
EURECOM
Department of Communication Systems

Campus SophiaTech
CS 50193

06904 Sophia Antipolis cedex
FRANCE

Research Report RR-19-339

Exposing radio network information in a MEC-in-NFV
environment: the RNISaaS concept

February 25th, 2019

Sagar Arora, Pantelis A. Frangoudis, and Adlen Ksentini

Email: name.surname@eurecom.fr

1This work has been supported in part by the European Union’s H2020 5G-TRANSFORMER
project under grant agreement No. 761536.

Exposing radio network information in a MEC-in-NFV
environment: the RNISaaS concept

Sagar Arora, Pantelis A. Frangoudis, and Adlen Ksentini

Abstract

A Multi-access Edge Computing Platform (MEP), as specified in the rel-
evant ETSI MEC standards, offers various services, and the Radio Network
Information Service (RNIS) is one of the most important of them. This ser-
vice is responsible for interacting with the Radio Access Network (RAN),
collecting RAN-level information about User Equipment (UE) and exposing
it to mobile edge applications, which can in turn utilize it to dynamically ad-
just their behavior to optimally match the current RAN conditions. Putting
the provision of RNIS in the context of the emerging MEC-in-NFV environ-
ment, where the components and services of the MEC architecture, includ-
ing the MEP itself, are integrated in an NFV environment and are delivered
on top of a virtualized infrastructure, we introduce the term RNIS as a Ser-
vice. We present our standards-compliant RNIS implementation based on
OpenAirInterface (OAI) and study critical performance aspects for its pro-
vision as a virtualized function. In particular, since the RNIS design and
operation follows the publish-subscribe model, we provide alternative im-
plementations using different message brokering technologies (RabbitMQ
and Apache Kafka), and compare their use and performance in an effort to
evaluate their suitability for RNISaaS provision.

Index Terms

MEC, RNIS, Network Softwarization, NFV.

Contents

1 Introduction 1

2 Background 2
2.1 MEC Architecture . 2
2.2 MEC-in-NFV model . 4

3 RNIS as a Service (RNISaaS) 5
3.1 Implementing a MEP on top of OpenAirInterface 5
3.2 OAI-based RNIS Implementation 6

4 RNIS message broker implementation 8
4.1 Message Brokers . 8

4.1.1 RabbitMQ . 8
4.1.2 Apache Kafka . 8
4.1.3 Distinctive characteristics 8

5 Testing environment 10

6 Experimental results 10
6.1 Increasing numbers of subscribers 10
6.2 Increasing numbers of subscriptions 12
6.3 Resource utilization . 13
6.4 Discussion . 14

7 Conclusion 18

v

List of Figures

1 High-level representation of the MEC architecture. 3
2 High-level representation of the MEC-in-NFV architecture. 4
3 Architecture of our OpenAirInterface-based MEC Platform. . . . 5
4 Operation of the RNIS provided by our OAI-based MEC platform. 7
5 Effects on E2E latency with increasing numbers of subscribers.

Message rate is set to 10/s; each subscriber has subscribed to 8
notifications. Total messages produced: 10,000. Messages con-
sumed: 10,000 * Number of subscribers. 11

6 Box plot of the E2E latency in notification delivery for a single
subscriber out of 50 concurrent subscribers, each of whom having
eight subscriptions. Message rate: 10/s. Total messages produced:
10,000. Messages consumed by this subscriber: 10,000. 12

7 Effects on E2E latency with increasing numbers of subscriptions.
Message rate: 10/s, number of subscribers: 50. Total messages
produced in each case: 10,000. Messages consumed in each case:
500,000. 13

8 Apache Kafka: Box plot for CPU utilization vs. E2E latency by
increasing number of CPU cores. Message rate: 10/s. Number
of subscribers: 50; each of them has subscribed to 8 notifications.
Total messages produced: 10,000. Messages consumed: 500,000. 14

9 RabbitMQ: Box plot for CPU utilization vs. E2E latency by in-
creasing number of CPU cores. Message rate: 10/s. Number of
subscribers: 50; each of them has subscribed to 8 notifications.
Total messages produced: 10,000. Messages consumed: 500,000. 15

10 Apache Kafka: Box plot for memory utilization vs. E2E latency
by increasing number of CPU cores. Message rate: 10/s. Number
of subscribers: 50; each of them has subscribed to 8 notifications.
Total messages produced: 10,000. Messages consumed: 500,000. 16

11 RabbitMQ: Box plot for memory utilization vs. E2E latency by
increasing number of CPU cores. Message rate 10/s. Number of
subscribers: 50; each of them has subscribed to 8 notifications.
Total messages produced: 10,000. Messages consumed: 500,000. 17

vi

1 Introduction

Radio Access Network (RAN) awareness can prove itself beneficial for a wide
range of applications in an LTE/5G and beyond context. A wealth of useful in-
formation is constantly generated at the RAN level, such as events pertaining to
the network control and data planes, User Equipment (UE) status and capabilities,
mobility events, location updates, and information on the radio conditions at the
user end. These data were traditionally available only to the network operator via
the mobile network equipment’s vendor-specific monitoring and management in-
terfaces. However, with the advent of Multi-access Edge Computing (MEC), this
situation is expected to change.

As per the ETSI MEC standard [1], a MEC platform (MEP) provides a set
of services to application instances running at the mobile edge, among which is
the Radio Network Information Service (RNIS) [2]. This service allows authorized
MEC application instances to consume RAN level information, such as UE channel
quality indications and location updates, which they can utilize to offer enhanced
services and optimize performance.

This creates space for innovative third-party applications deployed at the mo-
bile edge, which can take advantage of standardized interfaces to access RAN-
level information at a fine granularity. At the same time, performance optimiza-
tion advantages aside, this provides new business opportunities to operators, who
can build on the value of their data by exposing them to third parties for profit.
The volume and diversity of RAN-level monitoring data, and their correlation with
application-perceived performance and with the network’s operational state, raise
the need and create opportunities for RAN analytics [3], which can find use in
a wide range of scenarios, spanning from network troubleshooting and network
resource management [4] to Quality of Experience (QoE) optimized service deliv-
ery [5–8].

From the perspective of the network operator, harnessing the potential of these
data requires to deal with significant challenges. At the MEC platform level, han-
dling such volumes of data and efficiently delivering them to MEC applications
is already non-trivial. RAN-level data are generated at high volumes and have to
be treated at the edge, where storage, processing and memory resources are typi-
cally scarce. Scalability challenges thus emerge as the number of mobile terminals
generating data and the number of MEC-hosted applications consuming the RNIS
service grow.

This gets more pronounced in a MEC-in-NFV environment [9] and as Network
Slicing finds its way towards edge computing.1 In this environment, the MEP and
its services, including the RNIS, are instantiated on demand over an edge cloud as
virtual instances and as parts of a network slice instance. MEC orchestration com-
ponents thus need to appropriately allocate compute resources to multiple RNIS
instances corresponding to multiple MEC tenants.

1MEC support for network slicing is actively discussed under the ETSI 024 work item [10].

1

This paper contributes in the direction of better understanding the performance
requirements of offering RNIS-as-a-Service (RNISaaS) in a MEC-in-NFV envi-
ronment. In particular, we design and implement a RNIS featuring a standards-
compliant publish-subscribe API. We compare two candidate solutions for its im-
plementation (RabbitMQ [11] vs. Apache Kafka [12]) and carry out extensive
testbed experiments to evaluate their performance capabilities, characteristics, and
suitability for the provision of RNISaaS. To the best of our knowledge, although
existing works focus on potential applications of the RNIS, this is the first work that
addresses the design and implementation of the RNIS component itself, its internal
workings, and their performance implications particularly towards MEC-in-NFV.

This paper is structured as follows: Section 2 provides an overview of the MEC
architecture and its evolution towards being integrated in an NFV environment.
Section 3 briefly presents the design principles, architecture, and implementation
of our MEC platform built on top of OAI, with more details on how the RNIS is
provided. The RNIS delivers information to applications following the publish-
subscribe model, and Section 4 delves into the details of how message brokering is
implemented internally using two different candidate technologies. Section 5 fo-
cuses on our testing environment, before we present the results of our experimental
evaluation in Section 6. We conclude the paper in Section 7.

2 Background

2.1 MEC Architecture

Since its creation in 2013, the ETSI ISG MEC group has been working on
the development of standardization activities around MEC. The first released doc-
ument of ETSI MEC covers the reference architecture [1], which aims to specify
the different necessary components. A high-level representation of the architec-
ture is shown in Figure 1. It introduces four entities: (i) The MEC platform that
acts as an interface between the mobile network and the MEC application. It has
one interface to connect to the mobile network to obtain information (e.g., usage
statistics) about UEs and eNodeBs, in the form of an API to the MEC application,
while it interacts with the mobile network to offload traffic to the MEC applica-
tion; (ii) the MEC application that runs on top of a virtualized platform; (iii) the
MEC host that may host both the MEC framework and MEC application or only
the MEC application by providing a virtualization environment; (iv) The Mobile
Edge Orchestrator (MEO) which is in charge of the lifecycle management of MEC
applications, and acts as the interface between the MEC host and the BSS/OSS.
Another concept introduced by the MEC ETSI group is that of a MEC service,
which is either a service provided by the MEC platform itself, such as the Radio
Network Information Service (RNIS) [2] and traffic control, or a service provided
by the MEC application, e.g., video transcoding. The MEC host is the key ele-
ment; it provides the virtualization environment to run MEC applications, while it
interacts with the mobile network entities, via the MEC platform, to provide MEC

2

services and data offloading functionality to MEC applications. Respectively, the
mp2 and mp1 reference points are used by the MEP to interact with the mobile
network elements and provides MEC services, like the RNIS and traffic control
to the MEC applications. In addition, two MEC hosts can communicate over the
mp3 reference point aiming at managing user mobility via MEC application migra-
tion among MEC hosts. Moreover, the MEP allows MEC applications to discover
MEC services available at the MEC host and to register a service provided by a
MEC application.

Figure 1: High-level representation of the MEC architecture.

The MEO is in charge of the instantiation and orchestration of MEC appli-
cations. The MEPM element is in charge of the life-cycle management of the
deployed MEC applications. The MEPM is in charge of the MEC platform config-
uration, via the Mm5 reference point, such as the MEC application authorization,
the type of traffic that needs to be offloaded to a MEC application, DNS redirec-
tion, etc. Regarding the services offered by MEP, it provides the RNIS which is
one of the most critical MEP features. Through this service, a MEC application
can be aware of the radio conditions at the UE end. This information can be pro-
vided to the application in near real time, which allows it to react quickly and
perform adaptations and performance enhancements, thus being quite beneficial
for improving QoS. One of the use cases of this service is in a multimedia delivery
context, where a media streaming application hosted at the mobile edge can adapt

3

the codec schemes per UE according to the latter’s radio conditions, to optimize
user experience.

2.2 MEC-in-NFV model

As described in the precedent section, the MEC architecture is defined to run
independently from the NFV environment. However, the advantages brought by
Network Functions Virtualization (NFV) and the goal of integrating and running
all MEC entities in an NFV environment, has led the MEC ETSI group to up-
date the reference architecture. The proposed document [9] updates the reference
architecture as shown in Figure 2. As it can be noticed, the MEC platform and
the MEPM will run as VNFs. The MEO has become the MEAO; it keeps the main
functions, apart from the fact that it should use the NFV Orchestrator (NFVO) to in-
stantiate the virtual resources for the MEC applications as well as for the MEP. The
MEC application lifecycle function has been moved to the VNF Manager (VNFM).
Moreover, the VNFM is in charge of the lifecycle management of the MEP as well
as the MEPM. Another important difference between the reference architecture and
the NFV-oriented one, is the appearance of new interfaces (Mv1, Mv2 and Mv3)
and the usage of interfaces defined by the ETSI NFV [13].

Figure 2: High-level representation of the MEC-in-NFV architecture.

4

3 RNIS as a Service (RNISaaS)

The RNIS is one of the important MEC services to be provided by a MEP.
It allows third-party applications to access contextual information on the UE end.
Once the MEP is envisioned to be executed as a VNF, it is important to check
its performance, and particularly the performance of the RNIS service in a vir-
tualized environment. Given the volume of data handled by the RNIS and the
potentially stringent delay requirements for the delivery of these data to interested
applications, the results of such a study can be important for the MEC operator
to appropriately dimension the resources to allocate to each RNIS virtual instance
and to set up the management mechanisms for their automatic scaling to meet the
performance requirements of the MEC tenants. At the same time, such results can
provide insight on the choice of the suitable technologies for the implementation
of specific internal RNIS mechanisms.

This section starts with a brief introduction of our MEP implementation based
on OAI. A detailed description of our implementation of RNIS-as-a-Service (RNISaaS)
follows.

3.1 Implementing a MEP on top of OpenAirInterface

Figure 3: Architecture of our OpenAirInterface-based MEC Platform.

OAI is an open source implementation of LTE components, covering the RAN
and the Evolved packet Core (EPC), with current developments focusing of 5G

5

technology. As MEP is the MEC element that interfaces directly with the 4G net-
work, we started by implementing the Mp2 interfaces that allow to interact with the
OAI EPC and OAI eNodeB. The first one is needed to implement the traffic redi-
rection at the EPC, as per the request of the MEC application hosted at the edge.
The second is needed to interact with eNodeBs to gather RAN-level information
on the UEs environment and context, which will be exposed via the RNIS API
(and/or other standardized interfaces such as the location API [14]). To implement
the first one, we adopted the Control and User Plane Separation (CUPS) paradigm
introduced by the 3GPP [15]. CUPS proposes to separate the data plane and the
control plane functions at the S/P-GW. Figure 3 illustrates the global overview of
the MEP-OAI platform. The S/P-GW has been split into two entities: S/P-GW-C
and S/P-GW-U (C for control plane; U for user plane). The former one is in charge
of managing the signaling control to create the user-data plane, while the latter is
in charge of forwarding the user plane data. The S/P-GW-U is connected to the
Internet and the edge virtualization platform. As per the MEC application request
(or when requested by the MEO), the MEP installs traffic rules on the S/P-GW-U
to offload traffic to the MEC application. In our solution, the OpenFlow protocol
was adopted as the Mp2 interface. In the OAI-MEP platform, the S/P-GW-U is
based on a patched version of the OpenVSwitch (OVS) software which supports
matching GTP packets.

On the other hand, the FlexRAN [16] protocol is used to implement the Mp2
interface towards the eNodeB to obtain radio statistics and expose them via the
RNIS API. FlexRAN is a flexible and programmable software-defined RAN plat-
form that separates the RAN control and data planes via a new, custom-tailored
southbound API. There are other MEC services that the OAI-MEP can provide
(service registration and discovery, DNS, etc.), but they are outside the scope of
this paper.

3.2 OAI-based RNIS Implementation

The Radio Network Information Service (RNIS) is provided by the MEC plat-
form via the Mp1 reference point. This service provides up to date radio network
related information which can be utilized by any authorized mobile edge applica-
tion. Broadly speaking, the RNIS can provide the below information regarding a
UE:

• Change of cell coverage.

• Timing advance, carrier aggregation reconfiguration etc.

• User plane measurement-related information.

• Bearer formation information and its parameters.

This information can be provided with different granularity, using as a UE
identifier its IMSI, IPv4 or IPv6 address. For example, the RNIS can provide RAN

6

information per UE, for all the UEs under a specific cell coverage, by Quality Class
Identifier (QCI) value and using various other combinations. Our RNIS implemen-
tation offers two methods for fetching this information: First, it provides a simple
request-response mechanism where applications can ask for specific information
from the RNIS using a RESTful HTTP interface. Second, it exposes a publish-
subscribe interface, where an application can subscribe for a set of notifications for
getting updates on a range of parameters. The latter provides more up-to-date, near-
real-time information on the radio conditions and gives the opportunity to applica-
tions to subscribe for notifications across a rich set of criteria and their combina-
tions. In [2] these notifications have been divided in eight categories: cell change,
UE measurement report, Radio Access Bearer (RAB) establishment, RAB modifi-
cation, RAB release, UE timing advance, UE carrier aggregation reconfiguration,
and S1-U bearer information. The operation of the OAI-MEP publish-subscribe
mechanism is illustrated in Figure 4.

Figure 4: Operation of the RNIS provided by our OAI-based MEC platform.

At the southbound interface (between the eNodeB and the MEP), the FlexRAN
agent of the eNodeB sends messages in raw format including several information
on the UE radio context, e.g. QCI, RSRP and RSRQ. These messages need to be
treated and formatted in a JSON format as specified in [2]. OAI-MEP provides
a RNIS service to subscribe to all the eight different types of notifications, as de-
scribed above.

In our implementation, we have divided the RNIS in two components, as illus-
trated in Figure 4. The first component is the collector, which receives, parses, and
stores the messages coming from the eNodeBs it manages, and formats them appro-
priately in JSON. Every notification has a different message structure. The format-
ted messages are forwarded to the second component, i.e., the broker/publisher.
It classifies the messages according to the different filtering criteria, as specified
in [2]. For the proposed implementation, the messages can be filtered on a per
eNodeB (cell) or on a per UE basis. That is, a MEC application can subscribe to
notifications related to an entire cell or a set of UEs. Thus, the broker classifies

7

the messages according to these filtering criteria and notifies the subscribed MEC
applications. Section 4 covers the implementation of the broker/publisher in more
detail.

4 RNIS message broker implementation

As described in Section 3, the RNIS comprises a collector and a broker/publisher
component. For the latter, we have experimented with two message brokers, i.e.,
Apache Kafka [12] and RabbitMQ [11]. The two candidate technologies have
fundamentally different design and implementation, which is reflected in their per-
formance, as we shall show in Section 6.

4.1 Message Brokers

4.1.1 RabbitMQ

This is a traditional message queuing system which implements the Advanced
Message Queuing Protocol (AMQP) 2 and is built in Erlang. It follows the stan-
dards for AMQP 0.9.1 and can also support AMQP 1.0 via a plugin. In RabbitMQ,
all the messages first arrive to an exchange, which distributes the messages to dif-
ferent queues based on a routing key or message header value. Once a message
arrives in a queue the RabbitMQ server pushes it to the consumer(s) listening to
the queue.

4.1.2 Apache Kafka

This is a distributed streaming platform and is designed around distributed
commit log [12]. It is designed for handling very high message rates and for
supporting consumer clusters (running multiple consumer instances in a consumer
group). In Kafka, the messages are published according to topics and each topic
has multiple partitions. A copy of the message is stored in each partition. (De-
pending on the replication factor there can be more copies in other Kafka clusters.)
Once the messages have arrived in the partition, they can be pulled by the consumer
groups, if the latter have subscribed to the particular topic.

4.1.3 Distinctive characteristics

• Routing Capability: RabbitMQ provides various exchanges (direct, fan-
out, headers, topic) and extensive capabilities for routing the messages (pat-
tern matching, header matching). Whereas, in Kafka the messages can only
be routed according to topics.

2https://www.amqp.org/

8

• Message Storage: In Kafka the messages are available even after consump-
tion, which is not the case with RabbitMQ. In RabbitMQ, messages can only
be consumed once and in Kafka it can be consumed till the time its available,
depending on the message retention period.

• Multiple Consumers: Kafka supports multiple consumer groups subscrib-
ing to the same topic. On the contrary, in RabbitMQ if there are multiple
consumers listening to the same queue, then the messages they have sub-
scribed for will be pushed in round robin manner.

RabbitMQ is implemented using the header exchange: messages are routed
according to their headers, which acts like a routing argument. Every subscriber
has its own dedicated queue and these queues have new header values for every
new subscription. The higher the number of subscriptions, the more will be the
number of routing arguments. Every subscriber has one RabbitMQ consumer in-
stance running locally, on the same machine were the RNIS application is running.
As per [2], the messages have to be delivered to the subscribers via the HTTP pro-
tocol. These consumer instances send an HTTP post request on the callback URL
of the subscribers, provided by them at subscription time, together with the rest of
the subscription information.

In Kafka this implementation is slightly different because of its architecture
and provided features. In Kafka, messages are routed according to topics. For
every subscription there is one topic and one consumer instance (running locally,
as with RabbitMQ) which listens to these topic partitions. This consumer instance
belongs to a consumer group (one consumer group for one subscriber). Kafka
provides the facility for consumer groups to subscribe to the same topic. Every
consumer group maintains an offset value which helps in fetching the messages
serially or in a random manner. This feature provides the ability to merge similar
topics, having similar filtering criteria chosen by subscribers. This reduces the
number of topics.

Concluding, in RabbitMQ there is a single dedicated consumer instance post-
ing the notifications to the subscriber. Whereas, in Kafka there are lot of consumer
instances (belonging to same consumer group) posting the notifications to the sub-
scriber.

We should finally make the following remarks regarding our implementation:

1. Message batching is not considered for any implementation. The messages
will be posted as soon as they are produced. This provides a near real time
view of the network to the notification subscriber.

2. Both message brokers are used in unacknowledged mode. The producer
is not waiting for an acknowledgement from the broker. This is done to
improve the E2E latency. We should note, though, that both the brokers
were reliable during the whole testing scenario and there was no message
loss.

9

5 Testing environment

The test was performed on a host with a 4-core Intel (i5-3470 @3.2 GHZ)
CPU, 500 GB hard disk and 16 GB RAM, running Ubuntu 16.04 LTS. The appli-
cation was written in python 2.7.12; pika 0.11.2 and confluent-kafka 0.11.4 are the
respective python libraries of RabbitMQ and Apache Kafka. Regarding software
versions and settings, RabbitMQ 3.77 with Erlang 21.0.6 was used with the stan-
dard settings provided during installation, and Kafka 2.0.0 with Java 1.8.0 181 was
used with the recommended Java VM (JVM) settings provided by confluent [17].
The JVM settings used were:

-Xms4g -Xmx4g -XX:MetaspaceSize=96m
-XX:+UseG1GC
-XX:MaxGCPauseMillis=20
-XX:InitiatingHeapOccupancyPercent=35
-XX:+ExplicitGCInvokesConcurrent
-XX:G1HeapRegionSize=16M
-XX:MinMetaspaceFreeRatio=50
-XX:MaxMetaspaceFreeRatio=80
-Djava.awt.headless=true

There is one cluster of Apache Kafka and one of Zookeeper. Similarly, there
was only one RabbitMQ broker. The replication and clustering capabilities of
Kafka or RabbitMQ were not explored in this test scenario.

All applications (RNIS application, broker, subscribers and message producer)
were executed on the same host to avoid the effects of network delays on the results
of our measurements. Also, the brokers were given the highest priority on the
CPU(s) they were running using the nice Linux command.

6 Experimental results

RabbitMQ and Apache Kafka both have a different architecture, each coming
with its advantages and disadvantages. To get a better insight on which broker is
suitable to implement the RNIS, extensive tests were performed; their results are
presented in this section. The parameters taken into account for each test case are
mentioned below every figure.

6.1 Increasing numbers of subscribers

Considering that every subscriber has subscribed to eight different notifica-
tions, we observed the effect of increasing the number of subscribers on end-to-end
(E2E) latency for both the message brokers. We define E2E latency as the interval
from the time instance when specific data to which an application has subscribed
are received by the RNIS from the eNodeB over the FlexRAN-based southbound

10

interface (thus generating a publication), until the moment they have been success-
fully delivered to the consuming application.

Figure 5 illustrates the effect on E2E latency with increasing number of sub-
scribers. The average E2E latency for both brokers is less than 50 ms, which in-
dicates that both are suitable for real time applications. When the number of sub-
scribers increases, in RabbitMQ the number of queues starts increasing, which
results in increasing workload (replicating messages for every subscriber) for the
exchange. The number of routing headers is the same for every subscriber. The
number of RabbitMQ consumers posting messages to MEC applications is the
same as the number of subscribers. All the subscribers are subscribing to similar
eight notifications. In Kafka, this results in eight topics for all the subscribers and
when the number of subscribers increases the consumer groups linearly increase.
This results in a growing number of consumer groups on topic partitions. There
are eight consumer instances in each consumer group posting the notifications to
the subscribers. Therefore, the increased number of consumer instances in Kafka
in comparison with RabbitMQ results in lower E2E latency for the latter.

Figure 5: Effects on E2E latency with increasing numbers of subscribers. Message
rate is set to 10/s; each subscriber has subscribed to 8 notifications. Total messages
produced: 10,000. Messages consumed: 10,000 * Number of subscribers.

We then turn our attention to the E2E delay distribution. To focus on the deliv-
ery time of every single message, Figure 5 presents a box plot showing the distri-

11

bution of E2E latency for a single subscriber taken out of 50 subscribers subscribed
to eight notifications.

Figure 6: Box plot of the E2E latency in notification delivery for a single sub-
scriber out of 50 concurrent subscribers, each of whom having eight subscriptions.
Message rate: 10/s. Total messages produced: 10,000. Messages consumed by this
subscriber: 10,000.

The plot contains ten thousand values for each broker. It shows that E2E la-
tency for RabbitMQ deviates less from the mean value in comparison to Kafka.

6.2 Increasing numbers of subscriptions

In this experiment, we are increasing the number of subscriptions from 1 to 8,
keeping the number of subscribers constant to 50. RabbitMQ exhibits better per-
formance than Apache Kafka in this test case. In RabbitMQ, increasing the number
of subscriptions increases routing headers. This results in a growing sorting load
on the exchange. The number of consumer instances posting the messages to MEC
applications is constant. Hence, the latency will slightly increase with increasing
numbers of subscriptions, but not as per the previous scenario where the number
of queues was increasing. However, in Kafka the more the subscriptions, the more
the number of topics and consumer instances in a consumer group. This combina-
tion of increase in topics and consumer instances results in a growing number of

12

consumer instances on topic partitions, which creates a similar impact as per the
previous test case.

Figure 7: Effects on E2E latency with increasing numbers of subscriptions. Mes-
sage rate: 10/s, number of subscribers: 50. Total messages produced in each case:
10,000. Messages consumed in each case: 500,000.

6.3 Resource utilization

The average CPU and average real memory utilization metrics are important
for understanding the performance of both the brokers. We thus perform a set of
experiments to measure resource utilization for the same message production rate,
number of subscribers and number of subscriptions per subscriber and for increas-
ing CPU resources allocated to the broker. In particular, we vary the number of
CPU cores assigned to the broker application from 1 to 3, using the taskset Linux
utility to pin the broker process to a specific set of CPU cores. From Figure 8-11,
the Java-based Kafka utilizes more resources in comparison with the Erlang-based
RabbitMQ. The first reason for this behaviour is the architectural difference be-
tween Erlang and Java (for example, how Java handles garbage collection). Sec-
ond, the rate of message production in our experiments is in general kept low; for
higher message production rates, it is possible that the curves can deviate. For the
experimental settings studied in this work, which we consider realistic, RabbitMQ
shows better performance in terms of resource utilization.

13

We should further note that, as expected, E2E latency consistently reduces with
an increase in the CPU resources allocated. This result is important for the operator
of the RNIS in an NFV environment: Given a specific workload in terms of the
number of UEs (which translates to a specific rate/volume of generated RAN level
information) and subscribing MEC applications, and under specific E2E latency
requirements, the MEC application orchestrator may appropriately (re-)dimension
the resources assigned to a virtualized RNIS instance. This way, it can dynamically
scale the number of virtual CPUs allocated to an RNIS instance to match service
workload and ensure that it is adequately provisioned deliver notifications to the
subscribed MEC applications in a timely manner, without “overspending” CPU
resources.

Figure 8: Apache Kafka: Box plot for CPU utilization vs. E2E latency by in-
creasing number of CPU cores. Message rate: 10/s. Number of subscribers: 50;
each of them has subscribed to 8 notifications. Total messages produced: 10,000.
Messages consumed: 500,000.

6.4 Discussion

The message generation/publication rate for all the test cases was one mes-
sage every 100 ms. For this rate, the latency of both the brokers was below 50 ms,
which makes both of them appropriate for some real-time applications. Compar-
ing Apache Kafka and RabbitMQ, the number of Kafka consumer instances per

14

Figure 9: RabbitMQ: Box plot for CPU utilization vs. E2E latency by increasing
number of CPU cores. Message rate: 10/s. Number of subscribers: 50; each of
them has subscribed to 8 notifications. Total messages produced: 10,000. Mes-
sages consumed: 500,000.

15

Figure 10: Apache Kafka: Box plot for memory utilization vs. E2E latency by
increasing number of CPU cores. Message rate: 10/s. Number of subscribers: 50;
each of them has subscribed to 8 notifications. Total messages produced: 10,000.
Messages consumed: 500,000.

16

Figure 11: RabbitMQ: Box plot for memory utilization vs. E2E latency by in-
creasing number of CPU cores. Message rate 10/s. Number of subscribers: 50;
each of them has subscribed to 8 notifications. Total messages produced: 10,000.
Messages consumed: 500,000.

17

subscribers is increased in comparison with the case for RabbitMQ, where there
is one consumer instance per subscriber. The reason for a greater number of con-
sumer instances in Kafka is due to the fact that, if a single consumer instance listens
to multiple topics at the same time then the consumption of messages will be very
slow. To compensate for that, for every subscription there is a single instance which
improves on latency at the expense of heavy CPU and memory utilization.

In Kafka, the consumer implementation is based on the pull model and in
RabbitMQ it is based on the push model. Therefore, if many consumer instances
are polling simultaneously then the broker has to maintain offsets for all the con-
sumers. This increases the processing load on the broker.

In summary, for implementing the publish-subscribe mechanism for our OAI-
based RNIS, RabbitMQ appears to be a better option. It utilizes less resources,
while having better latency performance compared with Kafka. If more RabbitMQ
consumer instances are used for a subscriber, then the latency can be lower down at
the expense of more resource utilization. We should note that experimenting with
very high message rates to verify that the same behavior is observed is part of our
ongoing work.

7 Conclusion

In this paper, we presented the implementation of a standards-compliant RNIS
service on top of an OAI-based MEC platform, and presented extensive exper-
imental results on its performance. We targetted a MEC-in-NFV environment,
as recently introduced by ETSI, where MEC platform components, including the
RNIS, are to be executed on top of an edge Network Functions Virtualization In-
frastructure (NFVI), without excluding the case for multiple virtual RNIS instances
coexisting, each belonging to a different tenant and being authorized to expose dif-
ferent subsets of RAN-level information. In such settings, our results can be used to
gain insight about the performance characteristics of the RNIS as a function of the
underlying technogies used to implement information delivery, and, importantly,
towards dynamically allocating resources to RNIS virtual instances for efficiently
providing the RNIS in an on-demand, “as-a-service” manner, satisfying the re-
quirements for timely RAN-level information delivery. By using a MEC platform
based on OpenAirInterface which we have developed, we compared the perfor-
mance of two well-known message brokers (i.e., RabbitMQ and Kafka) for the
implementation of the standards-based publish-subscribe message delivery func-
tionality of the RNIS. The objectives were to assess the performance mainly in
terms of latency, in the spirit of low-latency communication as enabled by edge
computing. At the same time, we evaluated performance in terms of CPU and
memory utilization, which represent the bottleneck of any virtualized system. The
obtained results advocate for the use of RabbitMQ, as it is more lightweight and
thus appropriate for a MEC context, where compute resources are typically more
scarce.

18

References

[1] Mobile Edge Computing (MEC); Framework and Reference Architecture,
ETSI Group Specification MEC 003, Mar. 2016.

[2] Mobile Edge Computing (MEC); Radio Network Information API, ETSI
Group Specification MEC 012, Jul. 2017.

[3] C. I, Y. Liu, S. Han, S. Wang, and G. Liu, “On big data analytics for greener
and softer RAN,” IEEE Access, vol. 3, pp. 3068–3075, 2015.

[4] J. Pérez-Romero, V. Riccobene, F. Schmidt, O. Sallent, E. Jimeno, J. Fer-
nandez, A. Flizikowski, I. Giannoulakis, and E. Kafetzakis, “Monitoring and
analytics for the optimisation of cloud enabled small cells,” in Proc. 23rd
IEEE International Workshop on Computer Aided Modeling and Design of
Communication Links and Networks (CAMAD), 2018.

[5] C. Ge, N. Wang, S. Skillman, G. Foster, and Y. Cao, “QoE-Driven DASH
Video Caching and Adaptation at 5G Mobile Edge,” in Proc. 3rd ACM Con-
ference on Information-Centric Networking (ICN ’16), 2016, pp. 237–242.

[6] S. Peng, J. O. Fajardo, P. S. Khodashenas, B. Blanco, F. Liberal, C. Ruiz,
C. Turyagyenda, M. Wilson, and S. Vadgama, “QoE-Oriented Mobile Edge
Service Management Leveraging SDN and NFV,” Mobile Information Sys-
tems, vol. 2017, 2017.

[7] Y. Li, P. A. Frangoudis, Y. Hadjadj-Aoul, and P. Bertin, “A Mobile Edge
Computing-assisted video delivery architecture for wireless heterogeneous
networks,” in Proc. IEEE ISCC, 2017.

[8] Y. Tan, C. Han, M. Luo, X. Zhou, and X. Zhang, “Radio network-aware
edge caching for video delivery in MEC-enabled cellular networks,” in
2018 IEEE Wireless Communications and Networking Conference Work-
shops (WCNCW), April 2018, pp. 179–184.

[9] Mobile Edge Computing (MEC); Deployment of Mobile Edge Computing in
an NVF environment, ETSI Group Report MEC 017, Mar. 2018.

[10] Multi-access Edge Computing (MEC); Support for Network Slicing, ETSI
Std. MEC 024, Jul. 2018.

[11] RabbitMQ. [Online]. Available: https://www.rabbitmq.com/

[12] Apache Kafka. [Online]. Available: https://kafka.apache.org/intro

[13] Network Functions Virtualisation (NFV); Management and Orchestration,
ETSI Group Specification NFV-MAN 001, Dec. 2014.

19

[14] Mobile Edge Computing (MEC); Location API, ETSI Group Specification
MEC 013, Jul. 2017.

[15] P. Schmitt, B. Landais, and F. Y. Yang, “Control and User Plane Separation
of EPC nodes (CUPS),” 3GPP, Tech. Rep., Jul. 2018. [Online]. Available:
http://www.3gpp.org/cups

[16] X. Foukas, N. Nikaein, M. M. Kassem, M. K. Marina, and K. P. Kontovasilis,
“Flexran: A flexible and programmable platform for software-defined radio
access networks,” in Proc. ACM CoNEXT, 2016.

[17] Running Kafka in Production. [Online]. Available: https://docs.confluent.io/
current/kafka/deployment.html

20

