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Abstract

A Gaussian broadcast channel with r single-antenna receivers where the transmitter is
equipped with t antennas and where both the transmitter and the receivers have perfect
knowledge of the propagation channel is considered. This provides a very simple model for
the downlink of a wireless system, but despite its apparent simplicity it is in general a non-
degraded broadcast channel, for which the capacity region is not fully known. We propose a
novel transmission scheme based on \ranked known interference". In brief, the transmitter
decomposes the channel into an ordered (or ranked) set of interference channels for which
the interference signal of the i-th channel is generated as a linear combination of the signals
transmitted in channels j < i. In this way, known techniques of coding for non-causally
known interference can be applied to make the interference in each channel harmless without
further power penalty. We show that the proposed scheme is throughputwise asymptotically
optimal for both low and high SNR. In the special case of 2-antenna and 2-users we propose
a modi�cation of the basic strategy achieving optimal throughput for all SNRs. Finally, the
in�nite-dimensional Rayleigh channel is considered and throughput closed-form expressions
are provided in various cases. This analysis shows that a practical and sensible strategy to
the downlink of a wireless system consists of hybrid TDMA and space-time multiplexing
where only a subset of active users, whose optimal size depends on the available SNR, is
served at any given channel use by using our ranked known interference scheme. TDMA
is used for time-sharing between di�erent active user subsets to give to all users the same
average rate without penalty in the maximum throughput. Also, constant-power variable-
rate coding achieves practically the same throughput of variable-power variable-rate coding
(water�lling power allocation).
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1 Problem statement

We consider a system with one transmitter and r receivers. The transmitter has t antennas,

while the receivers have one antenna each. The transmitter has to deliver to each receiver

independent information, as in the downlink of a cellular system where the base station is

equipped with an antenna array of t elements.1 This channel is referred to in the following as

the t� 1 : r Gaussian Broadcast Channel (GBC), in order to stress the fact that the r receivers

must process their signals separately. If, on the contrary, the receivers are allowed to cooperate,

the system boils down to the standard multiple-antenna single-user channel [13]. We shall refer

to this case as the \cooperative system".

Let x 2 C
t denote the vector of modulation symbols transmitted in parallel from the t

antennas in a given channel use (symbol interval), let H 2 C
r�t denote the channel matrix,

where hi;j is the complex channel gain from antenna j to antenna i, let y 2 C
r denote the

vector of received signal samples at the r receivers and let z 2 C
r be the corresponding vector

1More in general, the t antennas might represent the collection of all base stations, each equipped with an

antenna array. However, in this work we do not consider the e�ect of the spatial distribution of the transmit

and receive antennas as for example in the cellular model of [11].For further results along this line see [12].



of noise samples, assumed to be circularly-symmetric complex Gaussian with i.i.d. components

such that zi � NC (0; N0). Then, the t� 1 : r GBC is described by

y = Hx+ z (1)

The channel matrix H is known to the transmitter and to all receivers and the input is con-

strained to satisfy trace(�x) � E where �x
�
= E[xxH ] and E is the maximum allowed total

transmit energy per channel use.

The 1� 1 : r GBC coincides with the classical degraded Gaussian broadcast channel, whose

capacity region is well-known [4]. However, the t � 1 : r GBC for t > 1 is in general a non-

degraded broadcast channel and cannot be cast in the framework of parallel Gaussian broadcast

channels [5] since the receivers cannot cooperate. In this paper we are mainly concerned with

the channel throughput R (or rate-sum), de�ned as the sum of all individual user rates for

which the corresponding rate r-tuple is achievable. We shall consider the following scenarios:

i) H is deterministic and �xed; ii) H is �xed during the transmission of each code word, but it

is randomly selected according to a given probability distribution (composite channel).

In section 2 we outline the newly proposed transmission scheme. In section 3 we show that

this scheme outperforms conventional zero-forcing (ZF) beamforming (see [1] and references

therein), it is throughputwise asymptotically optimal for both low and high SNR, and in the

2-antennas 2-users case we demonstrate that a modi�ed strategy is in fact optimal for all SNR.

Finally, in section 4 we provide results for an independent Rayleigh channel in the large-system

limit, i.e., when both r and t go to in�nity with a given constant ratio �. The proofs of the

results of this paper can be found in [2].

2 A new approach based on \ranked known interference"

In this section we present a new transmission strategy that combines linear signal processing

at the transmitter with non-standard coding. The linear processing turns the original channel

into an ordered set of interference channels, where the channels are given in a speci�c order

and the interference in channel i is generated by the signals transmitted in channels j <

i. Since all signals are generated at the same transmitting end, for each of these channels

the interfering signal is known non-causally. Therefore, we can apply the results on capacity

with interference known non-causally at the transmitter. Capacity and coding for Gaussian

channels with Gaussian interference non-causally known at the transmitter is solved in [3],

exploiting the result of [8]. More recently, a general coding technique based on lattice precoding

that applies also to non-Gaussian interference and yields the same (optimal) result of [3] was

presented in [6]. An uncoded version of this approach, where precoding is implemented as a

Tomlinson-Harashima precoder [7] (a simple one-dimensional example of lattice precoding), has

been independently proposed in [9].

Let H = GQ be a QR-type decomposition of H where G 2 C
r�m is lower triangular and

Q 2 C
m�t has orthonormal rows (we de�ne m

�
= minfr; tg). The transmitted signal is obtained

as x = QHu. Let gi;j denote the (i; j)-th element of G and let di = jgi;ij2. The original channel
is turned into the set of interference channels

yi = gi;iui +
X
j<i

gi;juj + zi; i = 1; : : : ;m (2)

while no information is sent to users m+1; : : : ; r. Since QQH = I, the covariance of u has the

same trace constraint of �x. The signals ui are all generated by the transmitter. Hence, they

are all known non-causally by the encoder. As explained in [2], there exist coding schemes such

that each user i = 1; : : : ;m \sees" an interference-free channel, as if its signal ui was alone.

We refer to this scheme as Ranked Known Interference (RKI).



Proposition 1. The achievable throughput of the RKI scheme is given by�
R =

Pm
i=1 log(1 + diai)Pm

i=1 ai = A
(3)

where ai
�
= E[juij2]=N0 denote the SNR on the i-th channel and A

�
= E=N0 denote the total

transmit SNR. �

The RKI throughput can be optimized jointly with respect to the power allocation (the

a
0
is) and the user ordering. In fact, for an arbitrary permutation matrix �, the set of elements

fd0i : i = 1; : : : ;mg resulting from the QR decomposition �H = G0Q0 is generally di�erent

from the set fdi : i = 1; : : : ;mg resulting from H = GQ.

3 Results for the deterministic channel

In this section we consider H given and constant. It is clear that the cooperative throughput

R
coop (maximized w.r.t. the power allocation) is an upperbound to the throughput Rgbc of the

t� 1 : r GBC, while the throughput of ZF and RKI, denoted by R
zf and by R

rki, respectively,

provide lower bounds. The RKI scheme yields generally a larger maximal throughput than

conventional ZF beamforming:

Proposition 2. For any channel matrix H, Rrki�max � R
zf�max. �

The following proposition makes this statement stronger in the limits for high and low SNR:

Proposition 3. For any channel matrix H with full row-rank r,

lim
A!1

�
R
coop�max �R

rki�max
�
= 0 (4)

For any channel matrix H,

lim
A!0

R
rki�max

Rzf�max
= 1 (5)

�

As a corollary of Proposition 2, we get that (for H of rank r) the RKI is asymptotically

throughputwise optimal for large SNR, since the inequality R
rki�max � R

gbc � R
coop�max and

the �rst limit of Proposition 2 imply that limA!1(R
gbc �R

rki�max) = 0.

Next, we �nd two upperbounds to R
gbc tighter than the trivial maximum cooperative

throughput bound. The capacity region of a general broadcast channel depends only on the

transition marginal probability assignments p(yijx) and not on the whole joint transition prob-

ability p(y1; : : : ; yrjx) [10, 4]. For the t�1 : r GBC, this implies that the channels in the family

de�ned by

y = �Hx+ z (6)

where H is given, � is any r � r permutation matrix, trace(�x) � A and z � NC (0;�z)

where �z is any non-negative de�nite Hermitian matrix with diagonal elements equal to 1 (we

refer to this constraint as the unit-diagonal constraint), have all the same broadcast capacity

region (and therefore the same Rgbc). Hence, a tighter cooperative throughput upperbound is

obtained by choosing the worst-case (cooperative throughputwise) channel in the family de�ned

by (6). We have:

Lemma 1.For any channel matrix H,

R
gbc � max

�x

min
�;�z

�
log det

�
I+��1

z �H�xH
H�H

�	
(7)



where minimization is over all r� r permutation matrices � and over all noise covariances �z

with unit diagonal elements and maximization is over all input covariances with trace not larger

than A. �

Assume that H has rank k � m and, after a suitable row permutation, can be partitioned

as H = [HT
1 ;H

T
2 ]

T where H1 2 C
k�t has rank k and H2 2 C

(r�k)�t. Then, any row of H2

can be expressed as a linear combination of rows of H1, i.e., we can write H2 = BH1 where

B = H2H
+
1 . Moreover, partition the noise vector as z = [zT1 ; z

T
2 ]

T , and let �z1 and �z2 denote

the k � k upper left and (r � k) � (r � k) lower right diagonal blocks of �z (notice that both

�z1 and �z2 must satisfy the unit diagonal constraint). Then, we have the following:

Lemma 2. With the above notation, if �z2 �B�z1B
H is non-negative de�nite, then

R
gbc � I(x;y1) (8)

where y1 = H1x+ z1. �

The above lemma can be applied to the simple choice �z1 = Ik and �z2 = Ir�k. If

kBk2 =
p
�(BBH) � 1, then R

gbc is not larger than R
coop�max of the t� k channel de�ned by

the matrix H1 (with i.i.d. Gaussian noise). From Proposition 3 we get that this throughput

is asymptotically achieved for large SNR by the RKI scheme (in fact, H1 has full row-rank k).

Then, as a consequence of Proposition 3 and Lemma 2, we have the following:

Corollary 1. Let H have rank k � r and, after a suitable row permutation, assume that

H =

�
Ik
B

�
H1 (9)

where H1 2 C
k�t has rank k and kBk2 � 1. Then, limA!1(Rgbc �R

rki�max) = 0. �

The following linear-algebra lemma (new to the autors' knowledge) shows that H1 is essentially

unique up to row permutations:

Lemma 3. Let H 2 C
r�t and assume that it can be decomposed as in Corollary 1. Let

H0
1 2 C

k�t and H0
2 2 C

(r�k)�t be obtained by exchanging some rows of H1 with some rows of

H2 = BH1, such that that H0
1 has rank k. Then, B0 = H0

2(H
0
1)

+ has 2-norm � 1. �

Unfortunately, the partition of Corollary 1 is not always possible (it is immediate to �nd

a counterexample for r � 3). Then, we cannot exclude the possibility that for such type of

rank-de�cient channel matrices H the RKI scheme is asymptotically suboptimal for large SNR.

3.1 The 2-antennas 2-users case

To �x the ideas and demonstrate results and techniques we consider in the details the example

of t = r = 2. We have the following:

Proposition 4. For any 2� 2 channel matrix H,

lim
A!0

R
gbc

Rrki�max
= 1 (10)

�

The above proposition is proved by applying Lemma 1 where � is the permutation that

puts in �rst position the row of H with the largest 2-norm and with the choice

�z =

"
1

g�
2;1

g�
1;1

g2;1

g1;1
1

#

Since by construction jg1;1j2 � jg2;2j2 + jg2;1j2, this is a valid covariance matrix. In the case

where the above inequality is strict the statement of Proposition 4 is actually stronger, since

for A 2 [0; A1], where A1 is given by

A1 =
1

jg1;1j2
� jg1;1j2 � jg2;1j2

jg2;2j2
� 1

�
(11)



the RKI scheme is (not only asymptotically) optimal.

As a corollary of Proposition 4 and Proposition 3, we have that the RKI and the ZF schemes

are throughput-wise asymptotically optimal for the 2 � 1 : 2 GBC and low SNR. Moreover,

since if H has rank 1 the partition (9) of Corollary 1 is always possible, the RKI scheme is

asymptotically optimal for both high and low SNR for any H. Because of these nice properties,

we might be tempted to conjecture that the RKI scheme is actually optimal for all SNRs. The

following modi�ed strategy shows that this is actually not the case.

An optimal modi�ed RKI strategy for the 2 � 1 : 2 GBC. We let H = GQ and

construct the transmitted signal as x = QHRu, where R is upper triangular. The resulting

two channels are

y1 = g1;1r1;1u1 + g1;1r1;2u2 + z1

y2 = (g2;1r1;2 + g2;2r2;2)u2 + g2;1r1;1u1 + z2 (12)

The signals u1 and u2 carry information for user 1 and 2, respectively, and the signal u2 is con-

structed according the \coding for known interference" method (see [2]), by treating g2;1r1;1u1
as known interference. All signals are Gaussian, and u1; u2 are asymptotically uncorrelated

for large block length. Receiver 1 treats the signal g1;1r1;2u2 as background noise, as this is

unknown Gaussian interference (worst-case noise for Gaussian input). Receiver 2 is able to

reliably decode the same rate as if the interference signal g2;1r1;1u1 was not present. Therefore,

the resulting throughput is given by

R
mod = log

�
1 +

jg1;1r1;1j2a1
1 + jg1;1r1;2j2a2

�
+ log

�
1 + jg2;1r1;2 + g2;2r2;2j2a2

�
(13)

(where \mod" stands for modi�ed RKI) subject to the constraint

jr1;1j2a1 + (jr1;2j2 + jr2;2j2)a2 = A

The above throughput can be maximized with respect to a1; a2 and the coe�cients r1;1; r1;2; r2;2.

We reparameterize the problem by letting b = jg2;1=g2;2j, z = jr2;2=r1;2j, p(z) = (b+z)2=(1+z
2),

q(z) = 1=(1 + z
2), X1 = jr1;1j2a1 and X2 = (jr1;2j2 + jr2;2j2)a2. After some algebra, we can

write

R
mod = log

�
1 + jg2;2j2p(z)X2 +

1 + jg2;2j2p(z)X2

1 + jg1;1j2q(z)X2
jg1;1j2X1

�
(14)

with the constraint X1 + X2 = A. Obviously, since limz!1 p(z) = 1 and limz!1 q(z) = 0,

the modi�ed RKI strategy coincides with standard RKI for z ! 1. Therefore, this is in fact

a generalization of RKI and cannot yield worse results after maximizing with respect to the

power allocation X2;X1 and the free parameter z 2 R+.

By substituting X1 = A�X2 in (14), Rmod can be maximized with respect to X2 over the

interval [0; A] for any value of z. The equation @
@X2

R
mod = 0 has either none or one solution in

the interval [0; A]. It can be shown that if there is no solution, the derivative is negative and the

maximum is achieved by X2 = 0 while if there is a solution it corresponds to a maximum. The

case X2 = 0 yields Rmod = log(1 + jg1;1j2A), which coincides with the maximum throughput

of RKI and ZF in the range A 2 [0; A1] where A1 is given by (11). For A > A1, there exists a

range of z 2 R+ for which the maximum is achieved by 0 < X2 < A. In this range of SNR, the

modi�ed RKI strategy is distinctly better than standard RKI. Unfortunately, the maximization

with respect to z must be performed numerically.

With some more e�ort, we are able to prove that the modi�ed RKI strategy is actually

throughputwise optimal for all SNR. Remarkably, this is one of the rare examples of a non-

degraded Gaussian broadcast channel for which the optimal throughput is known. The direct



part of this statement is represented by the modi�ed RKI strategy outlined above. The converse

part is provided by the upperbound of Lemma 1. First, we choose the permutation � such

that �H = GQ with jg1;1j2 � jg2;2j2+ jg2;1j2, as in the proof of Proposition 4. Then, we notice

that any signal covariance matrix can be parameterized as

�x = QHR�xR
HQ

where �x = diag(P1; P2) and where R is upper triangular, while any noise covariance matrix

satisfying the unit diagonal constraint can be written as

�z =

�
1 �

�
� 1

�

where j�j2 � 1. After some algebra, the upper bound of Lemma 1 can be written as

R
gbc � max

z�0;X1+X2=A
min
j�j�1

log

�
1 +

1

1� j�j2
�
jg2;2j2p(z)X2+

+(jg1;1j2 � 2jg2;1jjg1;1jj�j+ jg2;1j2)(X1 + q(z)X2) +

+ X2q(z)(z
2jg1;1j2jg2;2j2X1 � 2jg1;1jjg2;2jj�jz � jg2;1j2)

��
(15)

where p(z) and q(z) have been de�ned previously. The minimization with respect to j�j 2 [0; 1]

yields j�j = 1
2

�
B �

p
B2 � 4

�
where

B =
(jg2;1j2 + jg1;1j2)X1 + (jg2;2j2p(z) + jg1;1j2q(z))X2 + q(z)z2jg1;1j2jg2;2j2X1X2

jg2;1jjg1;1j(X1 + q(z)X2) + q(z)zjg1;1jjg2;2jX2

is always � 2 for all z 2 R+ and g1;1; g2;1; g2;2 such that jg1;1j2 � jg2;2j2+ jg2;1j2. Notice that for
X2 = 0 we get j�j = jg2;1=g1;1j, i.e., in the range A 2 [0; A1] the bound coincides (obviously!)

with that of Proposition 4. After substituting the above solution for j�j and X1 = A�X2 into

(15), the maximization with respect to X2 and z must be carried out numerically. Interestingly,

the maximum is achieved for the same pair (z;X2) that maximizes Rmod, even though the upper

bound does not coincides with R
mod for all (z;X2).

Example 1. Fig. 1 shows Rrki�max, Rmod�max, Rcoop�max, the upperbound to Rgbc given by

Proposition 4 and the upperbound obtained by the above application of Lemma 1 (denoted by

RKI, MOD, COOP, UB1 and UB2, respectively) for a channel with G factor

G =

�
1 0

0:9 0:2

�

R
mod�max and the upperbound UB2 coincide exactly for all SNR (thicker line). Notice that

R
rki�max is optimal in the range A 2 [0; A1] and strictly suboptimal for larger A. �

4 Results for the in�nite-dimensional Rayleigh channel

In this section we focus on the composite channel when the channel matrix has i.i.d. entries

� NC (0; 1), and we consider the throughput achievable by the basic RKI strategy under various

power constraints, assuming that no e�ort is made to optimize the user ordering. For �nite t

and r, closed-form expressions for the throughput are obtained in [2]. Here we focus on the

large-system limits, i.e., we let r ! 1 with r=t = �, where � � 0 is �xed and represents the

channel spatial load expressed in \users per antenna".

In the composite channel setting, the channel is symmetric with respect to any user. There-

fore, if a given ergodic throughput R is achievable for a given set of active users, by time-sharing



with uniform probability over all possible user subsets (and orderings) every user can achieve

the same per-user average rate R=r. As an e�ect of this \ergodic symmetrization", requiring

equal average per-user rates involves no loss of optimality in the overall throughput. Moreover,

as r ! 1 the instantaneous throughput converges almost surely to the ergodic (or average)

throughput [15, 14]. We let �
�
= 1

r
R denote the normalized throughput, equal to the symmetric

per-user rate achievable by time-sharing argument outlined above. It can be shown (see [2] for

the details) that in the limit of large system the RKI normalized throughput is given by�
�
rki =

R �
0
log (1 + [1� ��]+a(�)) d�R �

0
a(�) d� = A=�

(16)

where a(�) is the transmit SNR of the b�rc-th signal and �
�
= m=r = minf1; 1=�g.

Uniform powers. Let � = k=r denote the fraction of active users. In general, � 2 [0; �] since

from Lemma 5 no more than b�rc users can be served in parallel. For a given �, we consider

the uniform power allocation a(�) = a for � � � and a(�) = 0 for � > �. We obtain

�
rki�eq =

1

A
[(�+A=�) log(�+A=�)�

� (�+ (1� ��)A=�) log(�+ (1� ��)A=�)] � �(log(�) � 1) (17)

This can be further maximized with respect to � 2 [0; �].

Equal rates. Again, let � < � be the fraction of active users that must be served with equal

rate Ru = log(1 + a0). The resulting normalized throughput is given by �
rki�cr = �Ru and

where a0 is the solution of Z �

0

a0

1� ��
d� = A=� (18)

yielding a0 = �A= log(1� ��). The resulting normalized throughput is given by

�
rki�cr = � log

�
1� A

log(1� ��)

�

and can be further maximized with respect to � 2 [0; �).

Maximum throughput. In this case, we want to maximize �rki subject to the input con-

straint. The standard water�lling solution yields

�
rki�max =

(
log

�
1
�
(A� log(1� �))

�
� (1=� � 1) log(1� �)� 1 (case 1)

1
�

�
log � + 1

�
� 1

�
(case 2)

(19)

where \case 1" corresponds to the condition f� < 1; A � �
1�� + log(1��)g and \case 2" to the

complement condition and where � in case 2 is the solution of � � log � � 1 = A.

ZF and cooperative throughput. For the sake of comparison, we calculate also the nor-

malized throughput with ZF beamforming and with cooperative receivers in the large-system

regime. We omit the details for the sake of space limitation (see [2] and references therein).



Results. Fig.2 shows the normalized throughput (or per-user rate) for all the cases discussed

above versus the transmit SNR A, for � = 1:0. In all cases, the throughput obtained by uniform

power allocation with optimization of the fraction of active users (denoted by \EQ") is almost

identical to that obtained by the optimal water�lling power allocation (denoted by \MAX").

This is in accordance with the well-known fact of standard ISI channels, for which optimizing

the transmission bandwidth and with a rectangular input power spectral density buys almost

all the capacity achievable by water�lling. RKI with constant per-user rate (denoted by \CR")

performs slightly worse than with uniform (or water�lling) power allocation. Finally, ZF per-

forms quite worse than RKI (in all cases) even after optimizing the fraction of active users.

Fig. 3 shows the optimal fraction of active users � versus A for RKI-EQ, RKI-CR and ZF. The

fraction of active users is an increasing function of the input SNR.

From these examples, we argue that a practical and sensible downlink system design consists

of applying the RKI scheme by transmitting with constant-power variable-rate user codes and

by selecting carefully the number of active users k according to the available transmit average

power. Even if r > k users are to be served, the system should allow only k active per

channel use (say, in each slot), where k is optimally selected, and serve all r users equally by

time-sharing. Therefore, the system works according to a hybrid TDMA (time-sharing) and

\space-time multiplexing" given by the RKI scheme.

5 Conclusions

We proposed a new coding scheme based on Ranked Known Interference for the Gaussian broad-

cast channel with multiple antennas at the transmitter. The basic RKI scheme is asymptotically

throughputwise optimal for both low and high SNR, and can be approximated in practice by

some form of lattice precoding. We also exhibited a modi�ed RKI scheme which is indeed

optimal for all SNRs in the 2-users 2-antennas case. The modi�ed RKI scheme can be applied

for any t and r and might provide a handle to the study of individual achievable rates for the

general t � 1 : r GBC, though there is little hope that this mechanism can determine the full

capacity region.

References

[1] P. Baier, M. Meurer, T. Weber, and H. Troeger. Joint transmission (JT), an alternative

rationale for the downlink of time division CDMA using multi-element transmit antennas.

In IEEE 6th Int. Symp. on Spread-Spectrum Tech. & Appl. (ISSSTA), pages 1{5, NJIT,

New Jersey, USA, September 2000.

[2] G. Caire and S. Shamai. On achievable rates in a multi-antenna broadcast downlink. In

preparation, 2000.

[3] M. Costa. Writing on dirty paper. IEEE Trans. on Inform. Theory, 29(3):439{441, May

1983.

[4] T. Cover and J. Thomas. Elements of information theory. Wiley, New York, 1991.

[5] D.Tse. Optimal power allocation over parallel Gaussian broadcast channels. IEEE Trans.

on Inform. Theory, to appear.

[6] U. Erez, S. Shamai, and R. Zamir. Capacity and lattice-strategies for cancelling known

interference. In ISITA 2000, Honolulu, Hawaii, USA, November 2000.

[7] V. Eyuboglu and D. Forney. Combined equalization and coding using precoding. IEEE

Comm. Magazine, December 1991.



0

1

2

3

4

5

6

7

0 20 40 60 80 100

R
 (

na
t)

A

2x2 channel (CH1)

RKI
MOD
COOP
UB1
UB2

Figure 1: Channel matrix CH1: throughput (in nat) vs. A (not in dB) for RKI, cooperative

(COOP), for the modi�ed RKI scheme (MOD) and for the upperbound of Proposition 4 (UB1)

and the upperbound of Lemma 1 (UB2).

[8] S. Gelfand and M. Pinsker. Coding for channel with random parameters. Problems of

Control and Information Theory, 9(1):19{31, January 1980.

[9] G. Ginis and J. Cio�. Vectored-DMT: a FEXT canceling modulation scheme for coordi-

nating users. Submitted to ICC 2001, October 2000.

[10] H. Sato. An outer bound on the capacity region of broadcast channels. IEEE Trans. on

Inform. Theory, 24(3):374{377, May 1978.

[11] S. Shamai and A. Wyner. Information theoretic considerations for symmetric cellu-

lar, multiple-access fading channels { Part I and II. IEEE Trans. on Inform. Theory,

43(6):1877{1911, November 1997.

[12] S. Shamai, B. Zaidel, and O. Zeitouni. Enhancing the cellular downlink capacity via co-

processing at the transmitting end. In VTC 2001, Tel-Aviv, Israel, May 2001.

[13] E. Telatar. Capacity of multi-antenna Gaussian channels. European Trans. on Telecomm.

ETT, 10(6):585{596, November 1999.

[14] S. Verdu and S. Shamai. Spectral e�ciency of CDMA with random spreading. IEEE

Trans. on Inform. Theory, 45(2):622{640, March 1999.

[15] S. Verdu and S. Shamai. The e�ect of frequency-at fading on the spectral e�ciency of

CDMA. to appear on IEEE Trans. on Inform. Theory, 2000.



0

0.5

1

1.5

2

2.5

3

3.5

4

0 20 40 60 80 100

ρ 
(n

at
)

A

Rayleigh inf.dim. channel, α = 1.0

RKI-EQ
RKI-CR
RKI-MAX
COOP-EQ
COOP-MAX
ZF

Figure 2: Normalized throughput versus transmit SNR for the Rayleigh in�nite-dimensional

channel with � = 1:0.
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Figure 3: Optimal fraction of active users versus transmit SNR for the Rayleigh in�nite-

dimensional channel with � = 1:0.


