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Abstract

In this paper, we study black-box attacks on machine learning classifiers where the1

adversary has a limited opportunity to interact with the model via queries. Queries2

to the machine learning model are expensive for the adversary, because each query3

poses some risk of detection, and attackers pay a service per query. Previous works4

in black-box attack did report the query number used in their attack procedure,5

however, none of these works explicitly set minimizing query number as a major6

objective. Specifically, we consider the problem of attacking machine learning7

classifiers subject to budget of feature modification cost with minimum number of8

queries where each query returns only a class and confidence score. We found that9

the number of queries can be reduced to around 30% of the random modification10

on average, and even less (< 10%) when feature modification cost budget is small.11

1 Introduction12

Recent works reveal the vulnerabilities of current machine learning models to carefully crafted13

adversarial examples [1, 2, 3, 4]. In many scenarios, complete model information is not available14

to the attacker and hence it is important to study black-box attacks, where the attackers do not have15

full knowledge of the model but only some way of interacting with it. In this work, we focus on16

black-box attacks where only query access to the model is available. We assume the query result can17

be returned in the form of confidence prediction score.18

Since queries to the model is costly, attackers are motivated to minimize query number when19

interacting with the model. In the scenario of spam email detection system, query to the underlying20

classification model is in the form of emails and adversaries will not be able to afford large number of21

email queries [5]. Hence, our problem setting is: given a budget on feature modification cost, find an22

adversarial example with the minimal number of queries. This problem can be cast as a constrained23

optimization problem. Specifically, given a budget C on total feature modification cost, minimize24

the total number of queries in the process of searching adversarial examples. The problem can be25

mathematically formulated as:26

min Q(x)

s.t. f(x) 6= f(xA)

c(x,xA) ≤ C
(1)

where Q(x) denotes total number of queries consumed in searching for an adversarial example.27

c(x,xA) = ||x− xA||p denotes feature modification cost, where xA is the original instance. In this28

paper, we apply L1-norm as the application scenario is in text domain. f(x) denotes the prediction29

label of instance x.30

Above formulation is highly intractable as we do not have a closed form expression for function31

Q(x) and also, f(x) is unknown as we assume black-box access to the machine learning model. Due32

to the high intractability of the resulting problem, we transform the original optimization form in33

a way that suits for a global optimization framework. Global optimization techniques works well34

for query based optimization problems, where query to the unknown objective function is expensive.35

It is the major advantage of global optimization to minimize (maximize) an unknown objective36
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function with less number of queries. In particular, we apply Bayesian optimization (BO) as the main37

approach for solving our optimization problem. Details can be found in section 3. Our empirical38

results show that BO based attack can find valid adversarial samples with limited number of queries.39

We summarize our contribution as follows: (1) we study a new formulation of minimizing query40

numbers in black-box attack setting; (2) we propose Bayesian optimization based (BO) black-box41

attack strategy, which reduces the total query number efficiently.42

We provide background on Bayesian optimization (section 2) and how we use it to find a sequence43

of queries to minimize the number of interactions (section 3). Section 4 reports on our preliminary44

experiments using these techniques to generate spam messages that evade a black-box detector.45

Related Work Prior works have studied black-box attacks on machine learning classifiers in two46

categories: substitute model attacks and numerical approximation method-based attacks.47

First type of attack uses query responses obtained from the target model to train a substitute model,48

and then generates adversarial examples for that substitute model. Several results have shown that49

adversarial examples produced this way are transferable and often effective against the original model50

[6, 7, 8]. For example, Papernot et al. train a substitute model (locally) for attacking the target51

unknown black-box model [7]. The local model is trained using training data with labels obtained52

through querying the target model. As there exists transferability among different models [8, 9], it is53

highly likely to obtain instances that are adversarial to both local and the unknown target model. The54

drawback of the substitute model is it will suffer form the transfer loss as not all adversarial examples55

can transfer from one model to another model [10]. Also, the number of training instances needed to56

produce an effective substitute model may be very large.57

Another line of work, introduced by [10], is to apply some numerical approximation to model58

gradient calculation to support known white-box attack strategies. The authors approximate the59

gradient information by symmetric difference quotient and further utilize the Carlini & Wagner60

attack [11] to generate adversarial samples. The drawback of this approach is in the high query61

number. In leveraging the Carlini & Wagner attack, gradient needs to be calculated in each step and62

single gradient estimation requires high number of function value evaluations resulted from the high63

dimensional feature space.64

Previous papers in black-box attack scenario never explicitly consider minimizing total query number.65

One most related work is in [5], where the author considers spam email setting and sets a bound on66

the total number of queries and feature modification cost. The attacker then applies query strategy to67

find adversarial sample and if no adversarial example is found within given cost or query budget, just68

stop the process. However, this work only considers linear classifier. In contrast, our work considers69

classifiers whose boundary can be in any shape (including linear boundary).70

2 Background on Bayesian Optimization71

Bayesian optimization is a global optimization technique that handles optimization problem with72

unknown objective function. It works by querying the unknown function and aims to find optimal73

solution with minimum number of queries to the objective function. Detailed background information74

can be found in Appendix A75

3 Minimize Query Numbers with Bayesian Optimization76

As discussed in section 1, we face two major challenges of no closed form expression for function77

Q(x) and an unknown constraint in f(x), where only queries to f(x) is allowed. Hence, optimization78

through query is required for our problem. We first handle the unknown constraint by following the79

previous approach [11, 1] and move the intractable classification label constraint into the objective80

function. As we we do not know f(x), we transform the constraint of f(x) 6= f(xA) as minimizing81

the probability of x having same label with xA. In order to minimize the total number of queries, as82

outlined in the objective function of Eq. (1), we adopt a heuristic strategy for minimization. Namely,83

in each step of query, we utilize our query history to select the (currently) best point for solving84

the optimization problem above. Hence, specific to our problem, in each query step, we find the85

best point for minimizing Pr[f(x) == f(xA)] and consequently, the whole optimization process86

eventually minimizes function Q(x) (i.e., total query number). Our query step will terminate once87

we have found a valid instance whose label is different from xA. The problem can be mathematically88
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formulated as:89

min Pr[f(x) == f(xA)]

s.t. c(x,xA) ≤ C (2)

To solve the problem in Eq. (2), we adopt the Bayesian optimization framework. As discussed90

in detail in Appendix A, Bayesian optimization suits for solving unknown function (in our case,91

Pr[f(x) == f(xA)]) minimization with less number of queries (in our case, Q(x)). Note that92

c(x,xA) is a function known to the adversary (i.e., L1-norm constraint). We now have a Bayesian93

optimization problem with unknown objective and known constraint. We take Upper Confidence94

Bound (UCB) as the acquisition function (Acq(x)) and select the point that maximizes Acq(x) with95

respect to the constraint c(x,xA) ≤ C in each step. Details of UCB and acquisition function can be96

found in Appendix A.97

We apply the DIRECT algorithm [12] to solve acquisition function maximization problem in Eq.98

(4) in Appendix A. DIRECT algorithm is a well-known algorithm for solving global optimization99

problems. To increase the robustness of the code when facing with an extremely small cost budget100

C, we applied DIRECT method with minor modifications: DIRECT method works by dividing a101

unit hypercube sequentially and evaluating function values in each of the sub hyperrectangle [12]102

and the initial point is center of the unit hypercube. Originally, each dimension value of this point103

was determined by the lower and upper bounds in that dimension. When C is very small and the104

initial center is too far away from initial point xA, it is very hard to find an instance within the feature105

cost budget (which will result in very long search time). Instead, we now take the initial point xA as106

the center of the unit hypercube such that we can always find instances satisfy feature modification107

cost constraint. The outline for the Bayesian algorithm is shown in Algorithm 1. Details regarding108

Guassian process update can be found in [13] and are omitted here due to space limitation.109

Algorithm 1 Bayesian Optimization Based Black-box Attack
Require: xA, C, f(xA), N

1: x = xA

2: for t = 1, 2, ..., N do
3: Find xt by solving problem xt = argmax Acq(x|D1:t−1), s.t. c(x,xA) ≤ C
4: Sample the objective function value: yt = Pr(f(xt) == f(xA))
5: if f(xt) 6= f(xA) then
6: return x∗ = xt;
7: end if
8: Augment the data D1:t = {D1:t−1, (xt, yt)} and update the Gaussian Process and Acq(x).
9: end for

10: return x∗ = xA

4 Evaluation110

To evaluate the effectiveness of BO based black-box attacks, we conduct experiments on spam email111

dataset. The attacker’s objective is to create a spam email (i.e., instance x∗) that is misclassified by112

the unknown classifier while the L1-norm distance (i.e., edit distance) to the original spam email xA113

is within C. We show that BO based attack reduces query numbers significantly.114

Spam Email Dataset The dataset [14] contains 4601 records and each record holds 57 attributes.115

Among the 57 features, 2 of them are integers (we discard these two attributes as we are currently116

dealing with continuous features). Every email is labeled as either spam or normal. We randomly117

choose 3500 of the instances to train three different classifiers (Probabilistic Linear SVM, Probabilistic118

RBF SVM, Artificial neural network (ANN)) and report the error rate on the remaining dataset. The119

original instance xA is randomly selected from the spam emails.120

Classifier Models We train both linear SVM and RBF kernel SVM, which achieve classification121

accuracy of 91% and 94% respectively. Details of transforming normal SVM into probabilistic SVM122

can be found in [15]. We also train an ANN model with classification accuracy of 94%.123

Baseline In this paper, we compare our result with random search method, which will randomly124

generate values for each dimension and terminate the search process when the class label is changed.125
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(a) Linear SVM Classifier

0 10 20 30 40 50 60

Feature Modification Cost Budget

0

50

100

150

200

250

300

350

400

450

A
v
e
ra

g
e
 Q

u
e
ry

 N
u
m

b
e
r

BO Based Attack

Random Search

(b) RBF SVM Classifier
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(c) ANN Classifier

Figure 1: Average Query Number w.r.t Different Cost Budgets for Different Classifiers

Specifically, we take the cost budget C and generate random samples whose L1-distance to xA is126

in the range of (C − ε, C). We set ε = 0.05. Our assumption here is, having larger distance to the127

original instance can maximize the chance of flipping into opponent class as boundary of the classifier128

is in normal shape.129

For different classifiers, we compare query numbers of both algorithms (BO attack and random130

search) with respect to different C values. We took C as [1,5,10,15,20,25,35,60]. Note that, when C131

is extremely small, the chance of getting an adversarial example within the boundary is rare. Hence,132

we set some threshold values for both algorithms and once the iteration number exceeds the threshold,133

we take it as an indicator of non-existence of adversarial example. For BO attack, we set it as 50 and134

for random search, we set it as 500.135

Result and Discussion We demonstrate our BO attack strategy uses far less amount of queries in136

finding valid adversarial examples. Details are shown in Figure 1, where 1a shows the average query137

number with respect to different feature modification cost budget C for linear probabilistic SVM138

model. Similarly, 1b, 1c represent results for probabilistic RBF SVM and ANN respectively.139

In Figure 1a, BO attack takes [355,59,158,14,8,6,7,8] queries in response to C values in140

[1,5,10,15,20,25,35,60] and random search takes [451,381,307,172,142,85,53,5] queries. In Figure 1b,141

BO attack has [451,106,4,3,4,3,3,3] queries while random search has [451,460,334,327,157,175,2,1]142

queries. In Figure 1c, BO attack has [258,16,13,9,8,54,6,5] queries and random search takes143

[501,404,221,269,29,52,6,4] queries. In count of total query number, our BO based black-box144

attack finds valid adversarial example using small fraction of queries of random search, especially145

when the cost budget is small. Note that, the average query number shown here is a conservative146

estimation for the BO method, as we take all iterations of BO exceeding 50 as failure and set it to 500147

for fair comparison with random search method. It is expected that our algorithm can reduce its query148

number by taking more Bayesian search steps and is therefore more practical. It is also observed that,149

when C is large, random search performs slightly better than BO based attack (in average, random150

search uses 2 or 3 queries less). As we are mostly concerned with smaller C values, our BO attack151

strategy is still more practical than random search.152

We investigated possible reasons for random search outperforming BO attack when C is large:153

Bayesian optimization spends some additional few queries to make “mistakes” such that it can154

explore the whole space more comprehensively and as the total query number (with large C) is155

small, it can be outperformed by the random search method. We also checked the classification score156

of initial points xAs under these cases and found most of these xAs are close to the classification157

boundary. Hence, it also makes sense to have random search performing slightly better. It is our158

ongoing work to compare with other black-box attacking methods and test on data from different159

domains (e.g., image and text). We also note that, our BO approach can work for both targeted and160

untargeted attack. For untargeted attack, our current formulation works and for targeted attack, we161

simply set the objective function as maximizing Pr[f(x) == y∗], where y∗ is the target class.162

5 Conclusion163

Our proposed black-box attack strategy considers the problem of generating adversarial example with164

minimum number of queries, which, to the best of our knowledge, was not addressed by previous165

literature. We then empirically verified that the approach is a promising method for devising a166

black-box attack with less number of (costly) queries.167
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A Bayesian Optimization Background215

Bayesian optimization is a derivative free strategy for global optimization of black-box functions216

[16, 17, 18]. The Bayesian optimization problem can be formulated as:217

min g(x)
s.t. h(x) ≤ 0.

(3)

Where g(x) is an unknown function and h(x) can either be known or unknown. In our formulation,218

h(x) = c(x)− C is a known function. Unlike traditional optimization algorithm, BO method does219

not depend on gradient or hessian information, instead it works by querying function value of a point220

in each step of the interactive optimization process [16]. And as queries to g(x) is assumed to be221

costly, BO algorithm minimizes total number of queries spent in the whole search process for the222

problem above. Step by step explanations of BO method are shown below.223

Since the objective function is unknown, a prior over functions is assumed to be known, e.g., Gaussian224

prior [13] is a common attempt to model what we know about the function [16, 18, 17]. With the225

defined priors and current observations, the posterior probability of next function value can be defined.226

And with the posterior probability distribution, an acquisition function is then defined to capture an227

exploration-exploitation trade-off in determining the next query point. Points with larger Acquisition228

function values are more likely to have smaller g(x) values. Thus, we prefer points with larger229

acquisition function values. As the point in each step is selected to maximize the current acquisition230

function, the whole optimization process heuristically minimizes number of interactions needed for231

searching the optimal solution. Convergence rate of Bayesian optimization can be referred to [19, 20].232

Exploration prefers locations (i.e., points) where the uncertainty is high, while exploitation prefers233

locations where the objective function value is high (or low) in maximization (or minimization)234

problem. The acquisition function is updated along with the update of posterior probability. In this235

paper, we apply upper confidence bound (UCB) selection criterion in selecting the specific acquisition236

function type. As we assume the unknown function value follows Gaussian distribution, we obtain237

the closed form expression of the acquisition function (UCB) for point x as Acq(x) = µ(x)+κσ(x),238

where σ(x), µ(x) are variance and mean functions at point x and κ is a constant. We refer readers to239

[16] for more details regarding different types of acquisition functions and closed form expression240

for µ(x), σ(x). The following optimization problem is solved to obtain the current best point xt in241

step t.242

max Acq(x)

s.t. c(x,xA) ≤ C.
(4)

Once the query result f(xt) of the point xt is returned, the BO framework updates its belief about243

the unknown function distribution and the whole procedure iterates until termination condition is244

satisfied.245
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