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ABSTRACT
In the past few years, both the industry and the academic com-
munities have developed several approaches to detect malicious
Android apps. State-of-the-art research approaches achieve very
high accuracy when performing malware detection on existing
datasets. These approaches perform their malware classi�cation
tasks in an “o�ine” scenario, where malware authors cannot learn
from and adapt their malicious apps to these systems. In real-world
deployments, however, adversaries get feedback about whether
their app was detected, and can react accordingly by transforming
their code until they are able to in�uence the classi�cation.

In this work, we propose a new approach for detecting Android
malware that is designed to be resilient to feature-unaware pertur-
bations without retraining. Our work builds on two key ideas. First,
we consider only a subset of the codebase of a given app, both for
precision and performance aspects. For this paper, our implemen-
tation focuses exclusively on the loops contained in a given app.
We hypothesize, and empirically verify, that the code contained in
apps’ loops is enough to precisely detect malware. This provides
the additional bene�ts of being less prone to noise and errors, and
being more performant.

The second idea is to build a feature space by extracting a set of
labels for each loop, and by then considering each unique combina-
tion of these labels as a di�erent feature: The combinatorial nature
of this feature space makes it prohibitively di�cult for an attacker
to in�uence our feature vector and avoid detection, without access
to the speci�c model used for classi�cation.

We assembled these techniques into a prototype, called L���MC,
which can locate loops in applications, extract features, and perform
classi�cation, without requiring source code. We used L���MC to
classify about 20,000 benign and malicious applications. While
focusing on a smaller portion of the program may seem counter-
intuitive, the results of these experiments are surprising: our system

achieves a classi�cation accuracy of 99.3% and 99.1% for the Mal-
ware Genome Project and VirusShare datasets respectively, which
outperforms previous approaches. We also evaluated L���MC,
along with the related work, in the context of various evasion
techniques, and show that our system is more resilient to evasion.
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1 INTRODUCTION
In the past few years, both the industry and the academic com-
munities have developed several approaches to perform malware
detection. State-of-the-art research approaches, which leverage var-
ious compositions of static and dynamic analyses, are known to
detect malware on existing datasets accurately. Techniques such as
behavior-based signatures [46], dynamic taint tracking [21], and
static data �ow analysis [8, 25] are designed to locate speci�c symp-
toms or traces of malicious behavior (e.g., reading SMS data) in
programs.

However, these approaches make the unrealistic assumption that
malware authors are unaware that their code is being analyzed,
or are unable to react to their code being classi�ed as malicious.
Consider, for example, Google Bouncer [32], which serves as the
primary gatekeeper for Android apps published in Google’s Play
Store. Developers submitting apps will be noti�ed if the system
deems their app to be suspicious, allowing them to modify the
app and resubmit it again. This simple model gives attackers the
opportunity to learn and adapt their apps to hide malicious actions
from a particular detection methodology. While the attacker may
know some information about how Bouncer works, they do not
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have access to Bounder’s models or detection rules, and must infer
them through trial and error.

This work proposes a new technique to perform malware de-
tection of Android apps that is resilient against feature-unaware
perturbations, such as those in the above scenario. Our work builds
on two key ideas. First, we consider only a subset of the codebase of
a given app, both for precision and performance. For this paper, we
focus exclusively on the loops contained in a given app. We hypoth-
esize, and empirically verify, that the subset of a program contained
in its loops encodes enough information to perform accurate mal-
ware detection. Loops are a key construct when writing programs,
and are a key factor in the Turing-completeness of programming
languages. Furthermore, loops are di�cult to remove or obfuscate,
and focusing on loops allows the analysis to be more robust to
evasion: A functionality that needs loops to be implemented, cannot
be implemented without one [13], even through techniques such
as loop unrolling. While it is well understood that some loops can
be transformed into equivalent structures, such as using recursion,
or a high-level primitive, there is still, conceptually, a loop in the
program for our analysis to �nd.

The second idea is to build a feature space by extracting a set
of labels for each loop, and by then considering each unique com-
bination of these labels as a di�erent feature. For each loop, our
analysis determines which Android API methods are invoked, di-
rectly or indirectly. To aid our approach, we created a semantic
labelling mechanism that maps every Android API to one of 202
semantic labels. This mechanism is used to extract, for each loop, a
set of semantic labels. The unique combination of semantic labels is
then used to create a semantic tag, which conceptually encodes the
loop’s core functionality. Finally, our system computes the app’s
feature vector by encoding how many loops with each semantic are
contained in the app. As our approach creates a large number of
features, many of them may not have any impact on classi�cation.
To mitigate this, we propose a method for iterative feature prun-
ing, based on Random Forest feature importance, which improves
performance by reducing the number of features that need to be
considered. As clearly shown in Section 4, the combinatorial nature
of the considered features makes it prohibitively di�cult for an
attacker to in�uence their app’s feature vector and avoid detection
using feature-unaware perturbations.

Furthermore, when analyzing a previously-unseen app, the app
may contain loops whose combination of labels is not covered by
any semantic tag seen while training our model. This also provides
a venue for an attacker to evade detection. For this reason, we
developed a new mapping strategy, which we call Conservative
Mapping, that selects the nearest semantic tag, and conservatively
errs toward semantic tags associated with maliciousness.

We assembled these techniques into a system, called L���MC,
which can be used to analyze and classify large volumes of Android
applications, using only their bytecode. We evaluated our system
against over 20,000 real-world benign and malicious applications
both on an o�ine scenario, where an attacker receives no feedback,
and on an online scenario, where an attacker can modify the appli-
cation using various techniques to evade detection. Our approach
can di�erentiate between the malicious and benign apps with 99.3%
and 99.1% accuracy on two di�erent datasets. Our experiments
show that our work achieves high accuracy, even when an attacker

is allowed to modify their app in response to feedback from the
detection system. Even though our choice of focusing on loops
may seem counter-intuitive, our experimental evaluation shows
an improvement in malware detection accuracy over systems that
consider the entire codebase. Finally, we compare our work with
state-of-the-art malware detection systems namely, DroidAPIMiner
and Drebin. Not only do we show that our system outperforms
them, but we also show that it is easy to evade them.

In summary, this work provides the following contributions:
• We present a new approach to perform malware detection,
which is resilient to feature-unaware perturbations by using
machine learning models built with features extracted from
loops.
• We extensively evaluate our prototype 1, L���MC, by con-
sidering a large dataset of over 20,000 benign and malicious
Android apps, and show that it can accurately identify mal-
ware.
• We show that our approach is e�ective even when consider-
ing an active adversary that can modify their app, while we
show that existing works signi�cantly drop in accuracy.

2 THREAT MODEL
We frame our work in the context of a typical app store or app mar-
ket: developers submit apps to the store’s operator to be approved
for distribution, only after undergoing some series of checks and
analyses. These analyses typically include those designed to pro-
hibit the spread of malware through the store. While some details
of the inner-workings of this system may be public, such as the
kind of machine learning or signature mechanism in use, the exact
features used, or what part of the app led to a classi�cation, are
typically kept secret from developers. Even without these details,
the developer does gain an oracle against which to test future ver-
sions of their app. Therefore, we assume a threat model in which an
attacker is capable of feature-unaware perturbations, which includes
any modi�cation that can be performed without speci�c knowledge
of the features used in a model or ruleset used for classi�cation. The
attacker may know the method used to classify apps, such as the al-
gorithms in use, but not the contents of the actual model. Speci�c to
our work, this means an attacker may know that our system relies
on loops, the details of our supervised machine learning technique,
or the concept of semantic tags, but cannot know which semantic
tags are considered by the trained model.

Note that this is a more realistic and stronger threat model than
what has been considered by previous works, which we explore in
Section 8, where the attacker is agnostic to the detection method
and cannot reactively modify the app.

3 APPROACH OVERVIEW
L���MC, whose high-level design is depicted in Figure 1, is a
machine-learning-based system that uses a set of labeled APKs to
train and create a model, which can then be used to detect malicious
Android applications (i.e., malware). Our system works through
several di�erent stages, which are presented in this section. As
previously mentioned, our work is constituted by two main phases:

1www.github.com/ucsb-seclab/LoopMC
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Figure 1: L���MC overview.

loop characterization, which performs program analysis to extract
information about the loops of a given app, and application classi�-
cation, which combines the information extracted in the �rst phase
and uses machine learning techniques to train a model for malware
detection. We provide an overview of the two main phases, each of
which will be discussed in detail in the two upcoming sections.
Loop Characterization. This phase takes as input an Android
app (i.e., an APK �le), and it performs static analysis to extract
all loops in the app. The analysis then considers each loop and
extracts those Android framework APIs that are invoked within
the loop’s body. Each of the invoked API is then associated with a
semantics-carrying label. The unique combination of these labels
forms a semantics tag.
Application Classi�cation. The semantic tags extracted for each
loop are used to compose a feature vector. In particular, each ele-
ment of the feature vector encodes the number of loops that are
associated with a speci�c semantics tag. Due to the combinatorial
nature of the features vector, only a subset of all possible combi-
nations are considered. In our work, we create a feature for every
combination we observe during the training phase of the machine
learning models. Then, we developed a mapping mechanism that
allows us to take into account loops whose semantic tag has not
been seen during the training phase. Our approach then applies
supervised machine learning techniques to train a model to perform
malware detection.

3.1 Why Loops?
Before giving details of how L���MC works, it is important to
linger on the bene�ts of focusing on loops. We conjecture that
loops represent an essential subset of the whole program and that
they can be used to infer interesting properties about the app, such
as whether it is benign or malicious. Loops, in the most general
sense, are made possible by a conditional branching structure and
the ability to jump backward in code. Repetition is such a basic
concept that most important algorithms simply cannot be expressed
without it.

On the one hand, focusing on loops has two advantages. First,
because of their fundamental nature, loops are more di�cult to
remove or obfuscate than linear code [16, 27]. This aspect makes

Figure 2: A CDF of the percentage of reached methods vs. the percentage of
di�erent Android APIs invoked by only considering each app’s loops. For 50%
of the apps in our dataset, loop code reaches only 30.48% of themethods, while
reaching 93.95% of the di�erent Android API call sites in the app.

loops good candidates to focus on. Second, as we will show in our
evaluation, focusing on loops o�er a signi�cant performance boost.

On the other hand, by only focusing on loops, one may be con-
cerned about missing important behavior of a given app. To this end,
we performed a simple empirical study to understand how much
relevant information is included in the loops of Android applica-
tions. To measure “relevant information,” we consider two aspects:
the percentage of methods invoked or reached, directly or indirectly
(through other method calls), exclusively within apps’ loops, and
the percentage of di�erent Android APIs invoked within loops with
respect to the number of Android APIs invoked by the app when
considering the entire codebase (as in many related works, e.g., [3],
Android APIs invoked by an app are used as a proxy to determine
its behavior.).

Our results, shown in Figure 2, are surprising: for 50% of the
apps in our dataset (discussed in Section 5), the apps’ loops reach
only 30.48% of the methods they de�ne, but invoke up to 93.95%
of the di�erent Android APIs invoked by the app. In other words,
while loops do constitute a subset of the app’s codebase, they cover
most of the di�erent Android API call sites the app contains. It is thus
not surprising that, as discussed in our evaluation, the accuracy
results of our analysis do not improve when considering the entire
codebase with respect to only considering loops.

3.2 Loop Characterization
The �rst major task of our system is to transform an Android app
into a feature vector representing the behavior of its loops, in terms
of Android APIs. This includes recovering the actual loop structure
from an app’s bytecode, as well as how the loop’s content is formed
into the �nal feature vector.
Loop Extraction. Given an APK, the very �rst step involves its
loops analysis and extraction. Particularly, L���MC disassembles
the app’s Dalvik bytecode and compute the APK’s static control
�ow graph (CFG), which is then used to locate the application’s
loops. In our context, a “loop” is not just an instance of a looping
construct available in the programming languages (for, while, do,
etc.), but any cycle in the CFG. We leverage a well-known Depth-
First-Search-based (DFS) loop-�nding algorithm [43] that reliably



detects all loops in the program. In our implementation we relied
on Androguard [17] to perform the above-mentioned steps.
Semantic Labels. In this work, we characterize a loop’s e�ect on
the state of the program by determining which Android framework
APIs could be possibly invoked from its guard or body. This is
accomplished by considering the transitive closure of all guard and
body code, and consider all API method calls it contains. To this end,
we scan the bytecode for invoke instructions. In order to resolve
the actual function being called, we must determine the type of
the object whose method is being called, which may have more
than one solution. This e�ectively simulates dynamic dispatch, the
mechanism that, at run-time, determines which method to call
according to the dynamic type of the receiving object. To do this,
we perform a Class Hierarchy Analysis (CHA) to determine the
complete set of possible classes and the contained methods that
could possibly be invoked by the considered invoke instruction.

The number of possible Android API calls is very large, about
65,000, and determining the semantics of each of them is a chal-
lenging, open problem. What makes this aspect di�cult is that
some APIs might perform functions unrelated to their name, class,
or package hierarchy. On the other hand, two APIs with similar
names might perform very di�erent tasks. To solve this, we as-
sign to each Android framework API a semantic label. In particular,
we de�ned a set of 202 semantic labels, which assign a seman-
tics to the net e�ects of each API invocation. For example, the
method saveAttributes() of android.media.ExifInterface is
assigned the label ioWrite as it is used to write EXIF tags to a JPEG
�le, which in e�ect is a �le writing operation. As a starting point,
we considered results generated by automatic tools proposed by
previous research [7, 9]. We then carefully examined the Java and
Android documentation to assign labels to every API method that
we encountered in our dataset. Fortunately, not every individual
API needs to be labeled separately, and we can map several classes
and methods to a label through simple pattern matching.

Although this process was mostly manual and tedious, it is a
one-time e�ort and is needed to address several imprecisions that
necessarily occur when using automatic tools. We released 2 the
“Semantic Labelling Mapping” code and data, accompanied by the
information on how to extend it. We aim to make this a community-
driven e�ort, which could be useful even outside the scope of our
work.
Semantic Tags. As the �nal step to characterize each loop, we
consider the unique combination of its semantic labels to create
what we call a semantic tag. In particular, we only consider whether
a speci�c semantic label is used or not. Intuitively, the number of
times a certain label appears is not signi�cant, since the code in a
loop is meant to be repeated. Note that, a semantic tag represents a
dimension in the feature space on which our Model Trainer works.
In other words, a semantic tag is a feature in the APK’s feature
vector.

3.3 Application Classi�cation
The second phase of the system involves using the set of semantic
tags for an app to classify it as malicious or benign. Each element of
the feature vector encodes the number of loops that are associated to
2www.github.com/ucsb-seclab/LoopMC

a speci�c semantic tag. In our work, we �rst create a feature for each
semantic tag we observed during the training phase of our model.
As we may not have encountered all the possible semantic tags
during training, and to handle this case we developed a mapping
mechanism that allows us to take into account those loops whose
semantic tags have never been encountered before. Our approach
then applies supervised machine learning techniques to perform
malware detection.

Feature Vector Builder. To classify entire apps, we need a way
of capturing what each app as a whole does, using the features we
collected. For each app, we record the number of di�erent loops
sharing the same semantic tags. In this context, we do take into
account the repetitions of the same feature, since they represent
additional code within the app.

As an example, consider an app with �ve di�erent loops
with the following semantic tags: two loops with the seman-
tic tag {database, string, datastructure} and one each
of {iterator, genericFileOp, datastructure}, {database,
UI}, and {networkRead, string, UI}. Assuming that these four
are the only semantic tags in our dataset, the app’s �nal semantic-
tag vector is {2,1,1,1}. Of course, in a real scenario, we would
have many more features, and so the vector would be very long
and sparse (i.e., many feature values would have value zero).

Model Trainer.We have a large feature space because of the com-
binatorial nature of semantic tags, and this makes the feature selec-
tion infeasible. However, feature selection is a required step to apply
well-known classi�cations algorithms based on k-nearest neigh-
bors, support vector machines and neural networks. Furthermore,
these algorithms do not provide insight into the importance of
each feature, which we use in our conservative mapping to handle
unknown features [5].

Therefore, a decision tree-based system was a natural choice, as
it does not depend on the meaning of distance in the feature space
(in our feature space the concept of distance is meaningless), and
provides importance measures for each of the features [5]. Conse-
quently, we applied the Random Forest algorithm to the extracted
features to create a model for detection.

Note that, though in principle decision-tree-based algorithms
su�er from the curse of dimensionality [28] due to a big feature space
(like ours), Random Forest tackles this problem [37] by employing
an ensemble of decision trees as well as a bootstrapping scheme. In
fact, as clearly shown in Section 5, even when the feature space is
drastically reduced from dozens of thousands of features to a few
dozens, the decrease in accuracy is either irrelevant or non-existent.

Also note that our system can also handle feature vectors that
do not align with those used to build the model, as described later
in this very section. For details about how Random Forest models
are trained and evaluated, we direct the reader to the exhaustive
documentation on the topic [10–12, 33].

Random Forest has few parameters to tune, and of these, only
the number of trees had any meaningful impact on our experiments.
We explored the optimal number of trees to use in the ensemble and
found that after 50 trees, accuracy changes became insigni�cant,
oscillating within 0.05%. All model-building is done under 10-fold
cross-validation, which was determined to be optimal for real-world
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datasets in [29]. Accuracy is reported as the maximum accuracy of
the ten models.

Iterative Feature Pruning. We implemented an approach to fea-
ture pruning that provides for a degree of scalability, enhanced
accuracy, and gives new insights into the data. While the feature-
space of our data is somewhat large, many of these features do not
have any e�ect on whether the sample is malicious or benign, in
any possible context.

We propose a method of iterative pruning that removes unimpor-
tant features from the model, without using arbitrary thresholds.
First, we train a model, using all of the features in our dataset. Then,
we calculate the importance [24] of each feature, and remove those
that we know have no e�ect on classi�cation (i.e., have an impor-
tance of zero across all trees). Finally, we retrain a new model, only
considering the remaining features, and repeat the process until no
additional features can be removed. In other words, we can say that
a feature is more important if it produces a better split between
the two classes. This approach is similar to the non-iterative one
proposed by Appel et al. [4], although as we will show in Section 5,
the iteration allows us to remove even more under-performing
features.

Conservative Mapping.When built with a large-enough initial
dataset, our model should ideally contain the vast majority of possi-
ble semantic tags that will be seen in Android applications. However,
we must account for the cases where a combination of API calls
results in a semantic tag that is not part of the feature vectors. This
can happen simply during the natural course of writing programs,
but also due to a deliberate attempt to evade detection. In the default
case, where only semantic tags in the original model are considered,
this could lead to a decrease in accuracy over time.

To mitigate the e�ects of this potential attack strategy, our sys-
tem supports a second mode of classi�cation, which minimizes
these issues, at a very slight accuracy penalty. In this mode, we con-
struct a model using only the features that are considered important
to the classi�cation of a malicious sample. First, we build a model,
using the standard procedure described previously in this section.
Then, we determine theMalware Importance, or MI, of each feature.
Finally, we construct a new model, using only those features whose
MI is greater than zero. To classify unknown samples, we map new
features to those in the model, with a bias toward mapping to those
with a higher MI.

The above process hinges on the computation of the Malware
Importance, which is a non-negative real number indicating the
importance of a feature in deciding that a sample is malicious. This
is built on top of the traditional concept of feature importance in
Random Forests [24].

For each non-leaf node (cn) in a decision tree of the model,
which contains a feature test of the form �alue (semantic_ta�) >
threshold_�alue (where �alue (semantic_ta�) is the value of the
feature represented by semantic_ta�), the MI is computed as fol-
lows:

MI (semantic_ta�) =
8><>:
MS (tc )�MS (f c )

Nroot
if MS(tc)>MS(fc)

0 otherwise

where Nroot is the number of samples (both malware and benign)
at the root node of the decision tree, tc and f c are the sub-trees tra-
versed when the feature test is true or false respectively andMS in-
dicates the number of malware samples that reached the node in the
corresponding decision tree during training. If MS (tc ) > MS ( f c ),
more malware samples have values of the feature (or semantic tag)
above the corresponding threshold_�alue , which captures the no-
tion of local importance. Dividing by Nroot normalizes a feature’s
local importance, thus capturing the relevance of the feature in the
tree ensemble (i.e., global importance).

If a feature is used in more than one tree, we pick the maximum
value of the MI across all trees in the forest.

With the importances calculated, we can then perform the Con-
servative Mapping step. For a given semantic tag (i.e., src), we �nd
the closest semantic tag (i.e., dst ) with the least symmetric di�er-
ence in their labels and a non-zero MI. We resolve ties by picking
the tag with the greater MI.

Here we will present a realistic example of the Conservative
Mapping in action. Table 2 shows the entire set of semantic tags
found in the hypothetical dataset of apps used for training. Figure 3
depicts what happens when an app with loops of these tags are
obfuscated through various strategies, as well as how our mapping
handles the unknown tags this process creates. The �rst box of this
�gure represents a malware sample whose loops are represented
in the form #number_o f _loops :< semantic_ta� >. The feature
vector corresponding to features in Table 2 is: <4,1,0,0,3,10,0,0,0>.
As shown in this �gure, the attacker adds useless API calls in the
body of two existing loops disguises an SMS-related API call with
the use of re�ection, and �nally splits a loop into two di�erent
loops, adding a useless API call in both of them. The resulting
app is shown as the second box in Figure 3. Using the default
mapping, where unseen semantic tags are ignored, the feature
vector is <4,0,0,0,0,0,0,0,0>, resulting in a benign classi�cation.
However, by enabling Conservative Mapping, the obfuscated loops
would map to a di�erent set of semantic tags based on the Malware
Importance. The resulting feature vector is: <4,0,0,0,3,20,0,1,0>,
consequently classifying the app as malicious. Table 1 shows the
reasons the semantic tags represented in the third box of Figure 3
were chosen from the semantic tags provided by this particular
system (Table 2). The conservative mapping, as we will show in
Section 5, may raise the false-positive rate, but also allows our
system to easily withstand code obfuscation attacks.

4 RESILIENCE TO FEATURE-UNAWARE
PERTURBATIONS

This section discusses the resiliency of L���MC against various
evasion attempts. Since the features of the app have been compo-
nentized into their loops, merely spraying API calls into a method
does not skew the app’s features, as it does with the related work.
However, there are other evasion techniques that an adversary
could pursue if they were aware of our system.



API label Best semantic tag matched Reason
<iterator > <iterator > Exact Match

<re�ection, iterator > <re�ection, iterator, networkRead > Closest tag with a higher MI
<re�ection, ioWrite, networkRead, genericFileOp > <re�ection, ioWrite, networkRead > Closest tag

<ioWrite, dataStructure > <ioWrite, networkRead > Closest tag with a higher MI
<networkRead, dataStructure > <ioWrite, networkRead > Closest tag

Table 1: Tag matching procedure

Transformation Name Description
LoopMC
is Re-
silient?

Comments

Changing Package Name Package name is changed in
AndroidManifest YES LoopMC does not use the

Manifest �le

Identi�er Renaming �eld names (both local and static) are
renamed YES LoopMC does not rely on the

names of any �elds.

Data Encryption Strings and Data used in the code are
encrypted and decrypted in place. YES LoopMC is data-agnostic.

Call Indirections Add wrapper functions to API calls YES Transitive closure ignores
indirection.

Code Reordering

Reordering the instructions and
inserting goto instructions to preserve
the runtime execution sequence of the

instructions

YES
Content of loops is preserved.

Algorithm [43] for loop
detection is resilient to this.

Junk Code Insertion Insert junk code which does not a�ect
the semantics YES L���MC only considers calls

to API methods

Function Outlining and Inlining
Split a function into multiple functions
and Replace a function call with the

entire function body
YES Transitive closure adds

resilience to this.

Encrypting Payloads and Native
Exploits

Code is stored as encrypted blob,
decrypted at run time and executed. NO

Our analysis is static and fails
to identify the execution of

decrypted code.

Bytecode encryption

Relevant piece of the application code is
stored in an encrypted form and is

decrypted at runtime via a decryption
routine

NO

Presence of decryption
routine at the start of an

application could be used as
an indication of malware.

Table 3: Evaluation of LoopMC against various Application Transformations

Semantic tag or Features MI
<iterator > 0

<sms, iterator > 0.32
<audio > 0

<androidCursor > 0
<re�ection, ioWrite, networkRead > 0.013

<ioWrite, networkRead > 0.004
<ioWrite, ioRead > 0.00016

<re�ection, iterator, networkRead > 0.023
<ioRead > 0

Table 2: Example of set of semantic tags with corresponding MI

Figure 3: Conservative Mapping example

4.1 Application Transformations
Certain application transformations, while simple to implement and
perform, have a dramatic impact on the detection rates of o�-the-
shelf anti-malware solutions. Table 3 shows a list of the transforma-
tion techniques available in DroidChameleon [38], their e�ects on
the program and on the classi�cation performed by L���MC. First,
any transformation that merely alters the data or human-readable
strings of the app, such as string encryption or class renaming,
has no e�ect whatsoever on our system’s feature vectors. Second,
L���MC considers the transitive closure of a loop’s code, and Call
Indirection and in/outlining will not a�ect it. Our system would be
a�ected by bytecode encryption, as the original bytecode is sim-
ply unavailable to static analysis. However, the mere decrypting,
loading, and executing bytecode can be used as a strong signal to
detect Android malware [20, 26, 36]. We note that this may not be
true for classic desktop malware [2].

4.2 CFG Obfuscation
While L���MC is resilient to many program transformations, one of
the more interesting aspects of its performance involves mutation
of the program’s control-�ow graph (CFG). CFG obfuscation works
by adding unfeasible random forward and backward jumps, which
may appear as loops. This represents a worst-case scenario for our
system, as similar work that leverages program-wide sets of API
calls are una�ected. Changing the CFG can impact how loops are



extracted, and change our feature vectors. However, as wewill show
in Section 5, we are still able to detect malicious apps correctly.

4.3 Re�ection
One way in which an attacker can evade an API based malware
analysis systems is through the use of Re�ection to hide method
calls. This could happen by converting some or all API calls to
the equivalent expression using java.lang.reflect.Method and
similar. This would, at a minimum, allow an attacker to alter the
features extracted by any system that uses API calls, including ours.

In a simplistic scenario, an attacker could use one of the many
tools [14] available for Java programs to automate the obfuscation
and transform all method calls into re�ection. These tools provide
an easy way to evade all API call-based detection systems. Complex
string analysis is required to resolve the invoke targets, and main-
tain accuracy. Secondly, a clever attacker can convert some API
calls which they believe to be the most malicious into re�ection.
For example, the adversary may choose to obfuscate only methods
dealing with sending and receiving SMS, a popular feature of An-
droid malware [47]. We explore both scenarios experimentally in
Section 5.

4.4 Loop Perturbations

Figure 4: Relation among n, pa , f and p.

In a real-world deployment of our system, the attacker may per-
form Loop Perturbations, which we de�ne as the ability to modify
their program, by knowing the L���MC algorithm, but without
the detailed knowledge of the model being used (i.e., the employed
feature vector is unknown). We further de�ne these to be passive
perturbations (e.g., those that do not a�ect the app’s overall behav-
ior). Speci�cally, we consider spurious code insertion [35], as it is
much simpler to generate meaningless code without concern for
the impact on the program’s execution. Using this approach, we
evaluate the di�culty for an attacker to evade our system. As a dif-
�culty metric, we compute the probability that randomly-inserted
code with API calls in loops can in�uence the feature vector.

Let’s consider n to be the number of all the possible features
available to the model, and f to be the number of the important
features selected by the underlying detection system to classify the
app. For a given n, we estimate the number of features (p) to be
chosen from n, so that at least one of the features will be in f with
some probability (Pa ). The relation between, p,n,f and Pa is given

by the following equation:

Pa =

8>>>>>>>><>>>>>>>>:

1 �

n � f

p

!

 
n

p

! if (n-f) >p

1 otherwise

The �rst case of the above equation represents the probability of
a�ecting at least one feature. The second case handles the scenario
when we chose more than (n� f ) features, where we can guarantee
that at least one feature will be in f .
Here, n represents the choices available for the attacker, f ( ✓ n)
is the secret set of items that they have to guess, p represents the
number of items to be chosen fromnwhere they could be reasonably
sure (Pa > 0) that one of the items belongs to f . From the above
equation, the following observations could be made:

(1) For a �xed n and Pa , increasing f decreases p (i.e., f / 1
p ).

(2) For a �xed f and Pa , increasing n increases p (i.e., n / p).
(3) For a �xed n and f , increasing p increases Pa (i.e., p / Pa ).
(4) For a �xed n and p, increasing f increases Pa (i.e., f / Pa ).

Figure 4 illustrates these observations with some sample values for
n and f . In Section 5.5, we show how our features make it relatively
hard to evade detection by our system using blind perturbations.

Note that in the above equation, we assume a uniform distribu-
tion of all the features. However, in practice, the features may be
biased on the common characteristics of Android malware, which
could a�ect Pa . For instance, the probability of having {iterator,
sms} in the model is more than {iterator, uiObjectRead}. How-
ever, as we show in Section 5.5, our n is very large, which minimizes
this e�ect.

5 CLASSIFICATION EVALUATION
In this section, we evaluate L���MC’s e�ectiveness at classifying
malicious apps only based on information in their loops. First, we
will explore the performance of L���MC at classi�cation, including
an isolated evaluation of Iterative Feature Pruning and Semantic
Labeling. We will then show the resilience of our system, compared
to previous work, in a scenario where an attacker can obfuscate
the CFG of applications.

As we discuss in Section 8, our work most closely relates to the
DroidAPIMiner [3] and Drebin [6] systems. Both systems leverage
the total set of API calls and permissions of the applications to
compose their feature vectors, and use machine learning to classify
applications.

While we were unable to obtain the actual source code for ei-
ther system, we were able to reproduce DroidAPIMiner’s approach.
Using the same static analysis framework that L���MC is built on,
we extract those features that appear more frequently in malicious
apps by a 6% margin (as in [3]). We then classify the applications
using RapidMiner’s k-nearest Neighbor implementation (k=1), un-
der 10-fold cross-validation. This allows us to compare our system
to DroidAPIMiner under obfuscation scenarios.

5.1 Datasets
We evaluated L���MC against two di�erent publicly-available
malicious app datasets. The �rst, the Malware Genome Project



Figure 5: CDF of loops present in malicious and benign datasets

dataset [47], contains 1,260 apps (178,795 loops) from various mal-
ware families. While this dataset is small, and the repetition of
samples from di�erent families does not provide a lot of variation
in the included apps, this is the best available benchmark to com-
pare against related work. To get a better understanding of how
the system functions in more realistic circumstances, we obtained
11,080 malicious apps from the VirusShare project [1]. From these,
we used 6,016 apps (653,855 loops) in our experiments, as Andro-
guard failed to disassemble the rest [19]. These apps are of unknown
distribution but likely vary widely in source and malware family.
As we will show in the following sections, our results support our
assumptions regarding the variety in the dataset. For benign data,
we obtained 20,000 presumed-benign applications crawled from
the Google Play store using the PlayDrone tool [42], from which
we ignored 931 apps as they were very simple example apps with
less than 5 loops. We successfully analyzed 17,414 apps (8,965,146
loops) and 1,655 timed out (took more than 20 minutes to compute
the transitive closure of API invocations) because of issues with the
version of Androguard [18] that was available at time of writing.

Initially, we suspected there were inherent di�erences in the size
or code complexity of the two classes. We anticipated that malware
would be smaller, due to only needing to perform the intended
malicious functionality. We evaluated this hypothesis against our
data by examining the distribution of the loops in both classes.
Figure 5 shows a CDF of the number of loops in the apps from both
classes, using the larger VirusShare dataset. This result indicates
that there is no substantial di�erence in the number of loops, and
classifying this data is not so simple, and it will serve as an excellent
test of our system.

5.2 Iterative Pruning Performance
Here we will demonstrate the performance of the iterative feature
pruning technique used in our system, as introduced in Section 3.3.

Figure 6 shows the performance while analyzing our dataset, in
terms of the change in the number of features during each iteration,
as well as the accuracy of the model after 10-fold cross-validation.
The process converged in few iterations (nine for VirusShare and
six for Genome respectively), had no negative impact on the cross
validation or accuracy scores, and produced a massive decrease in

System Accuracy System
Type

Evaluation against
EvasionMalware

Genome
Virus
Share

LoopMC 99.3% 99.1% O�-device Yes
DroidAPI
Miner 99% 97.4% O�-Device No

Drebin 94% – On-Device No
Table 4: Comparison of L���MC against DroidAPIMiner [3] and Drebin [6].

the number of features (from 124,781 to 440 and from 47,881 to 38
in the VirusShares and Genome datasets respectively).

5.3 Malware Classi�cation Results
Table 4 shows the results for our system, when analyzing un-
obfuscated samples, and compares them with existing malware
detection systems. The results for DroidAPIMiner and Drebin with
the Malware Genome dataset were obtained from their correspond-
ing papers, and the results for VirusShare were determined from
our re-implementation of the DroidAPIMiner system. Drebin was
unavailable to run on the VirusShare dataset. In the above tests, our
system presents the very low False Positive rate of 0.5% and 0.3%
for the Malware Genome and VirusShare datasets, respectively.

5.4 Importance of Loops and Semantic Labels
As one might argue that the e�ectiveness of our system is mainly
due to a careful and precise choice of semantic labels, in this section
we dissect our system into its two main components, and we show
that they both contributed to its detection e�ectiveness.

First, we show that, independently of the malware detection
mechanism being used, loops alone encode enough information to
allow it to precisely detect malicious applications, as well as greatly
speeding up the overall detection process. To prove this, we ran
our DroidAPIMiner implementation on the same Malware Genome
dataset described above but considering only the code that is reach-
able within the loops of the apps. This resulted in a classi�cation
accuracy of 96.15%, only a slight decrease from when the entire
program is considered. This result clearly shows that regardless of
the detection technique being used, API behavior captured by the
loops can be used to detect malware. Furthermore, since loops are
indeed a small portion of the app’s code, this represents a signif-
icant optimization, without a signi�cant sacri�ce in accuracy. In
fact, we explored a version of our analysis that focuses on methods,
instead of the loops as the basis for features. While the accuracy
was similar (within 1%), the analysis time per app increased by at
least 10x, as there are many more methods to analyze than there
are loops. For instance, in the Malware Genome dataset, there are
1,723,413 methods, compared to the 178,795 loops that our system
extracted.

The semantic labels used to create L���MC’s features are, in
part, derived from manual inspection of APIs. To understand the
impact this has on our approach, as well as that of previous work,
we evaluated this aspect independently. We performed the same
DroidAPIMiner experiment outlined above on theMalware Genome
dataset by substituting the API calls themselves for their semantic
label. This resulted in 52.37% accuracy. This shows that manually
created semantic labels alone are not e�ective and L���MC gains



(a) Genome dataset (b) VirusShare dataset

Figure 6: E�ects of iterative pruning on the number of features and model validation under cross-validation.

Dataset True Positive False Positive
Malware Genome 99.99% 2.01%

VirusShare 99.79% 5.45%
Table 5: Performance on CFG-obfuscated malware with Conservative Map-
ping

System Con�guration Precision
Max Increase of feature Value

LoopMC

10 99.10%
15 97.03%
20 96.25%
25 95.60%

DroidAPIMiner Random bits set 92.51%
Table 6: Additive obfuscation performance of DroidAPIMiner and LoopMC

its advantage from its ensemble of techniques and not just from the
semantic labels.

5.5 Resilience to Feature-unaware
Perturbations

In this section, we experimentally evaluate the resilience of our
system to evasion attempts, compared to previous work, including
permutations of the CFG and hiding malicious behaviors via re�ec-
tion. We have discussed other forms of program transformations
in Section 4.
CFG Obfuscation.We evaluated our system with ADAM, a frame-
work designed to test malware detection approaches [45]. ADAM
contains di�erent modes, including injection of static code, name
obfuscation, string encryption, and CFGmanipulation. Here we will
focus on CFG obfuscation, which involves the injection of spurious
back-edges in the CFG; the other modules do not a�ect our system,
as outlined in the previous section.

Table 5 shows the results when running L���MC on samples
from the Malware Genome and VirusShare datasets, obfuscated by
ADAM. Even in the worst case, when employing the Conservative
Mapping, false positives increase by only 1.51 and 5.15 percent,
respectively.
Re�ection. Here we will evaluate the e�ects of an attacker replac-
ing the desired malicious behavior with the equivalent method calls
using re�ection. First, we explore the scenario where every API

call in the app has been converted to a re�ection-based call. We
simulated this scenario by replacing all API calls with the re�ec-
tion methods and generating the corresponding feature vectors.
DroidAPIMiner classi�ed all these malware samples as benign. In
contrast, L���MC with Conservative Mapping classi�ed all malware
correctly. We note that both approaches lose visibility in what the
actual behavior of a given app is (i.e., all method calls appear to be
re�ective calls), but the conservative nature of our approach can
minimize false negatives. However, when re�ection is applied to all
the methods in benign apps, L���MC classi�ed them as malware
too demonstrating that Conservative Mapping could be aggressive
and might result in false positives in extreme cases.

Second, an attacker could only use re�ection to invoke certain
functions of interest. We simulated obfuscation of all the malware
samples in the Malware Genome and VirusShare datasets, by re-
placing all the SMS related API calls with re�ection invocations.
On the VirusShare Dataset, Accuracy of DroidAPIMiner dropped to
83.54% (with a 13.86% decrease), while L���MC’s accuracy is rela-
tively high at 92.47% (with only 4.63% decrease). However, on the
Malware Genome Dataset, the accuracy of both systems remained
una�ected. After careful inspection of the malware samples, we
noticed that these samples were glaringly malicious with several
samples doing multiple malicious activities [47]. This explains why
obfuscating SMS related API calls alone has no e�ect on their clas-
si�cation, whereas the VirusShare dataset represents a larger, more
modern, and complete dataset.

Blind Perturbations. As we explain in Section 4, p represents the
attacker e�ort required to change the feature vector with proba-
bility Pa , given that the attacker has no access to the internals of
the model used for classi�cation, or the dataset used to train it. In
API-based detection systems, such as DroidAPIMiner and Drebin,
n is the total number of API methods, f is the API methods which
are frequently seen in malware, and used as features. For the Mal-
ware Genome Dataset, f DAM�enome = 735, whereas nDAM ⇡ 65, 000.
Consider pDAM�enome to be the number of API methods that need to



be added to a�ect DroidAPIMiner feature vector with probability
Pr easonable .

In L���MC, as mentioned in Section 3, we have 202 possi-
ble labels, and a semantic tag is a subset of these labels. Hence,
the total number of possible semantic tags, n, which is equal
to the power set of all labels, is equal to nL���MC = 2202, and
the number of features used after iterative pruning is equal to
f
LoopMC
�enome = 38. Consider pL���MC

�enome to be the number of semantic
tags (i.e., loops) that needs to be added to a�ect the L���MC feature
vector with probability Pr easonable . We have nL���MC � nDAM

and f L���MC
�enome < f DAM�enome . From observations 1, 2, 3 and 4, since Pa

is �xed, we have pL���MC
�enome � pDAM�enome .

Moreover, as we use a decision tree-based classi�er, even if impor-
tant semantic tags are known, it is not trivial to a�ect classi�cation.
An attacker must add features that allow a sample to escape all
the decision nodes in the model by a�ecting the corresponding
features. In contrast, it is comparatively easy to a�ect the classi�-
cation of DroidAPIMiner, or any other system that samples these
features from the entire app. The attacker can know important
framework methods (f ) from the most used framework methods
in malware and can a�ect the classi�cation of malware by adding
those framework methods.

We also show, using a simulation that even if a change is per-
formed, it has little to no chance of a�ecting classi�cation. More pre-
cisely, we simulate the e�ect of adding code, by altering the feature
vectors from the Malware Genome dataset used by both L���MC
and DroidAPIMiner. For DroidAPIMiner, this means changing ran-
dom bits in the feature vector from 0 to 1. For L���MC,we randomly
increase some features in the vector. We use L���MC’s default clas-
si�cation approach for this evaluation.

Table 6 shows the results of our simulation. Even though ran-
dom features (representing random code) were added to L���MC’s
feature vectors, this did not a�ect its precision. In contrast,
DroidAPIMiner’s precision dropped from 99% to 92.51%. We can
conclude from these experiments that not only it is extremely di�-
cult to in�uence our feature vectors, but also the result of doing so
does not a�ect our precision as much as in the related work.

6 DISCUSSION
Our current prototype does not support the analysis of loops that
are implemented through recursion. There is no fundamental limi-
tation that prevents the proper modelling of these aspects into our
framework, and we plan to extend our framework as part of our
future work.

There are other well-known transformation techniques that af-
fect loops and could potentially in�uence the detection from our
system:
• Loop unrolling: This is a transformation technique where,
if the number of iterations of a loop is known, then the body
of the loop is repeated the corresponding number of times
thus eliminating the loop. However, as shown by a recent
large-scale study [23], android applications contain very
few loops whose number of iterations can be determined
statically.
• Inserting junk or infeasible loops: As we do not evaluate
the feasibility of a loop execution, inserting junk loops (e.g.,

unsatis�able guard conditions, or unreachable loops) could
a�ect the feature vector and hence our detection. ADAM
inserts infeasible loops into any given Android app but, as we
show in Section 5.5, our system was able to detect malware
even when they were obfuscated by ADAM.
• Merging and splitting the loops: Merging and splitting
the loops could change the semantic tag of the original loop
and potentially could result in unknown semantic tags. How-
ever, as we show in Section 3.3, we handle this by using
our conservative mapping approach. Furthermore, loop split-
ting [31] is a known hard problem that requires precise reso-
lution of data-dependencies and pointer aliases, whichmakes
this particular attack vector hard to use even for experienced
attackers.

We acknowledge that existing works like DroidAPIMiner and
Drebin might be improved to be resilient to perturbations. However,
they still could be easily a�ected as they depend on the entire code-
base of the app unlike L���MC which leverages only loops.

7 LIMITATIONS
We believe our work represents a step forward in the detection of
mobile malware. However, we acknowledge that our approach is
a�ected by the following limitations.
• Static analysis evasion: Our system cannot handle those
apps using techniques such as bytecode encryption, packing,
malicious native code, dynamic code loading, or VM-based
obfuscation that actively try to evade static analyses. We
note that these techniques also a�ect all the other works
that depend on static analysis. Moreover, in certain contexts,
such techniques may appear suspicious enough to lead to a
malicious classi�cation.
• Interactions with Android framework: Android is an
event-driven system that allows apps to register for call-
backs on the occurrence of certain events. In the current
implementation, we do not model the call-back functions,
which may result in missing edges in the call-graph. How-
ever, Cao et al. [15] proposed a technique which could be
used to handle the framework interactions and achieve a
complete call-graph.
• No Loops Malware: As L���MC depends on the presence
of loops, a simple malware that has no loops can easily evade
our system. However, we can have a �ltering phase where
apps without loops could be �ltered and alerted for alterna-
tive detection techniques.
• Dependent tools: Our analysis system is implemented by
leveraging Androguard, consequently L���MC inherits the
issues and limitations of Androguard as demonstrated by
the apps which timed out during our analysis.

8 RELATEDWORK
This section compares our work against recent advances in mal-
ware detection and Android program analysis. The most similar
works are those that focus on machine-learning-based approaches
to detecting malicious Android programs. Aafer et al. propose
DroidAPIMiner [3], which uses the set of Android API that a given
application can invoke to build a feature vector. The authors then



explore several machine learning algorithms, and they empirically
established that the k-nearest Neighbors technique outperforms the
other ones. Arp et al. propose Drebin [6], another malware classi�-
cation system, which uses an SVM-based technique that takes into
account the app’s required permissions when building the feature
vectors. A di�erent system is AppContext [44], which uses machine
learning techniques to identify malware by using the “context” of
each behavior as a feature. Finally, Garcia et al. recently published
a technical report that describes RevealDroid, a malware detection
and classi�cation system that combines �ow-related information
provided by FlowDroid [8] to information related to sensitive API
call invocation, security-relevant data �ows, and Intent-related
actions.

In contrast, our approach only needs to analyze the subset of
a program contained in its loops. Therefore, L���MC only needs
to analyze a reduced (yet meaningful) code base, and, by doing
this, the approach can scale better and is more robust to evasion,
since the mere insertion of API calls is not su�cient to modify the
classi�cation outcome.

Recently researchers developed MAMADROID [34], which uses
java package names instead of API function calls to build behav-
ioral models. However, as we show in Section 3, this is not always
correct, as methods of di�erent packages could have the same
semantics. L���MC uses a semantic labeling scheme that is a one-
time e�ort to provide a precise and scalable labeling technique.
Other approaches leverage static analyses to locate malicious be-
havior without executing the app. Kirin [22] uses a rule-based
scheme to detect dangerous con�gurations of permissions. Flow-
Droid [8] and DroidSafe [25] propose static taint analyses to detect
potentially malicious data �ows. Additionally, RiskRanker [26] and
DroidRanger [48] rely on symbolic execution and heuristics to iden-
tify and rank malicious behavior. Although these works share our
same goal, L���MC is based on a very di�erent technique, and it
achieves a higher classi�cation precision.

In contrast with all of the above approaches, there has been
extensive research on �nding malware through dynamic analy-
sis [21, 30, 32, 39–41]. These works are complementary to ours and
all share the inherent limitations of the dynamic analysis, namely,
that they are limited by their ability to stimulate the app such that
the malicious behavior is exposed.

9 CONCLUSIONS
This paper explores a new approach for classifying Android mal-
ware that is resilient against feature-unaware perturbations. Our
approach works by focusing on the loops of a program and by
mapping each app to a very large feature space that makes it chal-
lenging for an attacker to easily change the classi�cation outcome.
We assembled these ideas into a proof-of-concept system, L���MC,
and we evaluated it with 20,000 malicious and benign Android ap-
plications. L���MC classi�es them correctly with 99.3% and 99.1%
accuracy on two di�erent datasets. We then showed, through simu-
lations and experiments, that L���MC is more resilient to various
types of evasion techniques, including modi�cations of the CFG,
using re�ection, and performing targeted feature manipulation.
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