinting techniques to recognize
malicious agents [23]. As soon as a family of bots is identified and blocked,
their bot masters replace them with new ones. Blocking all the IP addresses of
identified bots is usually not seen as a viable option because it is well known
that the real IP addresses of the bots remain hidden behind a large amount
of proxy IP addresses provided by professional services. These services claim
to offer to their customers millions of residential IP addresses, leaving any IP
blocking solution doomed to potentially block a large amount of legit customers.

Quoting one of these websites [12], we see that they offer to their customers
to “use [their] rotating residential proxies comprised of real user devices, making
them undetectable when used correctly”. The owners of these real devices, also
called exit nodes, “[...] agreed to route [...] traffic through their hosts in exchange
for free service” [12]. A quick search on the Internet returns more than a dozen
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similar proxy service offerings. We prefer not to offer them some additional
advertisement by listing them all here. Suffice it to say that, for instance, both
[12] and [15] claim to offer more than 70 millions of IP addresses whereas [20]
supposedly has more than 10 millions IPs. Others have similar claims.

The benefits of hiding behind this very large pool of IP addresses is threefold
for the web scraping actors: first, linking a scraping campaign to any known
organisation is impossible, thus no attribution and legal recourse; second, the
impressive number of frequently changing IP addresses used renders any IP
blocking strategy impractical; third, they can run these campaigns with a very
limited amount of powerful machines on their back end without the need of any
vast and highly distributed infrastructure.

In [2], we describe an experiment designed to analyse the behavior of these
bots. That experiment did confirm the existence of these advanced persistent
bots (APBs) and the proxies they were relying on. It also raised questions re-
garding the real amount of IPs put at the disposal of the bots. In this work, we
carry out an in-depth investigation of that question. By doing so, we provide the
following contributions:

– We provide additional empirical pieces of evidence of the existence of very
stealthy APBs and confirm the usage of proxy servers by these bots

– Using two distinct approaches, we show that i) IP addresses provided to the
bots are not randomly assigned and that ii) the pool of IPs they are taken
from is two to three orders of magnitude smaller than what is announced by
the proxy websites.

– We explain how the idea of IP-blocking could be rejuvenated to defeat such
sophisticated bots.

3 State of the art

Botnets, collections of hosts controlled by a bot, have been used for the years
for nefarious activities, such as scraping web pages of different industries [5].
Applying IP reputation to mitigate the threats of web scraping is not a new idea
[4]. Moreover, this technique has already been largely used against spam bots
[10].

However, as shown in the Imperva Report 2020 [5], recent years have wit-
nessed the rise of traffic produced by Advanced Persistent Bots (APBs). These
bots produce few requests per IP staying below the rate limits and protecting
their reputation. They rely on professional proxy services that make large num-
bers of IP addresses available for these activities [19]. These services claim to
have access to tens of millions of residential IPs and to be able to rotate them
among the different requests of each client. For these reasons, the report [5] as-
serts that IP blacklisting has become “wholly ineffective”. Doubtlessly, millions
of different IP cannot be blacklisted all together and e-commerce websites cannot
risk to block requests coming from real customers.

In 2019, Mi et Al. [13] proposed the first comprehensive study of Residential
IP Proxy as a Service. Even if their methodology has been partially criticized
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for the fingerprinting process of the devices [17][16], they created a successful in-
filtration framework that enabled them to study residential proxy services from
the inside. They collected 6.18 milions of IPs, of which 95,22% are believed to be
residential. Among their findings, it is peculiar to see a discrepancy between the
number of IPs claimed by Luminati [12] (30 millions) and the ones collected by
them for the same provider (4 millions using 16 million probings). The authors
provide no clear explanation for this gap. Furthermore it is noteworthy to men-
tion the discovery of two providers using the same pool of IPs, while another
one built its network on top of Luminati [12]. Our paper also aims at better
understanding the residential IP proxies ecosystem by providing a different view
point.

Nowadays, web site owners usually take advantage of third party anti-bot
services to perform bot management. These commercial solutions analyse the
incoming requests to the websites. As described in [23], multiple parameters
are collected from the environment in which the request is generated, thanks to
fingerprinting. This set of parameters can be used to identify the same actor who
launches different requests, potentially from different IP addresses. If a signature
is recognized as coming from a bot, the corresponding traffic can be blocked or
other mitigation actions can be put in place.

Azad et Al, [1], propose an empirical analysis of some anti bot services.
Unfortunately, their findings indicate that these solutions are mostly efficient
against basic bots but not against the truly sophisticated ones. Indeed, an arms
race is taking place between anti bot services trying to fingerprint and bots trying
to circumvent the detection. This has led the actors behind the bots to perform
only small amounts of requests per IP, with the goal of remaining undetected.

4 Experimental setup

In [2], we have described a honeypot-based experimental setup designed to ana-
lyze the behavior of web scraping bots. We offer in this Section a brief recap of
that experiment as it is the source of the data we will be analysing in the rest of
the paper. The interested reader is referred to [2] for more detailed information.

This experiment was run in close collaboration with a major IT provider for
airlines websites. This party handles the calculation of the fares and the booking
process for multiple airlines. The airlines companies pay the IT provider an
amount proportional to the transactions served. Naturally, an excess of bot traffic
dramatically increases the volume of transactions and thus the infrastructure
costs for both the airlines and the IT provider. In recent years, bots started to
perform an intensive price scraping activity towards airline’s websites, producing
up to 90% of the requests on some domains [6].

To mitigate this phenomenon, the IT provider with which we collaborate, is
using a commercial bot detection service provider. A box is put in front of the
provider’s booking domains and it detects bots thanks to browser fingerprinting
and machine learning. Every request is studied and a signature is assigned to it.
If the signature matches the one of a bot, an action is taken such as blocking,
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serving a CAPTCHA[24] or a JavaScript challenge. However, sophisticated bots,
dubbed APBs for Advanced Persistent Bots [5], can overcome these countermea-
sures and/or change their parameters to avoid detection [14].

This solution works but has a major drawback, which is to provide feedback
to the bots when they are identified. They use this information to morph as soon
as they detect that they have been unmasked. By doing so, they defeat the mit-
igation process provided by the anti-bot solution. To overcome this problem, we
have decided to create a new action associated with a signature match: requests
coming from identified bots would now be redirected to a real-looking, yet fake,
web page. This web page, which can be seen as an application layer honeypot,
serves two distinct objectives: i) reduce the workload of the production servers,
ii) study the behaviour of the bots.

This honeypot is able to produce responses that are, syntactically, indistin-
guishable from the real ones. However, semantically, they differ because we use
cached values or, sometimes, modified values for the tickets. Cached values dra-
matically reduce the cost of computing the responses. Modified values enable us
to analyse to what extent the bots are capable of detecting erroneous information
provided to them.

We have designed and implemented such a platform in collaboration with the
IT provider and a specific airline company. We chose a company whose traffic
was highly impacted by bots. At the time of our experiment, that company was
receiving, on average, 1 million requests per day, of which 40% were detected
as bot traffic by the anti bot solution. Unfortunately, the anti-bot solution is
not capable of blocking all bots. Each signature is associated with a confidence
level indicating the uncertainty whether the request comes, or not, from an ill
behaving bot. Depending on that value, that IP will be blocked, challenged (e.g.
with a CAPTCHA) or simply put under scrutiny (e.g. to be blocked later if it
sends a suspiciously large number of requests). We focused on that last category
and found, for that airline, a signature that was matched every day, always in the
same small time window of 40 minutes by, roughly, the same amount of IPs. Last
but not least, almost none of these IPs ever booked a ticket. All these elements
gave us great confidence that that signature, while not blocked by the anti bot
solution, was reliably identifying members of a specific botnet. We have then
configured the anti-bot solution to redirect all requests matching that signature
to our honeypot.

For this publication to be self-contained, we offer in the next Section a syn-
thetic presentation of the raw results obtained and some statistical results.

5 Experimental Results

The experiment ran for 56 days, between 7th January and 2nd March 2020.
We have had no match for our signature after that date. We believe the reason
has to do with the business needs of the actor behind these bots. Indeed, that
date coincides with the beginning of the worldwide pandemic. Furthermore, the
airline, subject of our experiment, is the main one for a country whose govern-
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whole period of the experiment.

ment issued its first major travel restriction on the 2nd of March, practically
shutting down airline travel to and from that country. Without any customer
interested in buying tickets to/from that country, there was no incentive for the
malicious actor to keep collecting ticket prices from that company. This most
likely explains the disappearance of these bots.

Over the duration of the experiment, the honeypot has received 22,991 re-
quests. The daily average amount was 410 with a standard deviation of 33
queries. All requests arrived at the same time of the day. The signatures were
only seen during a small time window of 38.18 minutes, on average. The amount
and the timing of the requests were in line with those of that bot signature before
the beginning of the experiment.

The 22,991 requests were issued by 13,897 unique IPs. Fig. 1 shows that most
of the IPs (97% of the total) made at most two requests per day, with the vast
majority (88%) making only one request per day. Fig. 2 shows the total amount
of requests made per distinct IP over the whole experiment. Here, we see that
8,257 IPs have sent only one request. This value is to be compared with 12,277
of Fig. 1. It highlights the fact that a large amount of IPs have shown up on at
least two different days, issuing a single request every time. This is confirmed by
Fig. 3 where we see that almost 30% of the IPs have been seen on at least two
different days.

That number is surprisingly high. Indeed, at this stage, we have to remind the
reader that these IPs are proxy IPs and that the actual client machine sending
a request is hidden behind. The proxy service offers a pool of addresses to be
given to these clients. Let us call P the size of that pool. Fig. 3 shows how
many times a given address has been picked over a period of 56 days. The fact
that there are 2,801 that have been used twice over that period is inconsistent
with the assumption that the addresses would be randomly picked out of a very
large pool of millions of IPs. Indeed, to calculate the probability that a given IP
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got picked twice over this period comes down to resolving the classical birthday
paradox which can be generalized as follows:

Given n random integers drawn from a discrete uniform distribution with
range [1,d], what is the probability p(n; d) that at least two numbers are
the same? (d = 365 gives the usual birthday problem.) [22]

In our case, n is equal to 56, the number of days where IPs from the pool are
assigned to clients and d is equal to the size of the pool P . We want to assess
the probability that the same IP would be drawn twice over that period of 56
days. We can rephrase the birthday problem for our needs as follows:

Given 56 random integers drawn from a discrete uniform distribution
with range [1,P ], what is the probability p(56;P ) that at least two num-
bers are the same?

The formula 1− (P−1
P )

56(55−1)
2 gives an approximate result:

– If P = 10000000 then p(56, 10M) ≈ 0.000154
– If P = 1000000 then p(56, 1M) ≈ 0.001538
– If P = 100000 then p(56, 100K) ≈ 0.015282

Clearly, considering that we have seen more than 30% of the IPs drawn at
least twice, either P is significantly lower than the number announced by the
proxy services, or the assignment of IPs is not randomly done, or both.

Regarding the total amount of IPs, we saw only 13,897 different ones. Every
day the number of distinct IPs, on average 371 (shown in yellow in Fig. 4),
was similar to the number of requests, on average 410. Thus, it is clear that
most IPs send a single request and reappear some time later. In the same figure,
the green columns represent the cumulative number of unique IPs observed in
our honeypot since the beginning of the experiment. The figure shows that the
daily increment decreases over time, suggesting that it will eventually reach a
maximum.

To better characterize and understand the threats ecosystem we are facing,
we try to find a mathematical model that approximates as closely as possible
the assignment of IPs made by the proxy provider. We use that model to derive
the most likely size of P . This is done in the next Section.

6 Modeling Results

6.1 Introduction

We propose two distinct modeling approaches to assess the most likely size of
the pool of IPs P put at the disposal of the stealthy APBs we have observed.
Both models deliver a value which is below 70K, i.e. three orders of magnitude
less than the 70M IPs supposedly provided by [12].

In the first approach (subsection 6.2), we look at the IPs assigned every day
by the proxy to the bots. We model this as a drawing process made in a pool of
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size P and we try to find the best probability distribution function that would
produce similar results to the ones we have witnessed. From there, we derive the
value of P .

In the second approach (subsection 6.3), we look for a fitting curve to ap-
proximate the one shown in Fig. 4 and, by extrapolating it, see what maximum
value it would reach, and when.

6.2 IP assignment as a drawing process

General principle Fig. 3 tells us how many IPs have been assigned to a bot
only once, or twice, or three times ... over the duration of the experiment. We
model this assignment process by a daily probabilistic drawing process without
replacement. We arbitrarily define a pool size P. On a given day, we draw from
our pool, without replacement, a number of values equal to the amount of distinct
IPs seen that day. We do this every day, keeping track of which value got drawn
several times during this exercise. We use these accumulated results to produce
a histogram similar to Fig. 3.

We use the Wasserstein2 distance to assess the similarity between this his-
togram and the one from Fig. 3, making the reasonable assumption that the
values of the produced histogram are derived from the real one by small and
non-uniform perturbations.

We have no reason to believe that the drawing is done every day instead of
every 2 days or 3 days or more. We thus repeat the process with other window
sizes s (2 to 10), but we proceed with a drawing with replacement. We impose
an additional constraint though. A given value cannot be drawn more than s
times, i.e., once per day. Once a value has been drawn s times, it is not replaced
in the pool anymore.

2 This distance is known as the earth mover’s distance, since it can be seen as the min-
imum amount of “work” required to transform one histogram into another, where
“work” is measured as the amount of distribution weight that must be moved, mul-
tiplied by the distance it has to be moved [11].
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We use different probability distribution functions to ensure that they do not
produce drastically different sizes. Various other functions could have been used.
Our goal is not to find the best one but to show that several “good enough” ones
deliver the same ballpark figure for P .

Algorithm used We studied the distribution of the IPs for subgroups of days of
size s ranging from 1 to 10. To group the days, we have used juxtaposed windows
(as opposed to sliding windows) to ensure that our final histogram contained the
same amount of values as the one in Fig. 3. We chose juxtaposed windows to
not count twice the IPs of a singular day and reproduce thus a coherent replica
of the observed data.

We have run simulations with different population sizes P. We have incre-
mented P by 10,000, starting with the initial value of 10,000 up to 100,000.
Moreover, we have tested values from 100,000 to 200,000 with an increment of
20,000. For a given time window, we have produced as many histograms as dis-
tinct population sizes. Each histogram is obtained thanks to 100 simulations.
Each simulation produces its own histogram and we compute the Wasserstein
distance between this histogram and the empirical one. An average Wasserstein
distance value is then obtained from these 100 simulations. The lowest value of
this average distance corresponds to the size P which best represents the ob-
served data. For each window size, for each population size, for each simulation,
we have plotted the distances obtained using a boxplot representation. This al-
gorithm has been applied using three distinct probability distribution functions,
as explained here below.
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Fig. 5. Uniform distribution: for each population size on the x axis, a group of boxplots
displays the Wasserstein Distances (y axis) obtained in the 100 experiment for that
population size. Each color represents the window size used for the simulation.
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Uniform Distribution The simplest model is the one where all IPs, every
day, have the same probability of being assigned to a bot. To model this, we use
a uniform distribution as the probability distribution function in our drawing
process. Fig.5 shows for each window size (colored legend) and for each popu-
lation size (X-axis), the boxplots of Wasserstein Distances (Y-axis) obtained in
all the experiments. We clearly see that for P bigger than 30K, the bigger its
value, the more different is the obtained histogram with respect to Fig. 3. The
best distances are obtained for the low value of P of 20K, for all time window
sizes. The Wasserstein distance is quite high though, around 1,000 and we have
looked for other distributions with the hope of obtaining smaller distances.
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Fig. 6. Gaussian distribution: for each population size on the x axis, a group of boxplots
displays the Wasserstein Distances (y axis) obtained in the 100 experiment for that
population size. Each color represents the window size used for the simulation.

Gaussian Distribution (aka normal) It is reasonable to imagine the exis-
tence of a bias in the IP assignment process that would lead some IPs to be more
frequently used whereas others would be rarely picked. This could be due, for
instance, to the simple fact that some residential IPs might be more frequently
available (online) than others. Another reason could be that proxies, to ensure
a better quality of service, assign preferably IPs “close” to their customers. Our
goal is not to identify the causes of these biases but, simply, to assume that they
could exist and, thus, model this possibility. To do so, we have run our algorithm
with a Gaussian distribution. For the sake of concision, the results presented here
correspond to the parameters mu=0.5 and sigma=0.1. Other choices lead to the
same lessons learned and this combination offers the best distances. We offer in
Fig.6 a similar representation as in Fig. 5. This model seems to be a better ap-
proximation since the best Wasserstein distance is now half of the one obtained
for the uniform distribution. As expected, the size P does grow since a number
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of IPs are now very rarely chosen. Its value, around 60K, is still three orders of
magnitude below the claimed 70M.
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Fig. 7. Beta distribution: for each population size on the x axis, a group of boxplots
displays the Wasserstein Distances (y axis) obtained in the 100 experiment for that
population size. Each color represents the window size used for the simulation.

Beta Distribution Last but not least, we present also the results obtained
with the Beta distribution, with alpha=1 and beta=5 ; which enables us to
represent a different form of bias in the choice but the results are very consistent
with an optimal size P of 60K and a Wasserstein distance below 500. The results
are represented in Fig.7.

6.3 Fitting curve

As explained before, a distinct approach to get an informed estimate of the size
P consists in starting from the values observed in Fig. 4, in finding a fitting
function and in extrapolating its values.

To do so, after having looked at the data at our disposal, we have observed
that, roughly speaking, the amount of new IPs (i.e., never seen so far) observed
on a daily basis was decreasing linearly over time. We were thus hoping to be
able to find a good fitting function [18], thanks to an exponentially decaying
one. We found out by means of simulations that the best fit was achieved with
the following function:

a ∗ (1− e−(x−b)/c) (1)

The parameters that provide the best fit are:

a = 2.77313369e + 04

b = −4.77879543e− 01

c = 8.04885708e + 01
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The fitted curve is represented in Fig. 8. To assess their similarities, we
calculate the Pearson correlation factor [21] and obtain the value 1.000 which
indicates a total positive linear correlation, confirming the adequacy of our fitting
function which is visible by the quasi superposition of both curves in Fig. 8

We can now use that fitting function to extrapolate the total amount of
distinct IPs we would have seen, had we been able to run the experiment for 3
years. Fig. 9 shows how the curve reaches a plateau after a bit more than a year.
Thus, according to this distinct approach, the bots we have observed only have
a couple of tens of thousands of IPs at their disposal, a value which is consistent
with the ones found with the first approach.

0 10 20 30 40 50 60
Days of the experiment

0

2500

5000

7500

10000

12500

15000

Un
iq

ue
 IP

s

Data
Fitted function

Fig. 8. Projection of the real data on
the fitting curve values

0 200 400 600 800 1000 1200
Days of the projection

0

10000

20000

30000

Un
iq

ue
 IP

s

3 years prediction
Data

Fig. 9. 3 years prediction of the num-
ber of different IPs that would have
been seen in the honeypot

7 Complementary Results

In this Section, we present additional pieces of evidence to those already provided
in [2], which confirm that the IPs we have analysed are, indeed, quite likely
provided by proxy services.

These IPs are supposed to be residential IPs; i.e., they belong to legit users
who could, possibly, be interested in buying tickets. To verify this, we have looked
for the presence of these IPs in the logs of 17 other airlines. We found out that
during the experiment, five bookings have been realised by 5 of our IPs. In Table
1 we indicate when the booking was done vs. when the same IP was seen in our
honeypot logs. As expected, the dates differ greatly. Moreover, none of these
requests had the bot signature associated with them. They look perfectly legit.
This confirms two things i) some of these IPs are likely used by legit users, ii)
the risk of blocking legit customers when blocking identified proxy IPs remains
extremely small.

On the other hand, the simplest way to implement a proxy is to open some
ports and have a proxy server listening behind it. This should thus be detectable
by the various actors who scan the Internet continuously, looking for threats
and, or, vulnerabilities. We have used two such systems to see if they had iden-
tified our IPs as behaving like proxies. First, we have used IPInfo.io [7] which
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Booking Time Request Time

2020-01-17
2020-02-01
2020-02-05
2020-02-14

2020-02-26
2020-01-10
2020-01-23

2020-02-29 2020-02-01

2020-02-06 2020-02-23

2020-02-07
2020-01-24
2020-02-02
2020-02-19

Table 1. Timestamp of the bookings
and the honeypot requests made by the
same IPs.

Score (S) % of IPs # of IPs

S < 75 28 % 3958
S ∈ [75, 85[ 46 % 6371
S > 85 26 % 3568

Table 2. Distribution of the fraud
score of IPQualityScore

provides a boolean value for each IP in the categories “VPN”, “Proxy”, “Host-
ing”. According to the provider of that service, VPNs are usually encrypted
traffic endpoints so typically, if there is a VPN operating on an IP address, there
will be either encrypted traffic or ports open which will obviously show a VPN
is being used. Proxies are usually just a “HTTP forwarding” service and redi-
rect traffic to somewhere else (internal domains, other servers, etc) [8].“Hosting”
category specifies if the IP belongs to hosting providers.

Table 3 shows that a couple of IPs have been categorized as involved in suspi-
cious activities but not as many as expected. However, the results obtained with
IPQualityScore [9] are much more aligned with our expectations. As explained
in their documentation, this service tells if an IP has been used in “automatic
fraudulent behavior” in the “Bot status” category, while indicating a positive
value of “Recent Abuse” if the IP has been involved in a “recently verified abuse
across their network”. The abuse behavior includes charging back, compromised
devices, fake app installation. Moreover, the “VPN” category indicates server or
data center IPs which allow tunneling. Finally, the “Proxy”3 category, identifies
a device being infected by malware, a user selling bandwidth from their connec-
tion or other types of proxy like SOCKS, Elite, Anonymous, Tor, etc. With this
service, we can notice that the number of IPs involved in malicious activity is
much higher in comparison to the first one. Furthermore, this service provides a
general fraud score for the IP: this value ranges form 0 to 100, indicating a suspi-
cious activity when higher than 75 and an high risk when greater than 85. Table
2 tells that around 72% of the IPs show a suspicious behavior, of which 28%
are classified as high risk. This is quite consistent with the idea that malicious
actors are hiding behind them, ruining the reputation of these IPS.

To dig deeper into the analysis of the malicious behaviors associated with
these IPs, we looked for their presence in anti-spam DNS blocklists. Using the
Python library Pydnsbl we checked multiple blocklists and we found out that

3 A “VPN” is automatically a “Proxy” according to their definitions
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76% of the IPs were blocked at least in one of them at the time of our analysis
(July 2020). Hence, we had the confirmation that these IPs were doing malicious
activity also outside of our environment.

Type Number of
Ips

Percentage

VPN 180 0.013
Proxy 59 0.004
Hosting 1733 0.125

Table 3. IPInfo.io classification of the
IPs

Type Number of
Ips

Percentage

VPN 9138 0.658
Proxy* 1075 0.077
Recent abuse 3878 0.279
Bot Status 2780 0.200

Table 4. IPQualityScore classification
of the IPs (*From the total number of
positive matches, 10213, we subtracted
the number of positive values of VPN)

8 Discussion

The whole point of our experiment was to obtain, over a long period of time, a
meaningful set of IPs that we could confidently say were behaving as they were
members of the very same botnet. The very strong correlation in their activity
patterns, detailed in [2], is as close as a ground truth one could hope for. The
anti-bot detection solution identifies many more IPs as behaving like bots but
our experience in looking at the logs gives us no assurance that IPs flagged with
a given signature belong to the same botnet. Indeed, the goal of each signature
is to fingerprint “a bot”, not “the bot from botnet X, Y or Z”. The analysis we
have carried out in this paper required a clean dataset in order to be able to
derive meaningful conclusions. We are very well aware though that, compared
to all the bots that are out there, our dataset is relatively small and we do not
pretend that our conclusions can, or should, be extended to all botnets that are
in activity. Our results do only apply to the botnet we have studied. Having
said so, all elements at our disposal, explained in the previous pages, indicate
that this botnet is a perfect example of so called APBs, Advanced Persistent
Bots, and is thus representative of the many others that are scraping websites.
Therefore, we have good reasons to believe that our results could probably be
generalized to many other botnets, without having, at the moment the data to
support this claim.

If true, this would mean that large websites victims of web scraping bots
would see the same IPs coming back regularly and that the grand total of IPs
they would have to watch for would remain manageable (in the order of tens of
thousands instead of tens of millions). An IP blocking strategy could thus be
rejuvenated: seeding their sets of IPs with the ones clearly identified as behaving
as bots, that strategy could enable them to catch the most evasive bots when they
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show up with a known bad IP. Redirecting these IPs to a fake web site instead
of blocking them would also enable them to keep watching their behavior and,
possibly, redirect them to the real web site if their requests are not consistent
with those of known bots (i.e., in the case of a false positive).

The results presented in this paper have helped us in convincing our partner,
the major IT provider, to move forward into building such an environment and
the work is under way. We felt it was important to share already now our prelim-
inary results with the community not only in order to let other benefit from the
gained insights but also, possibly, to obtain feedback on important elements we
could have missed. We do hope our contributions will participate in diminishing
the negative impact created by these bots on the global Internet ecosystem.

9 Conclusion

In this paper, we have studied in detail a specific web scraping botnet that is
representative of the plague most airline websites are suffering from.

Thanks to two distinct mathematical models, we have shown that the total
amount of IPs at the disposal of this botnet was most likely in the low tens of
thousands. We have also given pieces of evidence that these IPs were provided
by proxy services, thought to be able to provide tens of millions of IPs to their
customers. If our finding applies, as we think it does, to other botnets then an IP-
blocking strategy could be applied, contrary to the common belief. We encourage
others to carry out similar experiments to confirm, or deny, our findings while
we are in the process of testing our conjecture in a new large scale experiment.
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