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Abstract

The wide adoption of Convolutional Neu-
ral Networks (cnns) in applications where
decision-making under uncertainty is funda-
mental, has brought a great deal of attention
to the ability of these models to accurately
quantify the uncertainty in their predictions.
Previous work on combining cnns with Gaus-
sian processes (gps) has been developed under
the assumption that the predictive probabil-
ities of these models are well-calibrated. In
this paper we show that, in fact, current com-
binations of cnns and gps are miscalibrated.
We propose a novel combination that consid-
erably outperforms previous approaches on
this aspect, while achieving state-of-the-art
performance on image classification tasks.

1 Introduction

The wide adoption of Convolutional Neural Networks
(cnns) in increasingly popular pieces of technology
such as self driving cars and medical imaging, where
decision-making under uncertainty is fundamental, has
brought attention to the ability of these learning archi-
tectures to accurately quantify the uncertainty in their
predictions (Kendall and Gal, 2017; Gal and Ghahra-
mani, 2016b). In short, the reliability of predictive
probabilities of learning algorithms can be evaluated
through the analysis of their calibration (Flach, 2016).
In particular, a classifier is well calibrated when its
output offers an accurate account of the probability of
a given class, i.e. when it predicts a given class label
with probability p that matches the true proportion p
of test points belonging to that class.

The calibration properties of standard classifiers and
neural networks have been studied in the literature
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(Kull et al., 2017; Niculescu-Mizil and Caruana, 2005),
which has shown that classifiers that use the standard
cross-entropy loss are generally well calibrated. Per-
haps surprisingly, modern cnns, which are a particular
case of deep neural networks (dnns), have been found
to be miscalibrated, and the depth of convolutional
filters is the main factor affecting calibration (Guo
et al., 2017). The work in Guo et al. (2017) shows
that regularization, implemented through weight de-
cay, improves calibration and that, ultimately, simple
methods such as post-calibration (Platt, 1999) can be
an effective remedy for most calibration issues of cnns.

Alternatively, Bayesian cnns (Gal and Ghahramani,
2016b) where convolutional filters are inferred using
Bayesian inference techniques, seem like perfect can-
didates to model uncertainty in these architectures in
a principled way. However, while Bayesian cnns have
been shown to be effective in obtaining state-of-the-art
performance in image classification tasks, we are not
aware of studies that show their calibration proper-
ties. Hence, our first contribution is to investigate the
calibration properties of Bayesian cnns.

Along a similar vein, independently of the works on
Bayesian cnns, there have been other attempts to give
a probabilistic flavor to cnns by combining them with
Gaussian processes (gps, (Rasmussen and Williams,
2006)). Most of these approaches can be seen as a way
to parameterize a cnn-based covariance for gps, and
the aim is to learn end-to-end both the filters and the
gps (see, e.g., Bradshaw et al. (2017); Wilson et al.
(2016)). A crucial aspect that the literature has over-
looked, however, is that methods that combine cnns
and gps suffer from the same issues of miscalibration
that characterize modern cnns. Therefore, the sec-
ond contribution of this paper is to show that current
combinations of cnns and gps are miscalibrated.

Consequently, as our third contribution, we propose
a novel combination of cnns and gps that is indeed
well-calibrated, while being simple to implement. In
particular, we propose to replace the fully connected lay-
ers of cnns with gps that we approximate with random
features (Cutajar et al., 2017; Lázaro-Gredilla et al.,
2010). Due to this approximation, the resulting model
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becomes a Bayesian cnn with a nonlinear transforma-
tion applied to the convolutional features. Building
on the connection between variational inference and
dropout, we apply Monte Carlo dropout (mcd, (Gal
and Ghahramani, 2016a)) to carry out joint inference
over the filters and the approximate gps, thus obtaining
an end-to-end learning method for the proposed model,
which we call cnn+gp(rf). The resulting approach
is characterized by a number of attractive features: (i)
it is well calibrated, given that it uses the multino-
mial likelihood and the filters are regularized using
Bayesian inference techniques; (ii) it is as scalable as
state-of-the-art cnns, in so much as it can be trained
using mini-batch updates and can exploit GPU and
distributed computing; (iii) unlike other works that
combine cnns and gps, it is as easy to implement as
standard cnns, as it leverages the equivalence of gps
approximated with random features and Bayesian dnns
(Cutajar et al., 2017; Gal and Turner, 2015; Neal, 1996),
and the connections between dropout and variational
inference (Gal and Ghahramani, 2016a). We exten-
sively validate these properties in a variety of image
classification tasks.

Our final contribution extends the above framework by
replacing the last layer of cnns with Deep gps (Cutajar
et al., 2017) and by proposing the use of structured
random features to obtain faster and more compact gp
approximations (Le et al., 2013; Yu et al., 2016). In all,
our proposal considerably improves on classification ac-
curacy compared to previous combinations of cnns and
gps (e.g., ∼88% on cifar10 and ∼67% on cifar100,
all without data augmentation), while being compet-
itive with state-of-the-art cnns; we are not aware of
other gp works that approach these results. Crucially,
we achieve these performance without compromising on
calibration, again considerably improving on previous
approaches that combine cnns and gps.

2 Related Work

Calibration of Convolutional Networks: The is-
sue of calibration of classifiers in machine learning was
popularized in the 90’s with the use of support vector
machines for probabilistic classification (Platt, 1999).
Calibration techniques aim to learn a transformation
of the output using a validation set in order for the
transformed output to give a reliable account of the
actual probability of class labels (Flach, 2016); inter-
estingly, calibration can be applied regardless of the
probabilistic nature of the untransformed output of the
classifier. Popular calibration techniques include Platt
scaling (Platt, 1999) and isotonic regression (Zadrozny
and Elkan, 2002).

Classifiers based on Deep Neural Networks (dnns) have
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Figure 1: Reliability diagrams for three state-of-the-art
combinations of cnns and gps, i.e gpdnn (Bradshaw
et al., 2017), cgp (van der Wilk et al., 2017), svdkl
(Wilson et al., 2016) applied to cifar10 and cifar100
data sets with LeNet and resnet architectures. See
table 1 for details on the convolutional architectures
that we apply to cifar10 and cifar100. Because it
is not possible to specify the convolutional structure
in cgp (van der Wilk et al., 2017), the left and central
panels show the same curve for cgp.

been shown to be well-calibrated (Niculescu-Mizil and
Caruana, 2005). The reason is that the optimization of
the cross-entropy loss promotes calibrated output. The
same loss is used in Platt scaling and it corresponds
to the correct multinomial likelihood for class labels.
Recent sudies on the calibration of cnns, which are a
particular case of dnns, however, show that depth has
a negative impact on calibration, despite the use of a
cross-entropy loss, and that regularization improves the
calibration properties of classifiers (Guo et al., 2017).

Combinations of Conv Nets and Gaussian Pro-
cesses: Thinking of Bayesian priors as a form of reg-
ularization, it is natural to assume that Bayesian cnns
can “cure” the miscalibration of modern cnns. Despite
the abundant literature on Bayesian dnns (Neal, 1996;
Mackay, 1994), far less attention has been devoted
to Bayesian cnns (Gal and Ghahramani, 2016a), and
the calibration properties of these approaches have not
been investigated.

Several approaches have proposed the combination of
cnns and gps as a means to give a probabilistic char-
acter to cnns. Most of these works are based on ideas
developed in the context of manifold gps (Calandra
et al., 2016), where inputs are transformed using some
parametric transformation. In these works, the para-
metric transformation is based on convolutional layers,
and scalability to large data is achieved through the
use of ideas drawn from the literature on scalable gps,
for example the Stochastic Variational Deep Kernel
Learning (svdkl) approach in Wilson et al. (2016). In
contrast, the work on hybrid gps and dnns (gpdnn,
(Bradshaw et al., 2017)) combines cnns and gps us-
ing an inducing point approximation. Other recent
approaches that aim to introduce convolutions in the
calculation of the covariance between images include
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the work in van der Wilk et al. (2017), which proposes a
way to construct covariances between domains/patches,
mimicking the computations in cnns.

In this work, we propose an alternative way to com-
bine cnns and gps, where gps are approximated us-
ing random features expansions (Rahimi and Recht,
2008; Lázaro-Gredilla et al., 2010). The random fea-
ture expansion approximation amounts to replacing the
orginal kernel matrix with a low-rank approximation,
turning gps into Bayesian linear models. Combining
this with cnns leads to a particular form of Bayesian
cnns, much like gps and dgps are particular forms of
Bayesian dnns (Duvenaud et al., 2014; Gal and Ghahra-
mani, 2016a; Neal, 1996). Inference in Bayesian cnns
is intractable and requires some form of approximation.
In this work, we draw on the interpretation of dropout
as variational inference, employing the so-called Monte
Carlo Dropout (mcd, (Gal and Ghahramani, 2016a))
to obtain a practical way of combining cnns and gps.

3 State-of-the-art combinations of
cnns and gps are miscalibrated

Consider a Q-class image classification task where X
denotes a set of n images xi ∈ Rpx×py (1 ≤ i ≤ n), and
Y is the matrix consisting of the corresponding one-hot
encoded labels yi stacked by row. We can use various
metrics to determine the quality of a classifier, and
here we focus in particular on calibration.

Let g(x) be the output of a classifier for an input image
x. To compute the calibration properties of a classifier,
consider a partitioning of the test set X∗ into disjoint
sets {X1, . . . ,XM}, such that each subset Xm contains
the inputs yielding predictions in the range (m−1

M , mM ].
Hence, the confidence associated with each subset Xm

is characterized by the midpoint of its corresponding
range, i.e. conf(Xm) = m−0.5

M . Then, the accuracy
acc(Xm) for each subset can be evaluated as follows:

1

|Xm|
∑

x∗∈Xm

δ (arg max(y∗)− arg max(g(x∗))) , (1)

where δ(x) is equal to one if x = 0, and zero otherwise.

In what follows, we use reliability diagrams to assess
calibration, where we plot accuracy as a function of con-
fidence for the subsets {X1, . . . ,XM}. For a perfectly
calibrated classifier, we expect acc(Xm) = conf(Xm)
for all m, with deviations implying that the class prob-
abilities are either underestimated or overestimated. A
useful summary statistics that can be extracted from
reliability diagrams is the Expected Calibration Error
(ece), which is the average of the absolute difference
between accuracy and confidence weighted according

to its size:

ece =

M∑
m=1

|Xm|
|X∗|

|acc(Xm)− conf(Xm)| . (2)

Another metric that measures the accuracy in pre-
dicting class probabilities is the brier score which
takes into account the factors of calibration, resolution
and uncertainty (Murphy, 1973). It is defined as the
squared distance between labels and outputs averaged
across classes and test points:

brier =
1

Ntest

∑
x∗∈X∗

1

Q

Q∑
k=1

((y∗)k − (g(x∗))k)
2 . (3)

In figure 1, we report the reliability diagrams of three
state-of-the-art combinations of cnns and gps, i.e
gpdnn approach in Bradshaw et al. (2017), cgp in
van der Wilk et al. (2017) and svdkl in Wilson et al.
(2016). These approaches are applied to the cifar10
and cifar100 data sets with various convolutional
structures. Note that the lines for cgp in the sub-figure
of cifar10-LeNet and cifar10-resnet are identical
because there is no equivalent cnn architecture in cgp.
All of reliability diagrams for these methods and ours
can be found in the supplemental material.

The results indicate that current approaches that com-
bine cnns and gps are miscalibrated, with a tendence
of being overconfident in predictions. This is an im-
portant and perhaps surprising finding, because one
of the motivations to combine cnns with gps is to do
better quantification of uncertainty compared to plain
cnns. In the experiments section we report more ex-
tensively on the calibration of these classifiers, as well
as illustrating other performance metrics. These con-
siderations call for the study of better ways to combine
cnns and gps to recover calibration while attempting
to improve on standard metrics such as error rate and
test log-likelihood. The next section illustrates our
proposal that achieves this goal.

4 cnn+gp(rf): Conv Nets with
Random Feature Expanded gps

In the proposed model, the labels Yi· are assumed to
be conditionally independent given a set of correspond-
ing latent variables Fi·, i.e. we consider the likelihood
p(Y|F) =

∏n
i=1 p(Yi· |Fi·), where the latent variables

F are realizations of a set of Q functions fj(x) at
the input images x1, . . . ,xn, i.e., (F)ij = fj(xi) for
j = 1, . . . , Q. Each individual p(Yi· |Fi·) is multi-
nomial with probabilities obtained using a softmax
transformation of the latent variables. In this work we
focus on functions fj(x) that are modeled using gps;
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note that extension to dgps is actually easy to consider
in our framework, as we show in the experiments.

Due to the gp modeling assumption, the latent function
values F·j = (fj(x1), . . . , fj(xn))> are jointly Gaussian
with p(F·j |X,θ) ∼ N (0,K), where K is the covariance
matrix. The entries of the covariance matrix K =
{k (xi,xj |θ)}i,j , are specified by a covariance (kernel)
function k (with hyperparameters θ) and this form is
shared across output dimensions, although this can be
relaxed and allow for a different k for the Q outputs.

Instead of applying the gp modeling directly to the
images, we propose to employ a transformation c(x|Ψ)
using convolutional layers, where Ψ denotes the param-
eters of such layers. The vector-valued function c(x|Ψ)
is differentiable as it implements a series of differen-
tiable operations, such as convolutions and pooling.
This is one of the key successes of cnn models that
allows for the learning of their filters, which we exploit
for the end-to-end learning of our model.

Inference in this model requires being able to character-
ize the posterior over all or a selected group of model
parameters, but this posterior is analytically intractable
and thus computationally prohibitive (Rasmussen and
Williams, 2006). In the remainder of this paper, we
build on previous work on scalable inference for gps
and dgps with random features (Cutajar et al., 2017)
to obtain an approximation to the proposed model that
can be learned end-to-end.

4.1 Random Feature Expansions

Naïve inference in gp models requires algebraic opera-
tions with K that would cost O(n3) in time. Popular
approaches to recover tractability use low-rank approx-
imations of the kernel matrix. Among this family of
low-rank approximations, we choose to work with ran-
dom feature approximations (Lázaro-Gredilla et al.,
2010; Cutajar et al., 2017). The reason is that they
offer a number of possible extensions to speedup compu-
tations (e.g., using structured approximations (Le et al.,
2013; Yu et al., 2016)) and increase the complexity of
the model (e.g., considering Deep gps (Cutajar et al.,
2017)); we elaborate on this in the experiments sec-
tion. In random feature expansions, the kernel matrix
is replaced by a low-rank approximation K ≈ ΦΦ>,
with Φ ∈ Rn×m and m � n. This approximation
suggests the construction of a Bayesian linear model
to approximate the gp latent variables as F = ΦW.
Using p(Wij) = N (Wij |0, 1) it is straightforward to
show that the covariance of each of the latent functions
F·j is indeed an approximation to K, as cov(F·j) =
E(ΦW·jW

>
·jΦ
>) = ΦE(W·jW

>
·j )Φ

> = ΦΦ> ≈ K.

In this work, we focus in particular on the order-one

arc-cosine kernel (Cho and Saul, 2009)

k(1)
arc(xi,xj |Ψ,θ) =

σ2

π

∥∥∥Λ−
1
2 c(xi|Ψ)

∥∥∥ ∥∥∥Λ−
1
2 c(xj |Ψ)

∥∥∥
[sin(α) + (π − α) cos(α)] , (4)

where θ = (σ,Λ = diag(`21, . . . , `
2
d)) and α is the angle

between Λ−
1
2 c(xi|Ψ) and Λ−

1
2 c(xj |Ψ).

The arc-cosine covariance has a convenient integral
representation that allows for a Monte Carlo approxi-
mation, obtaining a low-rank approximation to the co-
variance matrix involving Rectified Linear Unit (relu)
activations (Cho and Saul, 2009)

Φarc =

√
2σ2

NRF
max (0,C(X|Ψ) Ω) . (5)

In this expression, we have defined C(X|Ψ) as the
matrix resulting from the application of convolutional
layers to the image training set X and Ω is obtained
by stacking NRF samples from p(ω) = N

(
ω|0,Λ−1

)
by column. Note that in the case of a popular Radial
Basis Function (rbf) covariance, it is possible to obtain
a similar random feature approximation, where the
relu activation is replaced by trigonometric functions;
see Rahimi and Recht (2008) and the supplement for
details.

4.2 End-to-end learning

Inference in the proposed model is intractable due to
the likelihood that is not conjugate to the gp prior. Fur-
ther complications stem from the need to infer kernel
parameters, which include convolutional parameters,
and the need to be able to scale to large data. Our aim
is to carry out inference within a consistent framework
that is characterized by simplicity, as described next.

We start by introducing an approximate posterior over
W,Ω and Ψ, that we denote as q(W,Ω,Ψ). Following
standard variational inference arguments, we can define
an operative way to obtain these approximate posteri-
ors. The log-marginal likelihood L = log [p(Y|X,θ] can
be bounded by the sum of an expected log-likelihood
term and a negative Kullback-Leibler (KL) divergence
term as follows:

L ≥ Eq(W,Ω,Ψ) (log [p (Y|X,W,Ω,Ψ,θ)])

−KL [q (W,Ω,Ψ) ‖p (W,Ω,Ψ)] . (6)

Variational inference amounts to optimizing the lower
bound above with respect to q(W,Ω,Ψ) and any other
parameters of interest.

We have now a number of options on the form for the ap-
proximate posteriors q(W,Ω,Ψ). In previous works on
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variational inference for dnns, it has been proposed to
define the approximating distributions to be Gaussian
and factorized across parameters (Kingma and Welling,
2014; Graves, 2011). The drawback of this is that it
doubles the number of parameters. Alternatively, we
can rely on the connections between dropout and varia-
tional inference (Gal and Ghahramani, 2016a,b) which
is drawn by assuming the posterior of W,Ω and Ψ as a
mixture of two Gaussian distributions (see supplement).
From this connection, we are able to obtain an easier
approximate inference scheme, which is also known as
Monte Carlo Dropout (mcd). Focusing on the weights
for now, the connection with dropout is apparent if we
rewrite

W = Mw diag[zw] (7)

with (zw)i ∼ Bernoulli(πw). The reparameterization
introduces variational parameters Mw (one for each
weight in W) and a vector of binary variables that
can switch on or off the columns of the weight matrix
with probability πw. A similar reprameterization can
be done for the convolutional parameters Ψ and ma-
trices of random feature Ω, introducing Mψ,MΩ and
πψ, πΩ. The optimization of the lower bound wrt all
variational parameters requires being able to evaluate
the expectation and the KL term in (6).

In mcd, the KL term in (6) can be approximated
following Gal and Ghahramani (2016a), obtaining a
regularization term involving the squared-norm of the
parameters

KL [q (W,Ω,Ψ) ‖p (W,Ω,Ψ)] ≈
πw
2
‖Mw‖2 +

πΩ

2
‖MΩ‖2 +

πψ
2
‖Mψ‖2 (8)

The expectation in (6), instead, can be unbiasedly
estimated using Monte Carlo and also considering a
mini-batch of size m:

n

m

1

NMC

NMC∑
i=1

∑
k∈Im

log
[
p
(
yk|xk,W(i),Ω(i),Ψ(i),θ

)]
with W(i),Ω(i),Ψ(i) ∼ q(W,Ω,Ψ), and Im is a set
of m indices to select a mini-batch of training points
(Graves, 2011). This doubly-stochastic approximation
is differentiable wrt variational parameters when the
Bernoulli variables are fixed.

The approximate objective can now be optimized in
the same vein as in standard back-propagation with
dropout, noting that dropout is applied to W, Ω and to
convolutional parameters Ψ. What changes, however,
is the interpretation of the procedure as stochastic
variational inference, whereby the Bernoulli variables
are resampled at each iteration. A practical implication
is in the way we compute the predictive distribution,

which has a probabilistic flavor as follows:

p(y∗|x∗, X,θ) ≈
∫
p(y∗|W,Ω,Ψ,x∗, X,θ)

q(W,Ω,Ψ)dWdΩdΨ, (9)

and can be approximated using Monte Carlo by re-
sampling the Bernoulli variables. While mcd has been
proposed for cnns in (Gal and Ghahramani, 2016b), in
this work we extend it to the case of joint inference over
convolutional parameters and the gp approximation
in the cnn+gp(rf) model, thus obtaining a practical
inference and prediction scheme, which combines cnns
and gps.

4.3 Extensions

Structured random feature approximations:
One of the advantages of the proposed model, com-
pared to other gp approximations, is that it can ex-
ploit structured random feature expansions to acceler-
ate computations and reduce the size of the approx-
imate gp (Le et al., 2013; Yu et al., 2016). In the
random features approximation, random features are
constructed by multiplying Ω with the convolutional
features. Without loss of generality, assuming that
Ω ∈ Rm×d and c(x|Ψ) ∈ Rd×1, the cost of computing
products Ωc(x|Ψ) is O (md), while storing Ω requires
O (md) storage.

Structured approximations aim to reduce the time
complexity to O (m log d) and the storage cost to
O (m+ d). Taking a standard random features expan-
sion of the isotropic covariance in (5) with Λ = `−2I
as an example, Ω = 1

`G, with Gij ∼ N (0, 1). One
way to make computations cheaper is to replace the
Gaussian matrix G with a pseudo-random alterna-
tive. The Structured Orthogonal Random Feature
(sorf) approximation (Yu et al., 2016) approximates
G through a series of Hadamard transformations of
diagonal matrices Di with elements randomly sam-
pled from {−1,+1} or Rademacher distribution, that
is G ≈

√
dHD1HD2HD3, where H is the normalized

Walsh-Hadamard matrix. We refer to this variation of
the model as cnn+gp(sorf).

Similarly to the other parameters, we infer the diag-
onal matrices Di using mcd. We denote by di the
diagonal of Di, i = 1, 2, 3. The mcd scheme (Gal and
Ghahramani, 2016a,b) assumes an L2 regularization
which implies a zero-mean Gaussian prior, which is
inappropriate for di as it is Rademacher distributed.
We propose to bypass this limitation by applying mcd
to a reparameterization of di. In particular, denoting
by d∗i ∈ {−1,+1}d the initialized values of di, we ap-
ply mcd to di − d∗i . According to this choice, each
diagonal element is sampled based on the variational
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Table 1: cnn architectures considered in this work. The same architectures are used in gpdnn and svdkl by
replacing the fully connected layers with gps, while cgp does not explicitly use a convolutional structure.

Depth Data set cnn architecture cnn name # Conv features

Shallow mnist 2 Conv Layers + 2 Fully connected LeNet 4096
Shallow cifar10 2 Conv Layers + 3 Fully connected LeNet 4096
Deep cifar10 30 Conv Layers + 1 Fully connected resnet 64
Deep cifar100 150 Conv Layers + 1 Fully connected resnet 64

parameters Mdi−d∗
i

di =

{
Mdi−d∗

i
+ d∗i , with probability πd

d∗i , otherwise
(10)

Convolutional Networks with Random-Feature-
Expanded Deep gps: A dgp model represents a
deep probabilistic nonparametric approach where the
output of one gp at each layer is used as the input
to the gp in the next layer (Damianou and Lawrence,
2013). Extending the random feature approximation
to dgps and the inference scheme presented here is
straightforward; see Cutajar et al. (2017) for details.
The random feature approximation turns the dgp into
a Bayesian dnn for which we can apply stochastic
variational inference to infer model parameters. In the
experiments section, we explore the possibility to stack
a dgp on top of convolutional layers, and we show the
impact of depth on performance.

5 Experiments

We carry out the experimental evaluation using popu-
lar benchmark datasets, such as mnist, cifar10 and
cifar100 and with a number of popular cnn architec-
tures based on LeNet and resnet (see table 1).

We report three state-of-the-art competitors combin-
ing cnns and gps, namely gpdnn (Bradshaw et al.,
2017), svdkl (Wilson et al., 2016), and cgp (van der
Wilk et al., 2017). We also report Bayesian cnns, as
suggested in Gal and Ghahramani (2016b) and cnns
with post-calibration as proposed in Guo et al. (2017),
which we refer to as cnn+mcd and cnn+cal, respec-
tively. For all the competing methods we used available
implementations, adding the same cnn architecture to
ensure a fair comparison. In all experiments, we use
a batch-size m = 100 and the Adam optimizer with
default learning rate (Kingma and Ba, 2017). In the
methods that use mcd, we use a dropout rate of 0.5
for all parameters.

The results are reported in figure 2, where we have used
different training sizes n, keeping the classes balanced.
In the figure, we report the calibration measures that

we have introduced earlier, namely ece and brier
scores, and we also report the classification error rate
(err) and the mean negative test log-likelihood (mnll).
Compared to other combinations of cnns and gps,
cnn+gp(rf) improves considerably on all metrics. It is
interesting to see that our proposal is competitive with
Bayesian cnns employing mcd, with only a marginal
improvement on err and mnll in some configurations.

In cal it is necessary to leave out part of the data to
perform post-calibration, which can be problematic in
applications where obtaining labeled data is difficult
or expensive. As a result, our proposal is considerably
better, although cal is competitive in ece; this is
expected given that this is the metric that is optimized
after training.

The two variants of our approach, namely cnn+gp(rf)
where we learn the frequencies Ω and cnn+gp(sorf)
where we sample Ω from its prior, are comparable. This
suggests that the extra level of complexity of learning
the spectral frequencies does not lead to substantial
gains in performance and that the structured random
feature approximation yields satisfactory performance.

We also note that these results have been obtained
by fixing the covariance parameters θ of the gp, as
we found it to be unstable when learning these jointly
with Ω. This might be the reason why these parame-
ters were learned through cross-validation in Gal et al.
(2017). In the supplement, we report the results ob-
tained when learning θ and fixing Ω, which we found
yielding similar performance as fixing θ. All these ob-
servations corroborate the hypothesis that most of the
performance of cnn-based classification models is due
to the convolutional layers.

In summary, figure 2 shows that our cnn+gp(rf) is
the best strategy for calibrating these models compared
to other approaches using gps. Furthermore, we found
perhaps surprisingly that mcd has comparable per-
formance. In the supplementary material, we report
results on gpdnn where we infer convolutional param-
eters using mcd, so as to gain insights as to whether
most of the improvements in performance are due to
this form of regularization. The results support the
intuition that inferring these parameters yields improve-
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Figure 2: Comparison of our cnn+gp(rf) and cnn+gp(sorf) with existing combinations of cnns with gps, and
with Bayesian cnns and post-calibrated cnns. All performace metrics are defined so that the lower the better.
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Figure 3: Reliability diagrams of our cnn+gp(rf) in
comparison with existing combinations of cnns with
gps, and with Bayesian cnns and post-calibrated cnns.

ments in calibration, but also that our cnn+gp(rf)
still offers better performance.

Reliability diagrams: In figure 3, we report the re-
liability diagrams of all the methods studied in figure
1. The figure shows that cal, mcd and cnn+gp(rf)
produce well-calibrated predictions when using a shal-
low convolutional structure (LeNet). For a deeper
architecture (resnet), cnn+gp(rf) is slightly under-
confident. Compared to previous combinations of cnns
and gps, our approach yields better reliability curves.

Experiments combining cnns and Deep gps:
In figure 4, we report results varying the depth of
a dgp on top of the convolutional layers; again, we
learn the convolutional filters and the dgp end-to-end
as discussed in the previous sections. We show results
when applying our model to the whole cifar10 data
set in the case of the shallow convolutional structure
(table 1). We feed-forward the convolutional features to
all layers of the dgp, in line with what suggested in the
literature of dgps to avoid pathologies in the functions
that can be modeled (Cutajar et al., 2017; Duvenaud
et al., 2014; Neal, 1996). The results indicate that
increasing the complexity of the model improves on
all performance metrics, and worsen calibration, which
however is still around 3% ece. This is in line with the
intuition that increasing model complexity negatively
impacts calibration.

Knowing when the model doesn’t know: We re-
port experiments showing the ability of our model to
know when it does not know, following a similar ex-
perimental setup as in Lakshminarayanan et al. (2017).
In this experiment we train our cnn+gp(rf) model
on mnist and test on the not-mnist dataset, which
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Figure 4: Performance of the proposed model when
varying the depth of the dgp on top of a resnet
convolutional structure on cifar10 dataset. Note that
the scale of y-axes indicates that the metrics change
only slightly when increasing the depth of the dgp.

contains images of letters from “A” to “J” in various
typefaces. For this experiment, while we do not know
the exact value that we should obtain for predictive
probabilities, we expect to observe low entropy in the
predictions when tesing on mnist and high entropy
when predicting on not-mnist, indicating high uncer-
tainty. The results are reported in figure 5, where we
show the cumulative distribution of the entropy of pre-
dictive probabilities for two depths of the convolutional
structure. In the figure, we compare our cnn+gp(rf)
against one of the methods combining cnns and gps,
that is gpdnn. In the figure, we also include results on
cnns with post-calibration and Bayesian cnns inferred
with mcd. Our approach is competitive with Bayesian
cnns and it is considerably superior to post-calibration.
This is especially true in the case of the resnet convo-
lutional structure, where post-calibration still yields a
large number of predictions with low uncertainty. Inter-
estingly, gpdnn assigns large uncertainty to predictions
on not-mnist, although with the deeper convolutional
architecture it yields a large fraction of predictions
with low entropy. We speculate that this due to the
inducing point approximation of the gp, which nicely
captures uncertainty away from training data except
for test points which are closer to the training data.

Replacing fully connected layers by gp with
the sorf approximation: In table 2, we report
further results comparing mcd with cnn+gp(sorf).
In this experiment, we use the AlexNet structure
(Krizhevsky et al., 2012) on cifar10 and cifar100
datasets. The results in table 2 show improvements
in using our model compared cnns with mcd. We
attribute this to the fact that the gp approximated
through sorf in place of the fully connected layer of
AlexNet reduces model parameters from 30 million
to 2.3 million.
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Figure 5: Cumulative distribution function plot of
predictive entropies when the models trained on mnist
are tested on mnist and not-mnist. We report results
for two different depths of the convolutional structure.
not-mnist dataset available at http://yaroslavvb.
blogspot.fr/2011/09/notmnist-dataset.html

Table 2: Comparison between cnn+gp(sorf) and
mcd with AlexNet architecture.

METHOD err mnll ece brier

cnn+gp(sorf) 0.172 0.522 0.063 0.250
mcd 0.181 0.591 0.110 0.276

(a) cifar10

METHOD err mnll ece brier

cnn+gp(sorf) 0.459 1.806 0.127 0.612
mcd 0.594 2.434 0.058 0.732

(b) cifar100

6 Conclusions

Despite the considerable interest in combining cnns
with gps, little attention has been devoted to under-
stand the implications in terms of the ability of these
models to accurately quantify the level of uncertainty
in predictions. This is the first work that highlights the
issues of calibration of these models, showing that gps
cannot cure the issues of miscalibration in cnns. We
have proposed a novel combination of cnns and gps
where the resulting model becomes a particular form
of a Bayesian cnn for which inference using variational
inference is straightforward. However, our results also
indicate that combining cnns and gps does not gener-
ally improve the performance of standard cnns. This
can serve as a motivation for investigating new approx-
imation methods for scalable inference in gp models
and combinations with cnns.

http://yaroslavvb.blogspot.fr/2011/09/notmnist-dataset.html
http://yaroslavvb.blogspot.fr/2011/09/notmnist-dataset.html
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