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Abstract—In the context of wireless networking, it was recently
shown that multiple DNNs can be jointly trained to offer a desired
collaborative behaviour capable of coping with a broad range of
sensing uncertainties. In particular, it was established that DNNs
can be used to derive policies that are robust with respect to the
information noise statistic affecting the local information (e.g.
CSI in a wireless network) used by each agent (e.g. transmitter)
to make its decision. While promising, a major challenge in the
implementation of such method is that information noise statistics
may differ from agent to agent and, more importantly, that such
statistics may not be available at the time of training or may
evolve over time, making burdensome retraining necessary. This
situation makes it desirable to devise a “universal” machine
learning model, which can be trained once for all so as to
allow for decentralized cooperation in any future feedback noise
environment. With this goal in mind, we propose an architec-
ture inspired from the well-known Mixture of Experts (MoE)
model, which was previously used for non-linear regression and
classification tasks in various contexts, such as computer vision
and speech recognition. We consider the decentralized power
control problem as an example to showcase the validity of the
proposed model and to compare it against other power control
algorithms. We show the ability of the so called Team-DMoE
model to efficiently track time-varying statistical scenarios.

Index Terms—team decision theory, machine learning, dis-
tributed power control, interference channel, wireless network

I. INTRODUCTION

The potential gains coming from cooperative behaviour
between wireless transmitters has been been firmly established
in previous studies, where cooperation can occur in a range
of domains, from e.g. resource (time/frequency/power) control
[1], to e.g. beam alignment [2]. At the same time, the
necessity of performing synchronous and mutually consistent
decisions is challenging, especially in emerging heterogeneous,
decentralized, network deployments where more and more
decision need to be taken at the network’s edge for the purpose
of reducing latency [3]. What makes such scenarios difficult
to deal with is the fact that channel feedback (based on which
resource control decision are taken) cannot be centralized via
the cloud and is often unreliable. For instance, devices will
be endowed with different noisy estimates of the true channel
state information (CSI). In the past years a good amount of
effort has been invested in deriving decentralized and noise-
robust coordination policies while, only recently, the data-
driven approach has been explored as a potential way to derive
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such coordination strategies in an automated way. In [4], the
problem of decentralized link scheduling with noisy CSI at the
transmitter (CSIT) is formulated as a team decision problem
and is solved with the so-called Team Deep Neural Networks
(Team-DNNs). Team-DNNs are jointly trained as “cooperative
machines” maximizing the sum-rate of the system, yielding
decentralized decision policies in the form of neural networks
that prove to be robust to uncertainty in the local information,
outperforming other conventional scheduling algorithms. In
[5], Team-DNNs are considered to address the problem of
decentralized precoding and, in spite of the challenge of
outputting decision in a continuous space of precoding matrices,
are shown to outperform state-of-the-art methods. In [6],
the Team-DNNs based transmitters are augmented with a
supplementary neural network, designed to build succinct
signaling information to be exchanged prior to taking actions
in order to further increase coordination capabilities while
maintaining moderated the size of messages exchanged.

While Team-DNNs can be trained to reach robust cooperative
decisions under arbitrary feedback noise, they are in principle
trained for a fix uncertainty scenario (for instance fixed values
of feedback noise levels). As a result, a limitation of this
approach comes from the necessity of retraining the neural
network ensemble whenever the feedback scenario evolves, i.e.
whenever the feedback noise statistics change, in a wireless
network. This drawback is exacerbated by the non-stationary
nature of the wireless environment and the centralized nature of
the training phase, rendering retraining not only potentially fre-
quent but also burdensome. Instead, a machine learning solution
able to yield robust cooperative decisions regardless of the time
variations in the feedback quality would be highly desirable.

In this work, we consider the data-driven policy design
paradigm applied to the problem of distributed power control
with noisy CSIT and we propose an approach to mitigate the
retraining issue associated with Team-DNNs. Motivated by the
fact that a single offline training phase is often preferable to
multiple run-time retraining phases impairing the performance,
we introduce the Deep Mixture of Experts (DMoE) model
in order to obtain a “universal” power control policy, able to
adapt to a wide range of channel feedback quality scenarios.

Deep Mixture of Experts model have been proposed in sev-
eral prior works [7]–[10] although, to the best of our knowledge,
never in the context of wireless networking. Key background in-
formation on DMoE is given in Section II-C. The key intuition



behind DMoE models is akin to the issue of solving a complex
problem combining experts specialized to deal with a particular
subset of problem instances. The relevance of this approach to
our machine learning problem is made explicit in Section III-B.

II. DATA-DRIVEN
POLICY DESIGN FOR TEAM DECISION PROBLEMS

A team decision optimization problem arises whenever a
group of decision makers seek to maximize a common utility
by their actions, taken on the basis of local observations of
the system state. It is formally defined as follows:
• K: the number of decision makers (DMs).
• sss∈S: the state of the world.
• ŝssj ∈Ŝj : the local information of user j.
• πj : Ŝj → Aj : the decision policy of user j, mapping

local observations into actions.
• f :S×

∏K
j=1Aj→R: a common utility, function of the

state of the world and the actions of the DMs.
• Ps,ŝ1,...,ŝK : the joint distribution governing the relation

between the state of the world and the local observations
at the DMs.

A Team Decision (TD) solution is a set of decision policies
that maximizes the expected utility and is the result of the
following functional optimization problem

(π∗1 ,...,π
∗
K)=argmax

π1,...,πK

E[f(sss,π1(ŝss1),...,πK(ŝssK))] (1)

where the expectation is taken with respect to the random
variables in bold.

The distributed nature of the information is one of the distinc-
tive traits in TD problems, in fact each decision maker j is en-
dowed with a local observation ŝssj that discloses only partial in-
formation about the world state sss. For instance, in a wireless net-
work design problem sss may represent the global channel state
information matrix. Note that the way ŝssj is related to sss is very
general and encompasses a range of practical situation, such as
local feedback, noisy global feedback, hierarchical feedback,
etc. [11]. Also note that the optimization variables in (1) lie in
the space of functions. Functional optimization problems are
notoriously difficult to tackle and in order to circumvent them
it is customary to represent each policy πi by a parametrized
function πθii , recasting the original problem into the following

(θ∗1 ,...,θ
∗
K)=argmax

θ1,...,θK

E
[
f(sss,πθ11 (ŝss1),...,πθKK (ŝssK))

]
(2)

A. Team-DNNs

A particular choice of parametrized policy is that offered
by the output of a DNN parametrized by θi. In this
case the policies are realized by Team-DNNs that work
cooperatively so as to solve the maximization problem in
(2). This allows exploiting their approximation power and
the efficient parameters optimization algorithms available (e.g.
back-propagation), leading to a fully data-driven procedure to
design decision policies [4]–[6], [12]. Namely, given a training
set D={(s,ŝ1,...,ŝK)i}ni=1∼P

⊗n
s,ŝ1,...,ŝK

, the neural networks

can be trained using gradient ascent with the following
objective function

U(θ1,...,θK)=
∑

(s,ŝ1,...,ŝK)∈D

f(s,πθ11 (ŝ1),...,πθKK (ŝK))

|D|
(3)

However, it is important to notice that the distributed
information model abstains DMs from accessing the gradient
information, which depends on the true state of the world
and on the actions of the other DMs. As a result, the
training phase has to be centralized with perfect information
sharing, temporary violating the original decentralized
information model and leading to the so called “centralized
training/decentralized testing” paradigm.

B. Application to wireless networking problems

Team optimization problems emerge frequently in wireless
networking. Groups of devices are usually required to
coordinate based on noisy local observations of the system’s
state. An additional degree of difficulty associated to these
scenarios comes from the fact that the levels of uncertainty
(or noise) in the local estimates are linked to time-varying
processes such as mobility, devices positions, etc. On the other
hand it is realistic to assume that some statistical information
about the feedback noise in the local observations can be given
to the various DMs by means of regular probing. One issue is
faced when the feedback noise statistics vary in time. The Team-
DNNs optimization requires in fact burdensome centralized
retraining whenever the uncertainty levels at the DMs changes.
Therefore, it becomes desirable to devise a “universal” machine
learning model, trained once on a variety of uncertainty
scenarios, being able to adapt to future noise configurations.

Let us assume that the joint distribution governing the
relation between the sss and {sssi}Ki=1 at the DMs can itself be
parametrized by σ, a set of parameters linked to the feedback
noise at the various DMs, namely Ps,ŝ1,...,ŝK |σ for σ∈Σ. We
further assume that the network can provide all DMs with σ̂,
an estimate of σ, enriching the available local information. For
instance, σ could be a vector containing the feedback noise
level across all transmitters, which may or may not be identical
from transmitter to transmitter. In general, the estimated σ̂ can
be inaccurate and therefore we model it as random variable
distributed according to Pσ̂|σ . Nonetheless, the final objective
of the TD problem remains designing policies maximizing the
expected utility as in (1), where now the local observation at
user i is (ŝssi,σ̂σσ) and the average utility is taken w.r.t. the aggre-
gated distribution Ps,ŝ1,...,ŝK |σPσ̂|σPσ, where Pσ represents
the prior distribution of the information noise statistic and can
be assumed distributed uniformly in Σ when it is unknown.
The core of the optimization problem is then unchanged and,
theoretically, the same data-driven approach can be used to
carry out a single centralized training phase using a training
set D′ = {(σ, σ̂, ŝ1, ... , ŝK)i}ni=1 ∼ Ps,ŝ1,...,ŝK |σPσ̂|σP

⊗n
σ .

Ideally, the outcome of this process would be a set of DNNs,
representing the policies at the various DMs, being able to
well-approximate the optimal distributed strategies for various



information noise configurations and capable to adapt their
joint behaviour based on the network estimate σ̂ during testing
time. Practically speaking, even if the neural network capacity
can be enlarged by increasing the model size, it becomes
critical to train a unique multi-layer network to mimic different
coordination strategies on different occasions. For this reason,
we propose the use of the so-called Mixture of Experts model
to represent the policies at the decision makers.

C. Deep Mixture of Experts
Dating back to 1991, the Mixture of Expert (MoE) model

has been proposed by Jacobs et al. [13] as an ensemble
method based on the “dividi et impera” principle. According
to this paradigm, a hard problem is first decomposed into
simpler ones until solutions can be obtained for any of
the sub-problems; then, the yielded results are recombined
together to obtain the original solution.

The MoE structure reflects this principle incorporating a
gating function g, learning a partition of the problem input
space, and a set of simple, easily trainable models {fi}ne

i=1,
specializing over these subspaces. For each input instance, the
gating network outputs a probability mass distribution over
experts’ indices, which is used to weight their outputs and
to obtain the final prediction.

The Deep MoE (DMoE) is the extension of the MoE
with single layer neural network experts to the multi-layer
model. First suggested in [7] by concatenating two single
layer feed-forward MoE, it has been extended to convolutional
layers in [8] and neural networks with memory units in [9].
In [10] both experts and gating were directly replaced by
multi-layer neural networks.

The DMoE’s ability to specialize DNNs for different data
regimes prompts its application to the coordination problem
in wireless settings, in which heterogeneous coordination
strategies may arise for different uncertainty levels in the local
observation.

III. APPLICATION TO DECENTRALIZED POWER CONTROL

A. Problem Formulation
The problem of decentralized power control in interference

channels with noisy CSIT can be formulated as a TD problem
in the sense (2), as seen below.
Consider a K-user interference channel with single-antenna
transmitters (TXs) and receivers (RXs), in which TX i
serves RX i with a maximum transmit power Pmax. The
decision makers are the K TX and the channel gain matrix
GGG ∈RK×K ∼ PG is the system state. The local observation
at TX i is the pair (ĜGGi,σ̂σσ)., where ĜGGi is a noisy estimate of
channel state GGG and σ̂σσ is a network estimate of the statistic
of the gain feedback noise at the various TXs.

A typical utility function is the sum-rate of the system
which, under the assumption of Gaussian distributed with zero
mean and unit variance information symbols and noise, can
be expressed as [14]

R(G,P1,...,PK)=

K∑
i=1

log2

(
1+

Gi,iPi
1+
∑
j 6=iGj,iPj

)

Experts

Gating Net

...

Ĝi,σ̂

Ĝi,σ̂

∑×

×

pj,1

pj,ne

σ̂

pj

Fig. 1: The structure of the Mixture of Expert used to represent
policies at the DMs

Therefore the team decision problem consists in devising a
set of power control policies π1,...,πK

πi :
(
Ĝi,σ̂

)
→pi∈ [0,Pmax]

maximizing

E
[
R
(
GGG,π1(ĜGG1,σ̂σσ),...,πK(ĜGGK ,σ̂σσ)

)]
B. Mixture of Experts policy design

In this distributed power control setting with fixed CSI quality
at the TXs, it has already been shown that the data-driven policy
design with multi-layer neural networks can give coordination
strategies that are robust to uncertainty in the local observations
and that are outperforming model-based algorithms such as
WMMSE [6]. Moreover, it has been noticed that for different un-
certainty level at the TXs, the yielded policies exhibits distinct
behaviours. We aim at capturing this heterogeneous spectrum of
power control algorithms by means of an adaptable model ex-
ploiting the above-introduced data-driven approach and DMoEs.

Specifically, the power control algorithm at each DM j is
obtained learning a set of experts functions {fθk,j}ne

k=1 along
with a gating function gθj . Each expert function at DM j is
of the form

fθk,j :
(
Ĝi,σ̂

)
→pj,k∈ [0,Pmax], for k∈1,...,ne

and is realized by a neural network of parameters θk,j .
Similarly, the gating function is implemented by a neural
network of parameters θj and is of the form

gθj : (σ̂)→w∈Rne

where w is a vector in the ne−1 dimensional simplex.
The final power policy at DM j is a combination of these
DNNs outputs and is given by

πj(Ĝi,σ̂)=

ne∑
k=1

fθk,j (Ĝi,σ̂)g
θj
k (σ̂)

where the gθjk (σ̂) is the k-th component of vector gθj (σ̂).



IV. EXPERIMENTS

We consider a two-user interference channel for the ease of
displaying results, these can be extended to more transmitters
resizing the Team-DMoE model in order to cope with the
increased dimension of the input variables.

In our simulation we consider a Rayleigh fading channel
such that the entries of the channel gain matrix GGG∈R2×2 are
independent chi-squared random variables. We assume that
the CSI available at user i is distributed according to

ĜGGi=Γi�GGG+
√

1−Γ2
i�∆∆∆(i)

where � denotes the element-wise product, ∆∆∆(i)∈R2×2 has
i.i.d. chi-squared entries and Γi∈ [0,1] represents the degree
of uncertainty at TX i. The estimate of the feedback noise
parameters σσσ=[Γ1,Γ2] is given by

σ̂σσ=σσσ+∆∆∆=[Γ1,Γ2]+∆∆∆

where ∆∆∆∈R2 is a random vector with i.i.d. Gaussian entries
with zero mean and variance σn.

We use TensorFlow to implement and train the Team-DMoE
model. Both DMoEs comprise two identical experts realized
by a three-layer DNNs, each layer has 10 neurons with ReLU
activation functions while at the output layer we use Sigmoid
activations multiplied by Pmax in order to satisfy the power
constraint. The gating network is a two-hidden layer DNN with
10 neurons and ReLu activation functions, we use Softmax
at the output layer to select the best expert for each input. We
use a training set of 100000 samples and we perform 8000
gradient updates using batches of 1000 samples alternating
between expert and gating network optimization. During the
former phase, we directly optimize the sum-rate utility feeding
experts with training samples according to the gating output
assignment. During the latter, we train the gating net to assign
each training sample to the best performing expert. As noted
in [4], a proper initialization is necessary in order to have
convergence to good local minima, therefore we initialize a
pair of experts for the low uncertainty regime ([Γ1,Γ2]≈ [0,0])
and the other for the high uncertainty regime ([Γ1,Γ2]≈ [1,1]).

As benchmark scenario, we consider a time-slotted
communication system with the channel noise statistic changing
every 10 time slots. The uncertainty levels [Γ1,Γ2] follow the
trajectory depicted in Fig 2, starting from the perfect CSI setting.
The trajectory is chosen to span a variety of the noise scenarios
allowing to assess the performance of Team-DMoEs in various
uncertainty regimes. For instance, at the start of the experiment,
both TXs start with perfect channel gain information. By the
6th time interval, TX 2 has lost all its channel gain feedback.
By the 11th time interval, both TXs have lost all channel gain
information, before gradually recovering it, etc.

We compare the performance of the Team-DMoEs model
with the following power control schemes:

• Perfect-CSI: both TX have perfect CSI knowledge and
use the optimal power control strategy.

Fig. 2: Trajectory of the feedback noise parameters (Γ1,Γ2).

• Informationally Naive WMMSE: both TX use the
WMMSE power algorithm of [15] assuming their local
info being perfect.

• TDMA: Only one of the transmitters is allowed to
transmit with power Pmax.

• Team-DNNs: A pair of DNNs that are constantly retraining
in order to derive the coordination policy for the current
uncertainty levels. For every noise configuration, the
training starts from the WMMSE solution and is carried
out on a training set of 30000 samples coming from the
current joint distribution and performing Rup gradient
updates in every time slot with a batch of size 1000.

For every transmission slot, we compute the average
sum-rate over 10000 channel realization. In Fig. 3a, the Team-
DMoE with perfect estimation (σn = 0) delivers the highest
sum-rate in almost all uncertainty regimes, the only exception
is in the case where both TXs have poor CSI knowledge in
which case TDMA performs better being the optimal power
control scheme for that scenario. On the other hand, the
constantly trained T-DNN, being initialized to the WMMSE,
delivers good performance only when the information at DM is
not too degraded, in all other cases the training process impairs
the average sum-rate. Retraining T-DNNs perform the worst in
correspondence of the changes in the noise levels that prompt
the retraining process; moreover, it can be noticed that given a
computational power that allows 10 gradient updates on each
time slot (Rup=10) the Team-DNNs are not able to converge
to a good power control policy before channel switches to the
next noise configuration. For this reason in Fig.3b we decide to
provide the Team-DNNs with 10 time the computational power,
letting them to perform 100 updates every time slots. In this
case the overall number of gradient updates is just sufficient
to converge to a good local model in most of the cases.

In Fig. 4 we evaluate the performance of the Team-DMoEs
for different values of σn. The performance reduction due to
imperfect estimates degrades gracefully as the value of σn
increases, indicating that the derived policies are robust to
such impairment.



(a) Rup=10 (b) Rup=100

Fig. 3: Average sum-rate of the various power control algorithms

Fig. 4: T-DMoEs sum-rate for different estimation noise.

V. CONCLUSION

We focused on how retraining overhead can be mitigated in
the context of coordination problems with variable uncertainty
levels at the DMs. Specifically, we proposed a network
architecture inspired by the DMoE model that exploits the
estimate of feedback noise statistics to adapt its behavior and
to bypass retraining phases. We then evaluated its performance
in the problem of distributed power control, showing that it
outperforms other power control algorithms across most of
the noise level configurations. Because the problem of training
overhead extends to additional ML applications in wireless
communications [16], [17], it is of primary importance to
further investigate what are the best network architectures and
training algorithms to reduce it.
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