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Abstract

We propose a novel calibration method for
computer simulators, dealing with the prob-
lem of covariate shift. Covariate shift is the
situation where input distributions for train-
ing and test are different, and ubiquitous in
applications of simulations. Our approach
is based on Bayesian inference with kernel
mean embedding of distributions, and on the
use of an importance-weighted reproducing
kernel for covariate shift adaptation. We pro-
vide a theoretical analysis for the proposed
method, including a novel theoretical result
for conditional mean embedding, as well as
empirical investigations suggesting its effec-
tiveness in practice. The experiments include
calibration of a widely used simulator for in-
dustrial manufacturing processes, where we
also demonstrate how the proposed method
may be useful for sensitivity analysis of model
parameters.

1 Introduction

Computer simulators are ubiquitous in many areas of
science and engineering, examples including climate
science, social science, and epidemics, to just name
a few (Winsberg, 2010; Weisberg, 2012). Such tools
are useful in understanding and predicting complicated
time-evolving phenomena of interest. Computer simu-
lators are also widely used in industrial manufacturing
process modeling (Mourtzis et al., 2014), and we use one
such simulator described in Fig. 1-(A), which models
an assembling process of certain products in a factory,
as our working example.

In this work we deal with the task of simulator calibra-
tion (Kennedy and O’Hagan, 2001), which is necessary
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Figure 1: (A) Illustration of a manufacturing process
simulator for assembling products. In the factory, one
product is made from three items (TOPS, BOTTOMS
and SCREWS) by the ASSEMBLY machine, and four
such products are checked by the INSPECTION ma-
chine at the same time. Parameter θ of the simulation
model r(x, θ) consists of 4 constants: mean θ1 and
variance θ2 of the distribution of the processing time
in the ASSEMBLY machine, and those (described as
θ3 and θ4) in the INSPECTION machine. (B) Re-
sults of our method without covariate shift adaptation:
training data (red points), generated predictive outputs
(orange) and their means (brown curve). (C) Results
of our method with covariate shift adaptation: train-
ing data (red points), generated predictive outputs
(light green) and their means (green curve). q0(x) and
q1(x) are input densities for training and prediction,
respectively. More details in Secs. 1 and 5.2.

to make simulation-based predictions reliable. To de-
scribe this, we introduce some notation used in the
paper. We are interested in a system R(x) that takes x
as an input and output y = R(x)+ε possibly corrupted
by a noise ε. This system R(x) is of interest but not
known. Instead, we are given data (Xi, Yi)

n
i=1 from the

system, where input locations X1, . . . , Xn are gener-
ated from a distribution q0(x) and outputs Y1, . . . , Yn
from the target system Yi = R(Xi) + εi. On the other
hand, a simulator is defined as a function r(x, θ) that
takes x as an input and outputs r(x, θ), where θ is a
model parameter. The task of simulator calibration
is to tune (or estimate) the parameter θ so that the
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r(x, θ) “approximates well” the unknown target system
R(x) by using the data (Xi, Yi)

n
i=1. For instance, in

Fig. 1, the target system R(x) takes as an input the
number x of required products to be manufactured
in one day, and outputs the total time y = R(x) + ε
required for producing all the products; the simulator
r(x, θ) models this process (see the “pred mean” curves
in Fig. 1-(B)(C)).

There are mainly two challenges in the task of simu-
lator calibration, which distinguish it from standard
statistical learning problems. The first one owes to
the complexity of the simulation model. Very often, a
simulation model r(x, θ) cannot be written as a simple
function of the input x and parameter θ, because the
process of producing the output y = r(x, θ) may involve
various numerical algorithms (e.g., solutions for differ-
ential equations) and/or IF-ELSE type decision rules
of multiple agents. Therefore, one cannot access the
gradient of the simulator output r(x, θ) with respect to
the parameter θ, and thus calibration cannot reply on
gradient-based methods for optimization (e.g., gradient
descent) and sampling (e.g., Hamiltonian Monte Carlo).
Moreover, one simulation y = r(x, θ) for a given input
x can be computationally very expensive. Thus only
a limited number of simulations can be performed for
calibration. To summarise, the first challenge is that
calibration should be done by only making use of for-
ward simulations (or evaluations of r(x, θ)), while the
number of simulations cannot be large.

The second challenge is that of covariate shift (or sam-
ple selection bias) (Shimodaira, 2000; Sugiyama and
Kawanabe, 2012), which is ubiquitous in applications
of simulations, but has been rarely discussed in the
literature on calibration methods. The situation is that
the input distribution q1(x) for the test (or prediction)
phase is different from the input distribution q0(x) gen-
erating the training input locations X1, . . . , Xn. In
other words, the parameter θ is to be tuned so that the
simulator r(x, θ) accurately approximates the target
system R(x) with respect to the distribution q1(x) (e.g.,
the error defined as

∫
(R(x)− r(x, θ))2q1(x)dx is to be

small), while training data (Xi, Yi)
n
i=1 are only given

with respect to another distribution q0(x).

The covariate shift setting is inherently important and
ubiquitous in applications of computer simulation, be-
cause the purpose of a simulation is often in extrapo-
lation. An illustrative example is climate simulations,
where the aim is to answer whether global warming will
occur in the future. As such, input x is a time point
and the target system R(x) is the global temperature.
Calibration of the simulator r(x, θ) is to be done based
on data from the past, but prediction is required for
the future. This means that training input distribu-

tion q0(x) has a support in the past, but that of test
q1(x) has a support on the future. For our working
example in Fig. 1, training input locations X1, . . . , Xn

from q0(x) are more densely distributed in the region
x < 110 than the region x ≥ 110, since the data are
obtained in a trial period. On the other hand, the test
phase (i.e., when the factory is deployed) is targeted on
mass production, and thus the test input distribution
q1(x) has mass concentrated in the region x ≥ 110.

Being a parametric model, a simulator only has a fi-
nite degree of freedom, and thus cannot capture all
the aspects of the target system. Under such a model
misspecification, the covariate shift is known to have a
huge effect: the optimal model for the test input distri-
bution may be drastically different from that for the
training input distribution (Shimodaira, 2000). In cli-
mate simulations, care must be taken in how to tune the
simulator as the data are only from the past; otherwise,
the resulting predictions about the future will not be
reliable (Winsberg, 2018). In the example of Fig. 1, the
behavior of the target system R(x) changes for the trial
and test phases: Figs. 1-(B)(C) describe this situation.
As can be seen in training data (red points), the total
manufacturing time R(x) becomes significantly larger
when the number x of required products is greater than
x = 110, because of of the overload of workers and ma-
chines. However, such structural change of the target
R(x) is not modeled in the simulator r(x, θ) (model
misspecification). Thus, if calibration is done without
taking the covariate shift into account, the resulting
simulator makes predictions that fit well to the data
in the region x < 110, but do not fit well in the region
x ≥ 110, as described in Fig. 1-(B).

Because of the first challenge of simulator calibration,
exiting methods for covariate shift adaptation, which
have been developed for standard statistical and ma-
chine learning approaches, cannot be directly employed
for the simulator calibration problem: see e.g., Shi-
modaira (2000); Yamazaki et al. (2007); Gretton et al.
(2009); Sugiyama and Kawanabe (2012) and references
therein. On the other hand, existing approaches to
likelihood-free inference, such as Approximate Bayesian
Computation (ABC) methods (e.g.Csilléry et al. (2010);
Marin et al. (2012); Nakagome et al. (2013)), are appli-
cable to simulator calibration, but they do not address
the problem of covariate shift. Our approach combines
these two approaches and thus enjoys the best of both
worlds, offering a solution to the calibration problem
with covariate shift adaptation.

This work proposes a novel approach to simulator cali-
bration, dealing explicitly with the setting of covariate
shift. Our approach is Bayesian, deriving a certain
posterior distribution over the parameter space given
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observed data. The proposed method is based on Ker-
nel ABC (Nakagome et al., 2013; Fukumizu et al., 2013),
which is an approach to ABC based on kernel mean
embedding of distributions (Muandet et al., 2017), and
a certain importance-weighted kernel that works for
covariate shift adaptation. We provide a theoretical
analysis of this approach, showing that it produces
a distribution over the parameter space that approxi-
mates the posterior distribution in which the “observed
data” is predictions from the model that minimises the
importance-weighted empirical risk. In other words,
the proposed method approximates the posterior distri-
bution whose support consists of parameters such that
the resulting simulator produces a small generaliza-
tion error for the test input distribution. For instance,
Fig. 1-(C) shows predictions obtained with our method,
which fit well in the test region x ≥ 110 as a result of
covariate shift adaptation.

This paper is organized as follows. In Sec. 2, we briefly
review the setting of covariate shift and the framework
of kernel mean embedding. In Sec. 3, we present our
method for simulator calibration with covariate shift
adaptation, and in Sec. 4 we investigate its theoretical
properties. In Sec. 5 we report results of numerical
experiments that include calibration of the production
simulator in Fig. 1, confirming the effectiveness of the
proposed method. Additional experimental results and
all the theoretical proofs are presented in Appendix.

2 Background

We here introduce some notation and definitions used in
the paper, by reviewing the problem setting of covariate
shift, and the framework of kernel mean embeddings.

2.1 Calibration under Covariate Shift

Let X ⊂ RdX with dX ∈ N be a measurable subset that
serves as the input space for a target system and a sim-
ulator. Denote by R : X → R the regression function
of the (unknown) target system, which is deterministic,
and define the true data-generating process as

y(x) := R(x) + e(x), (1)

where e : X → R is a (zero-mean) stochastic process
that represent error in observations. Observed data
Dn := {(Xi, Yi)}ni=1 ⊂ X ×R are assumed to be gener-
ated from the process (1) as

X1, . . . , Xn ∼ q0 (i.i.d.), Yi = y(Xi), (i = 1, . . . , n),

where q0 is a probability density function on X . We
use the following notation to write the output values:

Y n := (Y1, . . . , Yn) ∈ Rn.

Let Θ ⊂ RdΘ with dΘ ∈ N be a measurable subset that
serves as a parameter space. Let

r : X ×Θ→ R

be a (measurable) deterministic simulation model that
outputs a real value r(x, θ) ∈ R given an input x ∈ X
and a parameter θ ∈ Θ. Assume that we have a prior
distribution π(θ) on the parameter space Θ.

In the setting of covariate shift, the input distribu-
tion q1(x) in the test or prediction phase is different
from that q0(x) for training data X1, . . . , Xn, while the
input-output relationship (1) remains the same. Thus,
the expected loss (or the generalization error) to be
minimized may be defined as

L(θ) :=

∫
(y(x)− r(x, θ))2

q1(x)dx

=

∫
(y(x)− r(x, θ))2

β(x)q0(x)dx,

where β : X → R is the importance weight function,
defined as the ratio of the two input densities:

β(x) := q1(x)/q0(x).

In this work, we assume for simplicity that importance
weights β(Xi) at training inputs X1, . . . , Xn are known,
or estimated in advance. The knowledge of the impor-
tance weights is available when q0(x) and q1(x) are
designed by an experimenter. For estimation of the im-
portance, we refer to Gretton et al. (2009); Sugiyama
et al. (2012) and references therein.1 Using the im-
portance weights, the expected loss can be estimated
as

Ln(θ) :=
1

n

n∑
i=1

β(Xi) (Yi − r(Xi, θ))
2
. (2)

Covariate shift has a strong inference of the general-
ization performance of an estimated model, when the
true regression function R(x) does not belong to the
class of functions realizable by the simulation model
{r(·, θ) | θ ∈ Θ}, i.e., when model misspecification oc-
curs (Shimodaira, 2000; Yamazaki et al., 2007). Such
a misspecification happens in practice, since the sim-
ulation model only has a finite degree of freedom, as
the parameter space is finite dimensional. To obtain a
model with a good prediction performance, one needs to
use an importance-weighted loss like (2) for parameter
estimation.

1Note that kernel mean matching (Gretton et al.,
2009) is a method for estimating the importance weights
β(X1), . . . , β(Xn), while it is based on kernel mean embed-
dings as in our method. In this sense, that approach deals
with a problem different from ours.
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2.2 Kernel Mean Embedding of Distributions

This is a framework for representing probability mea-
sures as elements in an Reproducing Kernel Hilbert
Space (RKHS). We refer to Muandet et al. (2017) and
references therein for details.

Let Ω be a measurable space, k : Ω × Ω → R be a
measurable positive definite kernel and H be its RKHS.
In this framework, any probability measure P on Ω is
represented as a Bochner integral

µP :=

∫
k(·, θ)dP (θ) ∈ H,

which is called the kernel mean of P . Estimation of
P can be carried out by that of µP , which is usually
computationally and statistically easier, thanks to nice
properties of the RKHS. Such a strategy is justified
if the mapping P → µP is injective, in which case
µP maintains all information of P . Kernels satisfying
this property are called characteristic, and examples of
characteristic kernels on Ω = Rd include Gaussian and
Matérn kernels (Sriperumbudur et al., 2010).

3 Proposed Calibration Method

We present our approach to simulator calibration with
covariate shift adaptation. We take a Bayesian ap-
proach, and our target posterior distribution is de-
scribed in Sec. 3.1. The proposed approach consists
of Kernel ABC using a certain importance-weighted
kernel (Sec. 3.2) and posterior sampling with the kernel
herding algorithm (Sec. 3.3).

3.1 Target Posterior Distribution

We define a vector-valued function rn : Θ→ Rn from
the simulator r(x, θ) as

rn(θ) := (r(X1), . . . , r(Xn))> ∈ Rn, θ ∈ Θ. (3)

Let supp(π) be the support of π. Define Θ∗ ⊂ supp(π)
as the set of parameters that minimize the weighted
square error, i.e., for all θ ∈ Θ∗ we have

n∑
i=1

β(Xi)(Yi − r(Xi, θ
∗))2 =

min
θ∈supp(π)

n∑
i=1

β(Xi)(Yi − r(Xi, θ))
2. (4)

We allow for Θ∗ to contain multiple elements, but
assume that they all give the same simulation outputs,
which we denote by r∗ ∈ Rn:

r∗ := rn(θ∗) = rn(θ̃∗), ∀θ∗, θ̃∗ ∈ Θ∗. (5)

Let ϑ ∼ π be a random variable following π. Then
rn(ϑ) is also a random variable taking values in Rn
and its distribution is the push-forward measure of π
under the mapping rn, denoted by rnπ. We write the
distribution of the joint random variable

(ϑ, rn(ϑ)) ∈ Θ× Rn

as PΘRn , and their marginal distributions on Θ and
Rn as PΘ and PRn , respectively. Then by definition we
have PΘ = π and PRn = rnπ. Let

supp(PRn) = supp(rnπ) = {rn(θ) | θ ∈ supp(π)}
be the support of the push-forward measure, which is
the range of the simulation outputs when the parameter
is in the support of the prior.

We consider the conditional distribution on Θ induced
from the joint distribution PΘRn by conditioning on
y ∈ supp(PRn), which we write

Pπ(θ|y), y ∈ supp(PRn) (6)

Note that, since the conditional distribution on Rn
given θ ∈ Θ is the Dirac distribution at rn(θ), one
cannot use Bayes’ rule to define the conditional dis-
tribution. However, the conditional distribution (6) is
well-defined as a disintegration, and is uniquely deter-
mined up to an almost sure equivalence with respect to
PRn (Chang and Pollard, 1997, Thm. 1 and Example
9); see also Cockayne et al. (2017, Sec. 2.5).

It will turn out in Sec. 4 that our approach provides
an estimator for the kernel mean of the conditional
distribution (6) with y = r∗:

Pπ(θ|r∗) (7)

where r∗ is the outputs of the optimal simulator (5).
In other words, (7) is the posterior distribution on
the parameters, given that the optimal outputs r∗ are
observed. Sampling from (7) thus amounts to sam-
pling parameters that provide the optimal simulation
outputs.

Finally, we define a predictive distribution of outputs y
for any input point x ∈ X as the push-forward measure
of the posterior (7) under the mapping r(x, ·) : θ →
r(x, θ), which we denote by

Pπ(y|x, r∗). (8)

3.2 Kernel ABC with a Weighted Kernel

Let kΘ : Θ × Θ → R be a kernel on the parameter
space and HΘ be its its RKHS. We define the kernel
mean of the posterior (7) as

µΘ|r∗ :=

∫
kΘ(·, θ)dPπ(θ|r∗) ∈ HΘ, (9)
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We propose to use the following weighted kernel on Rn
defined from importance weights. As mentioned, we
assume that the importance weight function β(x) =
q1(x)/q0(x) is known or estimated in advance. For
Y n, Ỹ n ∈ Rn, the kernel is defined as

kRn(Y n, Ỹ n) = exp

(
− 1

2σ2

n∑
i=1

β(Xi)(Yi − Ỹi)2

)
,

(10)
where σ2 > 0 is a constant and a parameter of the
kernel.

We apply Kernel ABC (Nakagome et al., 2013) with the
importance-weighted kernel defined above, to estimate
the posterior kernel mean (9). First, we independently
generate m ∈ N parameters from the prior π(θ)

θ̄1, . . . , θ̄m ∼ π.

Then for each parameter θ̄j , j = 1, . . . ,m, we run
the simulator to generate pseudo observations at
X1, . . . , Xn:

Ȳ nj := rn(θ̄j), j = 1, . . . ,m,

where rn : Θ→ Rn is defined in (3). Then an estimator
of the kernel mean (9) is given by

µ̂Θ|r∗ :=

m∑
j=1

wjkΘ(·, θ̄j) ∈ HΘ, (11)

(w1, ..., wm)> := (G+mεIm)−1kRn(Y n) ∈ Rm,

where Im ∈ Rm×m is the identity and ε > 0 is a
regularization constant; the vector kRn(Y n) ∈ Rm and
the Gram matrix G ∈ Rm×m are computed from the
kernel kRn in (10) with the observed data Y n as

kRn(Y n) := (kRn(Ȳ n1 , Y
n), . . . , kRn(Ȳ nm, Y

n))> ∈ Rm

G := (kRn(Ȳ nj , Ȳ
n
j′ ))

m
j,j′=1 ∈ Rm×m.

3.3 Posterior Sampling with Kernel Herding

We apply Kernel herding (Chen et al., 2010), a de-
terministic sampling method based on kernel mean
embedding, to generate parameters θ̌1, ..., θ̌m ∈ Θ from
the posterior kernel mean µ̂Θ|r∗ in (11). The proce-
dure is as follows. The initial point θ̌1 is generated as
θ̌1 := argmaxθ∈Θ µ̂Θ|r∗(θ). Then the subsequent points
θ̌t, t = 2, . . . ,m, are generated sequentially as

θ̌t := argmax
θ∈Θ

µ̂Θ|r∗(θ)−
1

t

t−1∑
j=1

kΘ(θ, θ̌j).

These points are a sample from the approximate
posterior, in the sense that they satisfy ‖µ̂Θ|r∗ −

1
t

∑t
j=1 kΘ(·, θ̌j)‖HΘ = O(t−1/2) under a mild condi-

tion (Bach et al., 2012).

Prediction. Let x ∈ X be any test input location,
and recall that the predictive distribution Pπ(y|x, r∗)
in (8) is defined as the push-forward measure of the pos-
terior Pπ(θ|r∗) under the mapping r(x, ·). Therefore,
predictive outputs can be obtained simply by running
simulations with the posterior samples θ̌1, . . . , θ̌m:

r(x, θ̌1), . . . , r(x, θ̌m),

and the predictive distribution is approximated by the
empirical distribution

P̂π(y|x, r∗) :=
1

m

m∑
j=1

δ(y − r(x, θ̌j)),

where δ(·) is the Dirac distribution at 0.

4 Theoretical Analysis

To analyze the proposed method, we first express the
estimator (11) in terms of covariance operators on the
RKHSs, which is how the estimator was originally
proposed (Song et al., 2009; Nakagome et al., 2013). To
this end, define joint random variables (ϑ,y) ∈ Θ×Rn
by

ϑ ∼ π, y := rn(ϑ),

where rn : Θ→ Rn is defined in (3). Let HΘ and HRn

be the RKHSs of kΘ and kRn , respectively.

Covariance operators Cϑy : HRn → HΘ and Cyy :
HRn → HRn are then defined as

Cϑyf := E[kΘ(·, ϑ)f(y)] ∈ HΘ, f ∈ HRn ,

Cyyf := E[kRn(·,y)f(y)] ∈ HRn , f ∈ HRn .

Note that parameter-data pairs (θ̄j , Ȳ
n
j )mj=1 =

(θ̄j , r
n(θ̄j))

m
j=1 ⊂ Θ × Rn in Kernel ABC (Sec. 3.2)

are i.i.d. copies of the random variables (ϑ,y). Thus
empirical covariance operators Ĉϑy : HRn → HΘ and
Ĉyy : HRn → HRn are defined as

Ĉϑyf :=
1

m

m∑
j=1

kΘ(·, θ̄j)f(Ȳ nj ), f ∈ HRn ,

Ĉyyf :=
1

m

m∑
j=1

kRn(·, Ȳ nj )f(Ȳ nj ), f ∈ HRn .

The estimator (11) is then expressed as

µ̂Θ|r∗ = Ĉϑy(Ĉyy + εI)−1kRn(·, Y n). (12)

See the above original references as well as Song et al.
(2013); Fukumizu et al. (2013); Muandet et al. (2017)
for the derivation.
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Recall that Y n is the observed data from the real pro-
cess. The issue is that, in our setting, Y n may not lie
in the support of the distribution PRn of y = rn(ϑ),
since the simulation model r(θ, x) is misspecified, i.e.,
there exists no θ ∈ Θ such that R(x) = r(x, θ) for all
x ∈ X . The misspecified setting where Y n 6∈ supp(PRn)
has not been studied in the literature on kernel mean
embeddings, and therefore existing theoretical results
on conditional mean embeddings (Grünewälder et al.,
2012; Fukumizu, 2015; Singh et al., 2019) are not di-
rectly applicable. Our theoretical contribution is to
study the estimator (12) in this misspecified setting,
which may be of general interest.

4.1 Projection and Best Approximation

Let Hy ⊂ HRn be the Hilbert subspace of HRn de-
fined as the completion of the linear span of functions
kRn(·, Ỹ n) with Ỹ n from the support of PRn :

Hy := span
{
kRn(·, Ỹ n) | Ỹ n ∈ supp(PRn)

}
, (13)

where the closure is taken with respect to the norm
of HRn . In other words, every h ∈ Hy may be
written in the form h =

∑∞
`=1 α`kRn(·, Ỹ n` ) for some

(α`)
∞
`=1 ⊂ R and (Ỹ n` )∞`=1 ⊂ supp(PRn) such that

‖h‖2HRn
=
∑∞
`,j=1 α`αjkRn(Ỹ n` , Ỹ

n
j ) <∞.

Since Hy is a Hilbert subspace, one can consider the
orthogonal projection of kRn(·, Y n), the “feature vector”
of the observed data Y n, onto Hy, which is uniquely
determined and denoted by

h∗ := argmin
h∈Hy

‖h− kRn(·, Y n)‖HRn . (14)

Then kRn(·, Y n) can be written as

kRn(·, Y n) = h∗ + h⊥,

where h⊥ ∈ HRn is orthogonal to Hy.

Note that the estimator (12) is an approximation to
the following population expression:

Cϑy(Cyy + εI)−1kRn(·, Y n). (15)

Our first result below shows that (15) can be written
in terms of the projection (14).
Lemma 1. Let kΘ be a bounded and continuous kernel
and assume that 0 < β(Xi) < ∞ holds for all i =
1, . . . , n. Then (15) is equal to

Cϑy(Cyy + εI)−1h∗

We make the following identifiability assumption. It is
an assumption on the observed data Y n (or the data

generating process (1)), the simulation model r(x, θ)
and the kernel kRn (or the importance weight function
β(x) = q1(x)/q0(x); see the definition of kRn in (10)).
Assumption 1. There exists some Ỹ n ∈ supp(PRn)
such that kRn(·, Ỹ n) = h∗, where h∗ is the orthogonal
projection of kRn(·, Y n) onto the subspace Hy in (14).

The assumption states that the orthogonal projection
of the feature vector kRn(·, Y n) of observed data Y n
onto Hy lies in the set

{kRn(·, Ỹ n) | Ỹ n ∈ supp(PRn)}
= {kRn(·, rn(θ)) | θ ∈ supp(π)}.

Thus the assumption implies that the best approxi-
mation h∗ of the observed data is given by the simu-
lation model with some parameter θ∗ ∈ supp(π), i.e.,
h∗ = kRn(·, rn(θ∗)). Such θ∗ satisfies

θ∗ ∈ argmin
θ∈supp(π)

‖kRn(·, Y n)− kRn(·, r(·, θ))‖2HRn

= argmax
θ∈supp(π)

kRn(Y n, r(·, θ))

= argmax
θ∈supp(π)

exp

(
− 1

2σ2

n∑
i=1

β(Xi)(Yi − r(Xi, θ))
2

)

= argmin
θ∈supp(π)

n∑
i=1

β(Xi)(Yi − r(Xi, θ))
2,

where the last identity follows from the exponential
function being monotonically increasing. This shows
that, under Assumption 1, the parameter θ∗ realizing
the projection is a least weighted-squares solution, and
thus belongs to the set Θ∗ defined in (4). Moreover,
since h∗ is uniquely determined, so is the simulation
outputs r∗ := rn(θ∗), in the sense of (5).

By these arguments, Lemma 1 and Assumption 1 lead
to the following result.
Theorem 1. Suppose that the assumptions in Lemma
1 and Assumption 1 hold. Let r∗ := rn(θ∗) where θ∗ is
any element satisfying (4). Then (15) is equal to

Cϑy(Cyy + εI)−1kRn(·, r∗).

Theorem 1 suggests that the estimator (12) would be-
have as if the observed data is the optimal simulation
outputs r∗ obtained as a best approximation for the
given data Y n. The convergence result presented below
shows that this is indeed the case.

To state the result, we define a function G :
supp(PRn)× supp(PRn)→ R as

G(Y na , Y
n
b ) := E[kΘ(ϑ, ϑ)|y = Y na ,y

′ = Y nb ], (16)
= E[kΘ(ϑ, ϑ)|rn(ϑ) = Y na , r

n(ϑ′) = Y nb ],
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where (ϑ′,y′) is an independent copy of (ϑ,y).

The following result shows that (12) (or (11)) is a
consistent estimator of the kernel mean µΘ|r∗ (9) of
the posterior Pπ(θ|r∗). It is obtained by extending
the result of Fukumizu (2015, Theorem 1.3.2) to the
misspecified setting where Y n 6∈ supp(PRn) by using
Theorem1. The assumptions made are essentially the
same those in Fukumizu (2015, Theorem 1.3.2). Below
Range(Cyy ⊗ Cyy) denotes the range of the tensor-
product operator Cyy ⊗ Cyy on the tensor-product
RKHS HRn ⊗HRn (see Appendix for details).
Theorem 2. Suppose that the assumptions in Lemma
1 and Assumption 1 hold. Assume that the eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ 0 of Cyy satisfy λi ≤ βi−b for all
i ∈ N for some constants β > 0 and b > 1, and that
the function G in (16) satisfies G ∈ Range(Cyy ⊗
Cyy). Let C > 0 be any fixed constant, and set the
regularization constant ε := εm := Cm−

b
1+4b of µ̂Θ|r∗

in (12) (or (11)). Then we have∥∥µ̂Θ|r∗ − µΘ|r∗
∥∥
HΘ

= Op

(
m−

b
1+4b

)
(m→∞).

5 Experiments

We first explain the setting common for all the exper-
iments. In each experiment, we consider both regres-
sion problems with and without covariate shift, to see
whether the proposed method can deal with covariate
shift. In the latter case, which we call “ordinary regres-
sion,” we set the importance weights to be constant,
β(Xi) = 1 (i = 1, ..., n). The noise process e(x) in (1)
is independent Gaussian ε ∼ N(0, σ2

noise). We write
N(a, b) for the normal distribution with mean a and
variance b; the multivariate version is denoted similarly.

For the proposed method, we used a Gaussian kernel
kΘ(θ, θ′) = exp(−‖θ − θ′‖2/2σ2

Θ) for the parameter
space, where σ2

Θ > 0 is a constant. We set the constants
σ2, σ2

Θ > 0 in the kernels kRn and kΘ by the median
heuristic (e.g. Garreau et al., 2018) using the simulated
pairs (θ̄j , Ȳ

n
j )mj=1.

For comparison, we used Markov Chain Monte
Carlo (MCMC) for posterior sampling, more specif-
ically the Metropolis-Hastings (MH) algorithm. For
this competitor, we assume that the noise process
e(x) in (1) is known, so that the likelihood func-
tion is available in MCMC (which is of the form
exp(−∑n

i=1 β(Xi) (Yi − r(Xi, θ))
2
/2σ2

noise) up to con-
stant). In this sense, we give an unfair advantage for
MH over the proposed method, as the latter does not
assume the knowledge of the noise process, which is
usually not available in practice.

For evaluation, we compute Root Mean Square Er-
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Figure 2: RMSEs for (A) ordinary and (B) covariate
shift cases, as a function of the numberm of simulations,
given by the proposed method (blue) and the MH
algorithm with different acceptance ratios about 20%
(orange), 40% (red), and 60% (green).

ror (RMSE) in prediction for each method (and for a
different number of simulations, m) as follows. Test
input locations X̃1, . . . , X̃n are generated from q0(x)
in the case of ordinary regression, and from q1(x) in
the covaraite shift setting. After sampling parameters
θ̌1, . . . , θ̌m with the method for evaluation, the RMSE is
computed as ( 1

n

∑n
i=1(R(X̃i)− 1

m

∑m
j=1 r(X̃i, θ̌j))

2)1/2.

5.1 Synthetic Experiments

We consider the problem setting of the benchmark
experiment in Shimodaira (2000).

Setting. The input space is X = R, and the data
generating process (1) is given by R(x) = −x+ x3 and
e(x) = ε with ε ∼ N(0, 2) being an independent noise.
The simulation model is defined by r(x, θ) = θ0 + θ1x,
where θ = (θ1, θ2)> ∈ Θ = Rd. For demonstration, we
treat this model as intractable, i.e., we assume that
only evaluation of function values r(x, θ) is possible
once x and θ are given. The input densities q0(x)
and q1(x) for for training and prediction are those of
N(0.5, 0.5) and N(0, 0.3), respectively. We define the
prior as multivariate Gaussian π = N(0, 5I2), where
I2 ∈ R2×2 is the identity. We set the size of training
data (Xi, Yi)

n
i=1 as n = 100.

Results. Figure 2 shows RMSEs for (A) ordinary
regression and (B) covariate shift as a function of the
number m of simulations, with the means and standard
deviations calculated from 30 independent trials. For
the proposed method, we set the regularization constant
to be ε = 1.0. We set the proposal distribution of
MH to be N(0, σ2

pI2) with σp being 0.08, 0.06, and
0.03, which were tuned so that the acceptance ratios
become about 20%, 40%, and 60% respectively. In
the horizontal axis, the number of simulations for MH
is the number of all MCMC steps (which all require
running the simulator) including burn-in and rejected
executions. For MH, we used the first 10%MCMC steps
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Figure 3: RMSEs in the (A) ordinary and (B) covari-
ate shift settings, as a function of the number m of
simulations, for the proposed method (blue) and MH
(orange).

for burn-in, and excluded them for predictions. The
results show that the proposed method is more efficient
than MH, in the sense that it gives better predictions
than MH based on a small number of simulations. This
is a promising property, since real-world simulators are
often computationally expensive, as is the case for the
experiment in the next section.

5.2 Experiments on Production Simulator

We performed experiments on the manufacturing pro-
cess simulator mentioned in Sec. 1 (Fig. 1), and a more
sophisticated production simulator with 12 parameters.
We only describe the former here, and report the latter
in the Appendix due to the space limitation.

Setting. We used a simulator constructed with WIT-
NESS, a popular software package for production simu-
lation (https://www.lanner.com/en-us/). We refer
to Sec. 1 for an explanation of the simulator. This
simulator r(x, θ) has 4 parameters θ ∈ Θ ⊂ R4. The
input space for regression is X = (0,∞).

The data generating process (1) is defined as R(x) =
r(x, θ(0)) for x < 110 and R(x) = r(x, θ(1)) for
x ≥ 110, where θ(0) := (2, 0.5, 5, 1)> and θ(1) :=
(3.5, 0.5, 7, 1)>; the noise model is an independent noise
e(x) = ε ∼ N(0, 30). The input densities are defined as
q0(x) = N(100, 10) (training) and q1(x) = N(120, 10)
(prediction). We constructed this model so that the two
regions x < 110 and x ≥ 110 correspond to those for
training and prediction, respectively, with θ(0) and θ(1)

being the “true” parameters in the respective regions.
We defined the prior π(θ) as the uniform distribution
over Θ := [0, 5] × [0, 2] × [0, 10] × [0, 2] ⊂ R4. The
size of training data (Xi, Yi)

n
i=1 (which are described

in Fig. 1 (B)(C) as red points) is n = 50.

Results. Figure 3 shows the averages and standard
deviations of RMSEs for the proposed method and
MH of 10 independent trials, changing the number m

!"
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Figure 4: Parameters θ̌1, . . . , θ̌m generated from the
proposed method, in the subspace of coordinates of
θ1 and θ3. (A): Ordinary regression: the generated
parameters (orange), the mean of them (brown), and
the “true” parameter θ(0) for the training region x < 110
(red). (B) Covariate shift: the generated parameters
(light green), the mean of them (green), and the “true”
parameter θ(1) for the prediction region x ≥ 110 (blue,
“true shifted”).

of simulations. We set the regularization constant of
the proposed method as ε = 0.01, and the proposal
distribution of MH as N(0, 0.032I4), which was tuned
to make the acceptance about 40%.2 The results show
that the proposed method is more accurate than MH
with a small number of simulations, even though the
latter used the full knowledge of the data generating
process (1).

Fig. 4 (A) and (B) describe parameters θ̌1, . . . , θ̌m gen-
erated in one run of the proposed method in the or-
dinary and covariate shift settings, respectively; the
corresponding predictive outputs are shown in Fig. 1 (B)
and (C). In both settings, the estimated posterior mean
is located near the “true” parameter of each scenario.
Fig. 4 (A) and (B) also demonstrate how our method
might be useful for sensitivity analysis. Our method
generates parameters θ̌1, . . . , θ̌m so as to approximate
the posterior Pπ(θ|r∗), where r∗ is “optimal” simula-
tion outputs. Therefore, the more variation in the
coordinate θ1 indicates that the value of θ1 is not very
important to obtain optimal simulation outputs. But a
comparison between (A) and (B) indicates that, under
covariate shift, there should be small correlation be-
tween θ1 and θ3 to obtain optimal simulation outputs.
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2In this experiment one simulation is computationally
expensive and takes about 2 seconds with the authors’ PC,
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Supplementary Materials

Simulator Calibration under Covariate Shift with Kernels

A Proofs

A.1 Proof of Lemma 1

First we note that from the assumption 0 < β(Xi) <∞ for all i = 1, . . . , n, the importance-weighted kernel (10)
is continuous on Rn. Therefore Steinwart and Christmann (2008, Lemma 4.33) implies that the RKHS HRn of
kRn is separable.

To prove Lemma 1, we need the following result.
Lemma 2. Suppose that the assumptions in Lemma 1 hold. Let (φi)

∞
i=1 ⊂ HRn be the eigenfunctions of the

covariance operator Cyy associated with positive eigenvalues, and let (φ̃j)
∞
j=1 ⊂ HRn be an ONB of the null space

of Cyy. Then φ̃j(Ỹ n) = 0 holds for PRn-almost every Ỹ n ∈ Rn.

Proof. By definition of φ̃j , its holds that

0 = Cyyφ̃j =

∫
kRn(·, Ỹ n)φ̃j(Ỹ

n)dPRn(Ỹ n) =:

∫
kRn(·, Ỹ n)dν(Ỹ n),

where the measure ν is defined by dν(Ỹ n) := φ̃j(Ỹ
n)dPRn(Ỹ n). Since the kernel kRn is bounded on Rn, HRn

consists of bounded functions, and thus φ̃j ∈ HRn is bounded. Therefore ν a finite measure. But since kRn is a
Gaussian kernel (see (10)), it is c0-universal, and so Sriperumbudur et al. (2011, Proposition 2) and the integral
being zero imply that ν is the zero measure. Thus for ν to be the zero measure, φ̃j(Ỹ n) = 0 should hold for
PRn -almost every Ỹ n, which concludes the proof.

We now prove Lemma 1.

Proof. Let (φi)
∞
i=1 ⊂ HRn be the eigenfunctions of the covariance operator Cyy associated with positive eigenvalues

λ1 ≥ λ2 ≥ · · · > 0, and let (φ̃j)
∞
j=1 ⊂ HRn be an ONB of the null space of Cyy. To prove the assertion, we first

show that (a) 〈φi, h⊥〉 = 0 for every φi, and that (b) Cϑyφ̃j = 0 for every φ̃j .

(a) By definition of φi, it can be written as

φi = λ−1
i Cyyφi = λ−1

i

∫
kRn(·, Ỹ n)φi(Ỹ

n)dPRn(Ỹ n).

Therefore,

〈φi, h⊥〉HRn
=

〈
λ−1
i

∫
kRn(·, Ỹ n)φi(Ỹ

n)dPRn(Ỹ n), h⊥

〉
HRn

= λ−1
i

∫ 〈
kRn(·, Ỹ n), h⊥

〉
HRn

φi(Ỹ
n)dPRn(Ỹ n) = 0,

where the last identity follows from
〈
kRn(·, Ỹ n), h⊥

〉
HRn

= 0 for Ỹ n ∈ supp(PRn), which follows from the

definition of h⊥.

(b) We have

Cϑyφ̃j =

∫
kΘ(·, θ)φ̃j(Ỹ n)dPΘRn(θ, Ỹ n)

=

∫ (∫
kΘ(·, θ)dPπ(θ|Ỹ n)

)
φ̃j(Ỹ

n)dPRn(Ỹ n) = 0,
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where the last identity follows from Lemma 2.

We now prove the assertion. By using (a) and (b), we obtain

Cϑy(Cyy + εI)−1kRn(·, Y n)

= Cϑy(Cyy + εI)−1(h∗ + h⊥)

= Cϑy

∞∑
i=1

(λi + ε)−1 〈h∗, φi〉HRn
φi + Cϑy

∞∑
j=1

ε−1
〈
h∗ + h⊥, φ̃j

〉
HRn

φ̃j

= Cϑy

∞∑
i=1

(λi + ε)−1 〈h∗, φi〉HRn
φi

= Cϑy

∞∑
i=1

(λi + ε)−1 〈h∗, φi〉HRn
φi + Cϑy

∞∑
j=1

ε−1
〈
h∗, φ̃j

〉
HRn

φ̃j

= Cϑy(Cyy + εI)−1h∗,

which completes the proof.

A.2 Proof of Theorem 2

Theorem 2 can be easily proven by combining the proof idea of Fukumizu (2015, Theorem 1.3.2) and Theorem 1,
but for completeness we present the proof.

Before presenting, we introduce some notation and definitions. Below ‖A‖ for an operator A denotes the
operator norm. HRn ⊗ HRn denotes the tensor-product RKHS of HRn and HRn , which is the RKHS of the
product kernel kRn×Rn : Rn × Rn → R defined by kRn×Rn((Y na , Ỹ

n
a ), (Y nb , Ỹ

n
b )) = kRn((Y na , Y

n
b ))kRn((Ỹ na , Ỹ

n
b )).

Cyy ⊗ Cyy : HRn ⊗HRn → HRn ⊗HRn is the covariance operator defined by

Cyy ⊗ CyyF := E[kRn×Rn(·, (y,y′))F (y,y′)], F ∈ HRn ⊗HRn ,

where y′ is an independent copy of the random variable y.

Note that the covariance operator Cϑy satisfies 〈Cϑyf, g〉HΘ
= E[f(y)g(ϑ)] for any f ∈ HRn and g ∈ HΘ. Similarly,

Cyy satisfies 〈Cyyf, h〉HRn
= E[f(y)h(y)] for any f, h ∈ HRn , and Cyy ⊗ Cyy satisfies 〈CyyFa, Fb〉HRn⊗HRn

=

E[Fa(y,y′)Fb(y,y
′)] for any Fa, Fb ∈ HRn ⊗HRn .

Proof. By the triangle inequality,∥∥∥Ĉϑy(Ĉyy + εmI)−1kRn(·, Y n)− µΘ|r∗
∥∥∥
HΘ

≤
∥∥∥Ĉϑy(Ĉyy + εmI)−1kRn(·, Y n)− Cϑy(Cyy + εmI)−1kRn(·, Y n)

∥∥∥
HΘ

+
∥∥Cϑy(Cyy + εmI)−1kRn(·, Y n)− µΘ|r∗

∥∥
HΘ

≤
∥∥∥Ĉϑy(Ĉyy + εmI)−1 − Cϑy(Cyy + εmI)−1

∥∥∥ ‖kRn(·, Y n)‖HΘ
(17)

+
∥∥Cϑy(Cyy + εmI)−1kRn(·, r∗)− µΘ|r∗

∥∥
HΘ

, (18)

where we used Theorem 1 in the last line. Below we derive convergence rates of the two terms (17)(18) separately,
and then determine the decay schedule of εm as m→∞ so that the two terms have the same rate.
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The first term (17). We first have

Ĉϑy(Ĉyy + εmI)−1 − Cϑy(Cyy + εmI)−1

= Ĉϑy(Ĉyy + εmI)−1 − Ĉϑy(Cyy + εmI)−1

+Ĉϑy(Cyy + εmI)−1 − Cϑy(Cyy + εmI)−1

= Ĉϑy

[
(Ĉyy + εmI)−1 − (Cyy + εmI)−1

]
+(Ĉϑy − Cϑy)(Cyy + εmI)−1

= Ĉϑy(Ĉyy + εmI)−1(Cyy − Ĉyy)(Cyy + εmI)−1

+(Ĉϑy − Cϑy)(Cyy + εmI)−1,

where the last equality follows from the formula A−1 − B−1 = A−1(B − A)B−1 that holds for any invertible
operators A and B. Note that Ĉϑy = Ĉ

1/2
ϑϑ WϑyĈ

1/2
yy holds for some WΘF : HRn → HΘ with ‖Wϑy‖ ≤ 1 (Baker,

1973, Theorem 1). Using this, we have∥∥∥Ĉϑy(Ĉyy + εmI)−1 − Cϑy(Cyy + εmI)−1
∥∥∥

≤
∥∥∥Ĉϑy(Ĉyy + εmI)−1(Cyy − Ĉyy)(Cyy + εmI)−1

∥∥∥
+
∥∥∥(Ĉϑy − Cϑy)(Cyy + εmI)−1

∥∥∥
=

∥∥∥Ĉ1/2
ϑϑ WϑyĈ

1/2
yy (Ĉyy + εmI)−1(Cyy − Ĉyy)(Cyy + εmI)−1

∥∥∥
+
∥∥∥(Ĉϑy − Cϑy)(Cyy + εmI)−1

∥∥∥
≤

∥∥∥Ĉ1/2
ϑϑ

∥∥∥ ε−1/2
m

∥∥∥(Cyy − Ĉyy)(Cyy + εmI)−1
∥∥∥

+
∥∥∥(Ĉϑy − Cϑy)(Cyy + εmI)−1

∥∥∥
= Op

(
ε−3/2
m m−1/2 +

√
N(εm)ε−1

m m−1/2
)

(m→∞, εm → 0),

where the second inequality follows from ‖Wϑy‖ ≤ 1 and ‖Ĉ1/2
yy (Ĉyy + εmI)−1‖ ≤ ε−1/2

m , and the last line from
Fukumizu (2015, Lemma 1.5.1); the quantity N(ε) for any ε > 0 is defined by N(ε) := Tr[Cyy(Cyy + εI)−1],
where Tr(A) denotes the trace of an operator A. Under our assumption on the eigenvalue decay rate of Cyy, we
have N(ε) ≤ βb

b−1ε
−1/b (Caponnetto and Vito, 2007, Proposition 3), which implies that the above rate becomes

Op

(
ε−3/2
m m−1/2 + ε−1−1/2b

m m−1/2
)

(m→∞, εm → 0).

From mεm → ∞ and εm → 0 (as we determine the schedule of εm below), it is easy to show that the second
term is slower and thus dominates the above rate. This concludes that the rate of the first term (17) is∥∥∥Ĉϑy(Ĉyy + εmI)−1 − Cϑy(Cyy + εmI)−1

∥∥∥ ‖kRn(·, Y n)‖HΘ
= Op

(
ε−1−1/2b
m m−1/2

)
(m→∞, εm → 0).

The second term (18). Let (ϑ′,y′) be an independent copy of the random variables (ϑ,y). Note that for any
ψ ∈ HRn , we have

〈Cϑyψ,Cϑyψ〉HΘ
= E [kΘ(ϑ, ϑ′)ψ(y)ψ(y′)]

= E [E[kΘ(ϑ, ϑ′)|y,y′]ψ(y)ψ(y′)]

= E [G(y,y′)ψ(y)ψ(y′)]

= 〈(Cyy ⊗ Cyy)G,ψ ⊗ ψ〉HRn⊗HRn
.
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Similarly, for any ψ ∈ HRn and Ỹ n ∈ supp(PRn), we have〈
Cϑyψ,E[kΘ(·, ϑ)|y = Ỹ n]

〉
HΘ

= E
[
ψ(y′)E[kΘ(ϑ′, ϑ)|y = Ỹ n]

]
= E

[
ψ(y′)E[kΘ(ϑ′, ϑ)|y = Ỹ n,y′]

]
= E

[
ψ(y′)G(Ỹ n,y′)

]
=

〈
(I ⊗ Cyy)G, kRn(·, Ỹ n)⊗ ψ

〉
HRn⊗HRn

,

where I : HRn → HRn is the identity operator and

((I ⊗ Cyy)G) (·, ∗) := E[G(·,y′)kRn(y′, ∗)].

Now let ψ := (Cyy + εmI)−1kRn(·, r∗). Recall µΘ|r∗ = E[kΘ(·, ϑ)|y = r∗], which gives ‖µΘ|r∗‖2HΘ
= G(r∗, r∗).

Then the square of (18) can be written as

∥∥Cϑy(Cyy + εmI)−1kRn(·, r∗)− µΘ|r∗
∥∥2

HΘ

= ‖Cϑyψ‖2HΘ
− 2

〈
Cϑyψ, µΘ|r∗

〉
HΘ

+ ‖µΘ|r∗‖2HΘ

=
〈
(Cyy ⊗ Cyy)G, (Cyy + εmI)−1kRn(·, r∗)⊗ (Cyy + εmI)−1kRn(·, r∗)

〉
HRn⊗HRn

−2
〈
(I ⊗ Cyy)G, kRn(·, r∗)⊗ (Cyy + εmI)−1kRn(·, r∗)

〉
HRn⊗HRn

+G(r∗, r∗)

=
〈
((Cyy + εmI)−1Cyy ⊗ (Cyy + εmI)−1Cyy)G, kRn(·, r∗)⊗ kRn(·, r∗)

〉
HRn⊗HRn

−2
〈
(I ⊗ (Cyy + εmI)−1Cyy)G, kRn(·, r∗)⊗ kRn(·, r∗)

〉
HRn⊗HRn

+G(r∗, r∗)

=
〈{

(Cyy + εmI)−1Cyy ⊗ (Cyy + εmI)−1Cyy − I ⊗ (Cyy + εm)−1Cyy

−(Cyy + εmI)−1Cyy ⊗ I + I ⊗ I
}
G, kRn(·, r∗)⊗ kRn(·, r∗)

〉
HRn⊗HRn

≤
∥∥∥{(Cyy + εmI)−1Cyy ⊗ (Cyy + εmI)−1Cyy − I ⊗ (Cyy + εm)−1Cyy

−(Cyy + εmI)−1Cyy ⊗ I + I ⊗ I
}
G
∥∥∥
HRn⊗HRn

∥∥∥kRn(·, r∗)⊗ kRn(·, r∗)
∥∥∥
HRn⊗HRn

.

Let (φi)
∞
i=1 ⊂ HRn be the eigenfunctions of Cyy and (λi)

∞
i=1 be the associated eigenvalues such that λ1 ≥

λ2 ≥ · · · ≥ 0. Then the eigenfunctions and eigenvalues of the operator Cyy ⊗ Cyy are given as (φi ⊗ φj)∞i,j=1

and (λiλi)
∞
i,j=1, respectively. Note that (Cyy + εmI)−1C2

yyφi = (
λ2
i

1+εm
)φi. Note also that our assumption

G ∈ Range(Cyy ⊗Cyy) implies that there exists some ξ ∈ HRn ⊗HRn such that G = (Cyy ⊗Cyy)ξ. Using these
identities and Parseval’s identity, we have∥∥∥{(Cyy + εmI)−1Cyy ⊗ (Cyy + εmI)−1Cyy − I ⊗ (Cyy + εm)−1Cyy

−(Cyy + εmI)−1Cyy + I ⊗ I
}
G
∥∥∥2

HRn⊗HRn

=
∥∥∥{(Cyy + εmI)−1Cyy ⊗ (Cyy + εmI)−1Cyy − I ⊗ (Cyy + εm)−1Cyy

−(Cyy + εmI)−1Cyy + I ⊗ I
}

(Cyy ⊗ Cyy)ξ
∥∥∥2

HRn⊗HRn

=
∑
i,j

{
λ2
i

λi + εm

λ2
j

λj + εm
−

λiλ
2
j

λj + εm
− λ2

iλj
λi + εm

+ λiλj

}2

〈φi ⊗ φj , ξ〉2HRn⊗HRn

=
∑
i,j

{
ε2
mλiλj

(λi + εm)(λj + εm)

}2

〈φi ⊗ φj , ξ〉2HRn⊗HRn

≤ ε4
m‖ξ‖2HRn⊗HRn

.
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Figure 5: Illustration of the manufacturing process (metal processing factory) for producing valves.

Table 1: Summary of the true and estimated parameters for the experiment on the sophisticated simulation
model. TBF represents the mean time between failures, and TR the mode of repair time for each process. The
parameter estimates are the posterior means of the generated parameters, averaged over 10 independent trials,
and the corresponding standard deviations are shown in brackets.

Process Saw Coat Inspection Harden Grind Clean
TBF TR TBF TR TBF TR TBF TR TBF TR TBF TR

Parameters θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 θ11 θ12

true θ(0) (x < 140) 100 25 200 10 70 20 200 20 75 15 120 20
true θ(1) (x > 140) 100 25 200 10 50 20 200 20 75 15 120 20
posterior mean 104.6 25.3 181.2 7.1 70.9 18.9 180.1 18.9 72.5 15.2 121.7 20.2
for ordinary reg. (4.4) (1.2) (7.9) (0.3) (7.6) (0.8) (8.4) (0.3) (3.9) (0.9) (5.1) (1.2)
posterior mean 99.4 25.4 181.2 7.9 54.5 22.1 176.4 17.9 75.6 14.9 120.6 20.4

for covariate shift (6.1) (0.9) (7.5) (0.1) (6.2) (2.2) (4.4) (0.1) (3.6) (0.5) (5.1) 0.7

From this the second term (18) is upper-bounded as∥∥Cϑy(Cyy + εmI)−1kRn(·, r∗)− µΘ|r∗
∥∥
HΘ

≤ εm‖ξ‖1/2HRn⊗HRn

∥∥∥kRn(·, r∗)⊗ kRn(·, r∗)
∥∥∥1/2

HRn⊗HRn
= O(εm), (m→∞, εm → 0).

The obtained rates for the two terms (17)(18) can be balanced by setting εm = Cm−
b

1+4b for any fixed constant
C > 0, and this gives the rate in the assertion.

B Experiments on Sophisticated Production Simulator

We performed experiments on a sophisticated but more complicated simulator for industrial manufacturing
processes than the one in Sec. 5.2. We used a simulation model constructed with the software package WITNESS
(https://www.lanner.com/en-us/) described in Fig. 5. It models a metal processing factory for producing
valves (products) from metal pipes, with six primary processes of 1) “saw”, 2) “coat”, 3) “inspection”, 4) “harden”,
5) “grind”, and 6) “clean.” Each process consists of complicated procedures such preparation, waiting, and machine
repair in case of a trouble.

B.1 Setting

As in Sec. 5.2, the input space is X = (0,∞) and each input x represents the number of products required to
make, and the resulting output y(x) = R(x) + e(x) is the length of time needed to produce that number of
products.

The mapping x → r(x, θ) consists of the above six processes, and each of them contains two parameters for
machine downtime due to failures: the mean time between failures (TBF), and the mode of repair time (TR).

https://www.lanner.com/en-us/
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Figure 6: Results of ordinary regression and covariate shift adaptation, for the experiment on the sophisticated
model. (A) Results of our method without covariate shift adaptation: training data (red points), generated
predictive outputs (orange) and their means (brown curve). (B) Results of our method with covariate shift
adaptation: training data (red points), generated predictive outputs (light green) and their means (green curve).
q0(x) and q1(x) are input densities for training and prediction, respectively.

Thus, in total, there are 12 parameters, i.e., θ = (θ1, ..., θ12)> ∈ Θ ⊂ R12, where θ2j = T
(j)
BF and θ2j+1 = T

(j)
R for

the j (= 1, . . . , 6)-th process (see Table 1). In each process (say the j-th process), the time between two failures
follows the negative exponential distribution with the mean time θ2j = T

(j)
BF , and the time required for repair

follows the Erlang distribution with the mode of repair time θ2j+1 = T
(j)
R and the shape parameter 3. We set the

prior distribution π(θ) by defining the uniform distribution over [0, 300] for θ2j and that over [0,30] for θ2j+1,
and taking the product of the uniform distributions for all the parameters (j = 1, . . . , 6).

In a similar manner to the experiment in Section 5.2, we defined the regression function R(x) of the data
generating process as R(x) = r(x, θ(0)) for x < 140 and R(x) = r(x, θ(1)) for x ≥ 140, where θ(0) and θ(1) are the
“true” parameters for training and prediction, and defined in Table 1. We set the input densities q0(x) and q1(x)
for training and prediction as N(130, 15) and N(160, 12), respectively. The size of training data is n = 50, and
the number of simulations is m = 400. We set the noise process of the data generating process to be independent
Gaussian, e(x) = ε ∼ N(0, 300). We set the constants σ2, σ2

Θ > 0 in the kernels kRn and kΘ by the median
heuristic using the simulated pairs (θ̄j , Ȳ

n
j )mj=1, and the regularization constant to be ε = 0.1.

B.1.1 Details of the Simulation Model

We explain below qualitative details of the six processes in the simulation model constructed with the WITNESS
software package.

Cutting process: The manufacturing process begins with the arrival of pipes, all of which have the same
diameter and length of 30 cm. These pipes arrive at a fixed time interval, depending on the vendor’s supply
schedule. Subsequently, each pipe is cut into 10-cm sections along the length, resulting in three pieces. A worker
is assigned for this process to perform changeover, repair, and disconnection operations. This worker takes a break
once every eight hours. Then the small pieces obtained are transferred to the coating process by a conveyor belt.

Coating process: The small pieces are coated for protection by a coating machine. The machine processes six
pieces in a batch manner at once. A coating material must have been prepared in the coating machine, before
those pieces have arrived; otherwise, the quality of those pieces will be degraded by heat. When the pieces ride
on the belt conveyor, a sensor detects them and the coating material is prepared.

Inspection process: After the coating process, each piece is placed in an inspection waiting buffer. An inspector
picks up those pieces one by one from the waiting buffer, and inspects the coating quality. If a piece fails the
quality inspection, the inspector places that piece in the recoating waiting buffer. The coating machine must
process the pieces of the recoating buffer preferentially. When pieces pass the quality inspection, the inspector
sends those pieces to the curing step.
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Harden process: In the harden (quenching) process, up to 10 pieces are processed simultaneously in a
first-come first-out basis, and each piece is quenched for at least one hour.

Grind process: The quenched pieces are polished to satisfy a customer’s specifications. Two polishing machines
with the same priority are available. Each machine uses special jigs to process four pieces simultaneously, and
produces two different types of valves. Further, 10 jigs exist in the system, and when not in use, they are placed
in a jig storage buffer.

A loader fixes four pieces with a jig and sends it to the polishing machine. The polishing machine sends the jig
and the four pieces to an unloader, once polishing is done. The unloader sends the finished pieces to a valve
storage area and the jig to a jig return area. The two types of valves are separated, and placed in a dedicated
valve storage buffer. When a jig is required to be used again, it is returned by a jig return conveyor to the jig
storage buffer.

Cleaning process: Valves issued from a valve storage area are cleaned before shipment. In the washing
machine, five stations are available where valves can be placed one at a time, and the valves are cleaned in these
stations. Up to 10 valves of each type can be washed simultaneously. When the valve type is changed, the
cleaning head must be replaced.

B.2 Results

The true 12 parameters are estimated as the posterior means of generated parameters, and their averages and
standard deviations over 10 independent trials are shown in the bottom rows in Table 1. Most of the true
parameters are estimated for both of the ordinary regression and covariate shift settings.

Fig. 6 (A) and (B) describe predictive outputs and their means given by the proposed method, which fit well
for both the ordinary and covariate shift settings. The RMSE for predictive outputs by the proposed method
with covariate shift adaptation, calculated for test data generated from q1(x), is 1.48 × 102. On the other
hand, the RMSE on the same test data for the proposed method without covariate shift adaptation (i.e., setting
β(Xi) = 1, i = 1, . . . , n in the importance-weighted kernel) is 1.64 × 103. This confirms that the use of the
importance-weighted kernel indeed works for covariate shift adaptation.

In this experiment, approximately 3 [s] was required for one evaluation of the simulation model r(x, θ) with
the authors’ computational environment. Thus, the dominant factor in the computational cost was that of
simulations.
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