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Nikolaos Sapountzis, Thrasyvoulos Spyropoulos, Navid Nikaein andr Sadén.

Abstract

Operators, struggling to continuously add capacity andageytheir ar-
chitecture to keep up with data traffic increase, are turttieg attention to
denser deployments that improve spectral efficiency. Dredesployments
make the problem of user association challenging, and much has been
devoted to finding algorithms that strike a tradeoff betwaser quality of
service (QoS), and network-wide performance (load-batayc Neverthe-
less, the majority of these algorithms typically considerm@e setups with a
single type of traffic, usually elastic non-GBR (GuarantB#&cRate). They
also focus on the radio access part, ignoring the backhpoldgy and po-
tential capacity limitations. Backhaul constraints areegging as a key per-
formance bottleneck in future networks, partly due to thaticmous im-
provement of the radio interface, and partly due to the neethéxpensive
backhaul links to reduce capital and operational experastuTo this end,
we propose an analytical framework for user associationjtivaly consid-
ers radio access and backhaul network performance. Spdigifive derive
an algorithm that takes into account spectral efficiencgebstation load,
backhaul link capacities and topology, and two traffic @aq$BR and non-
GBR) in both the uplink and downlink directions. We prove lgttieally an
optimal user association rule that ends up maximizing eitmearithmetic
or a weighted harmonic mean of the achieved performanceyaldferent
dimensions (e.g. UL and DL performance or GBR and non-GBRoper
mance). We then use extensive simulations to study the ingbgp traffic
differentiation, and (ii) backhaul capacity limitationacatopology on key
performance metrics.

Index Terms

hetnets; backhaul; optimization; traffic differentiatiarser-association;
load balancing; spectral efficiency.
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1 Introduction

Driven by the exponential growth in wireless data traffic, operatorsareas-
ingly considering denser, heterogeneous network (HetNet) deploymeridiet-

Net, a large number of small cells (SC) are deployed along with macrocells to
improve spatial reuse [1-3]. The higher the deployment density, the lileger
chance that a user equipment (UE) can be associated with a nearbstétise

(BS) with high signal strength, and the more the options to balance the load. At
the same time, denser deployments experience high spatio-temporal load varia-
tions, and require sophisticated user association algorithms. There aieywvo
often conflicting concerns when assigning UEs to a BS: (i) maximizing the spec
tral efficiency, and (ii) ensuring that the load across BSs is balanced toweap

the utilization efficiency, and preempt congestion events. The former &lysu
achieved by associating the UE to the BS with maximum SINR: this association
rule was the base up to LTE (Long-Term Evolution)-release 8. While thesalgo
maximizes thénstantaneousate of a user (i.e., the modulation and coding scheme

- MCS - supported), it reflects user QoS only when the BS is lightly loaded:--H
ever, user performance, in termspr flow delay may be severely affected if the

BS offering the best SINR is congested [4, 5].

As a result, a number of research works have studied the problem roasise
sociation in heterogeneous networks, optimizing user rates [6, 7], adpBS
loads [8], or pursuing a weighted tradeoff of them [9]. For instana#istibuted
user-association algorithm is proposed in [10], where the global opradgability
and the long term rate maximization are well studied, in the context of load bal-
ancing. The authors in [11] propose a framework that studies the inyesplaser
association and resource allocation in future HetNets, by formulating aoorex
optimization problem and deriving performance upper bounds. Raxuggasion
techniques, where the SINR of lightly loaded BSs is biased to make them more
attractive to the users are also popular [2, 3]. Finally, a framework tastré+
ceived much attention is [9]. This framework jointly considers a family of objec
tive functions, each of which directs the optimal solution towards diffegeats
(e.g. throughput optimal, delay-optimal, load balancing, etc.), using an vierati
algorithm. [12—14] extend this framework to further include energy managg
e.g., by switching off under-loaded BSs.

Nevertheless, the majority of these works are relatively simplified, not taking
into account key features of future networks. Firstly, most existing stuoindy
consider homogeneous traffic profiles. For example, [9, 12, 15hassbat all
flows generated by a UE are “best-effort” (i.e. elastic). However, modad fu-
ture networks will have to deal with high traffic differentiation, with certaimfo

This work was partially supported by the project “Network-level Optimizagiéor Small Cell
Networks", funded by Intel Mobile Communications.



being able to require specifidedicated (i.e., non-elastic) resources [16]. Such
dedicated flows do not share BS resources like best-effort oreesphject to ad-
mission control, and sensitive to different performance metrics [17r8#y, the
majority of related studies only consider downlink (DL) traffic. Uplink (ULaftr

fic is becoming important, due to symmetric (e.g. social networking) applications,
Machine-Type Communication (MTC), etc. Yet, due to the asymmetric transmit
powers of UEs and BSs, leading to different physical data rates, theH® is
optimal for DL traffic might lead to severely degraded performance for @f- tr
fic. Summarizing, a proper user-association scheme should considex abhdlie
dimensions, and attempt to strike an appropriate tradeoff between them.

On top of that, most related works focus on the radio access part (erg., co
sidering the user rate on the radio interface or BS load), ignoring the aatckh
(BH) network. While this might be reasonable for legacy cellular netwakgn
that the macrocell backhaul is often over-provisioned (e.g., fiber),ntight be
quite suboptimal for future cellular networks. The considerably higharbar of
small cells, and related Capital Expenditure (CAPEX) and Operationadritiip
ture (OPEX) suggest that backhaul links will mostly be inexpensive varewire-
less (in licensed or unlicensed bands), and underprovisioned [18]tipl¢ BS
might also have to share the capacity of a single backhaul link due to, ént; po
to-multipoint (PMP) or multi-hop mesh topologies to the aggregation node(k) [19
Finally, various BS-coordinated schemes have been proposed in thtuliéeas a
promising way to better use the available spectrum and further improve sgstem
formance, e.g., enhanced Inter-Cell Interference Coordination@¢[20,21] and
Coordinated Multi-Point (CoMP) transmission [22] scenarios. Suchrsebere
expected to further stress the backhaul network capacities. Henibe, i@slio ac-
cess technologies are constantly improving, it is argued that the baakedtawdrk
will emerge as a major performance bottleneck, and user association atgorith
that ignore the backhaul load and topology can lead to poor perfornj28ce

As a result of this increasing focus on the backhaul, some recent Wavksap-
peared that attempt to jointly consider radio access and backhaul. Tearestly
concerned with joint scheduling issues (for in-band or PMP backhaks)lif23,
24], signaling overhead and performance tradeoffs for coopernatitti-point com-
munication [25], Software-Defined-Networking (SDN)-based implememntélio-
ibility [26], or propose some simple heuristics to include the impact of the batkha
network on user association [27]. Finally, Chen et al. attempt to deriveothe
expected delay by taking into account retransmission over the wireless #igks
well as the backhaul delay in the wireless backhaul links [28]. Neviegketo our
best knowledge, none of these works formally addresses the prolbleptimal
user association in future and potentially backhaul-limited HetNets.

To this end, we revisit the user association problem, jointly considering the
radio access and backhaul networks. Specifically, our main contrilsutiam be

In terms of LTE systems, dedicated flows are differentiated by their Qax$ ¢QCI) ranging
from 1 to 4, whereas best-effort from 5 to 9 [16].



summarized as follows

1) We use the popular framework @foptimal user association [9] as our start-
ing point, and considerably extend it to include (i) traffic differentiation, WiL)
traffic, and (iii) backhaul topology and capacity constraints.

2) We then analytically prove different association rules, dependinghather
UL and DL traffic of the same UE can be “split” to different BSs or not [29]
Interestingly, depending on this UL/DL “split" the derived rules end up maxigiz
either an arithmetic or a weighted harmonic mean of the optimal association rules
per problem dimension.

3) We use our framework to investigate the various tradeoffs arising in this
complex association problem, and provide some initial insights and guidelines
about the impact of traffic differentiation and backhaul limitations in optimal-use
association policies for future HetNets.

4) Our results also highlight some shortcomings of future HetNets, and tedica
potential extensions to tackle them within our framework. These include #tk ne
for joint radio access and Layer 3 routing on the transport (backhatWork, and
dynamic allocation of access as well as backhaul resources (e.g., iortexicof
dynamic TDD).

The remainder of the paper is organized as follows: Section 2 describes th
system model and related assumptions. In Sections 3 and 4 we derivaithalop
user-association policies for provisioned and under-provisionddbatnetwork.

In Section 5 we simulate our proposed optimal association rules and attempt to
shed some light on the impact of traffic differentiation, backhaul topology a
capacity on system performance. Section 6 discusses potential exteosiour
framework, and Section 7 concludes the paper.

2 System Model and Assumptions

In the following, we describe our traffic arrival model (Section 2.1), diwe
cuss our assumptions related to the access (Section 2.2) and backivaarkee
(Section 2.3).

We use a similar problem setup as the one used in a number of related works [9
12,13, 30], and extend it accordingly. To keep notation consisterd)lfeariables
considered a first superscript “D" and “U" refers to downlink (Dlodauplink
(UL) traffic, respectively. A second superscript “b” or “d” refeto best-effort
and dedicated traffic, respectively. For brevity, in the followimg present most
notation and assumptions in terms of downlink traffic only, assuming thaptik
case and notation is symmetricSpecific differences will be elaborated, where
necessary.
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Figure 1: Access network queuing systems for different flows.

2.1 Traffic Model

(A.1 - Traffic arrival rates) Traffic at locationz € £ consists of file (or more
generallyflow) requests arriving according to an inhomogeneous Poisson point
process with arrival rate per unit aré&z)?. This inhomogeneity facilitates the
creation of “hotspot” areas. Each new arriving request is fdowanlink (DL)flow,
with probability z, or uplink (UL) flow with probability 2V = 1 — 2. Each DL
(or UL) flow can furher be &est-effortflow (e.g., file download) with probability
2%, or dedicatedflow (e.g., a VoIP call), with probabilitg? = 1 — zb. 2P andz’
are input parameters that depend on the traffic mix.

Using a Poisson splitting argument [31], it follows that the above givegaise
4 independent, Poisson flow arrival processes with respective rates

)\D’b(:v)
)\U’b(aj)

Db @), AP a) = 2P 2% A(x) 1)

z
U2 N x), AVi(z) =2V 2% A(w), (2

(APb(z) for the downlink best-effort flows\U:* () for the uplink best-effort flows,
etc.).

(A.2 - Best effort flow characteristics)Eachbest-efforflow is associated with
a flow-size(in bits) drawn from a generic distribution with meapu”*(z). This
can model heterogeneous flow characteristics across locations.

(A.3 - Dedicated flow characteristics)Eachdedicatedflow has arequired
data-rate(in bits per second) that is drawn from a generic distribution with mean
BP(z). This rate must be guaranteed by the network throughout the flow’s dura
tion. This duration (in seconds) is another, independent random lewviéh mean

1/ P ().

2without loss of generality, we do not distinguish between users at locatias we assume that
all users/flows related to locatianare treated similarly.




2.2 Access Network

(B.1 - Access network topology)WVe assume an area C R? served by a set
of base station#, that are either macro BSs (eNBs) or small cells (SCs). These
together constitute the access network.

(B.2 - DL resources)Each BS € B is associated with a transmit powerand
a total downlink bandwidthv”. Out of the total bandwidtii” - w? is allocated to
best-effort traffic and1 —¢”)-w? for dedicated traffic{ < ¢ < 1). Throughout
this paper, we will assume that this allocation is static, at least for a given time
window of interest (based on long term traffic characteristics and tmygralicy).
Dynamically updating thé” parameters could further improve performance, but
is related more to the MAC scheduler of each BS and is out of the scope of this
paper. Nevertheless, in Section 6, we discuss how one could include this in
framework.

(B.3 - DL physical data rate) BS i can deliver anaximunphysical data trans-
mission rate ofcf) 7b(z:) to a user asking for a best-effort flow at locationin
absence of any other best-effort flows served, which is given bypttanon ca-

pacity?

¢"(x) = ¢ wP -logy(1 + SINRi(2)), (3)
where SINR(z) = % Ny is the noise power, an@;(x) represents

the path loss and shadowing effects betweentheBS and the UE located at
(as well as antenna and coding gains, &tdffe assume that effects of fast fading
are filtered out. Our model assumes that the total intercell interferenceagiolo
x is static, and considered as another noise source, as is previousigeredsn
most aforementioned works [9, 12].

The next 4 points (B.4-B.7) describe the scheduling and performancel mode
for best effort traffic only. We return to dedicated traffic in (B.8-B.9).

(B.4 - Best effort load density)We introduce thdoad densityfor best effort
flows, at different locations,

ADb ()

) = P

; 4

which is the contribution of location to the total load of a B$, when location:
is associated to BS

(B.5 - Best effort load)Each location: is associated with routing probabilities
piD’b(:L‘) € [0, 1], which are the probabilities that best effort DL flows generated for

3We use Shannon capacity for clarity of presentation. However, ouoapp could be easily
adapted to include modulation and coding schemes (MCS). Furtheroagracity improving tech-
nologies, e.g., the use of MIMO, and modifications to this capacity forratgdaothogonal to our
framework.

“In the case of UL, we assume that the Tx power of each uge¥ 5, and slightly abuse notation
for SINR, G, etc., as these don’t play a major role in the remaining digmois



users at location get associated with (i.e., are served by)B®/e can thus define
thetotal best effort IoadoiD * for BSi as

pt = [ PPl @) )

Similarly to [4, 9], we are interested in tlilww-level dynamicsf this system, and
model the service of DL best-effort flows at each BS as a queueirigrsywsith
load pZD’b shown in Fig. 1. Finally, since we are interested in the aggregation of
all flows at BS level (i.e., all flows from all locationsassosicated to Bg, even
if flow arrivals at each location are not Poisson (as in A.1), the Palm-Kihimtc
theorem [31] suggests that Poisson assumption could be a good appgiorifoa
the input traffic to a BS.

(B.6 - Best effort scheduling)Proportionally fair scheduling is often imple-
mented in 3G/4G networks for best-effort flows, due to its good fairnedspec-
tral efficiency properties [16]. This can be modeled as an M/G/1 multi-class p
cessor sharing (PS) system (see, e.g., [4,9,12]). Itis multi-clasaube each flow
might get different rates for similarly allocated resources, due to differieannel
quality and MCS at:. Channel-based scheduling could also be included in the
model and can be accounted for using a multiplicative factor in the aveeagees
rate [32].

(B.7 - Performance for best effort flows)The stationary number of flows in
D.b
BS:i is equal toE[N;] = £ [31]. Hence, minimizingo”"* minimizes E[N;],
—p

and by Little’s law it also minimizes the per-flow delay for that base station [31].
Also, the throughput for a flow at locatianis ciD’b(:v)(l - pf)’b). This observation

is important to understand how the user’s physical dataa;gtlé(x) (related to
users at location: only) and the BS Ioaqbf) b (related toall users associated with
BS ) affect the optimal association rule.

(B.8 - Dedicated traffic load density)Unlike best-effort flows which are elas-
tic, dedicated flows are subject to admission control, since they require game
sources for exclusive usage in order to be accepted in the systemificlgc
let ¢;”4(2) denote the maximum offered rate to users at locaticorresponding
to dedicated flows only (referred td — ¢;) - see B.3 above). If each flow at

demands, on average, a rate®f (z) (see A.3), then at mogt” (z) = C"g’(i()z)
dedicated flows fromx could be served in parallel by BS(assuming agaimo
other flows in the systémand any additional flows would be rejecte@imilarly
to the best effort case (B.4), we can define a system load density daratied

traffic atx

D AP ) e P ) ©

D) — @) D) B

®In fact, since the rate requirement for each flow is a random variasileg its mearB” (z) in
the denominator yields a lower bound fef () (by Jensen’s inequality), which can be used as a
conservative estimate.



Hence, a different number of resource8(z) can be offered to different loca-
tionsz, depending on the rate demaBd (x) as well as the channel quality (rate
c;P4(x)) at locationz.

(B.9 - Dedicated traffic performance)Given the above heterogeneous block-
ing model for dedicated flows, we can approximate the allocation afd#licated
resources with an M/G/k/k (dt-loss) system, where the total Ioaﬁ 4 can be cal-
culated as in (B.5) and Eg. (5), using the density of Eq. (6) and camnekpg
routing probabilitypzp’d(x) for dedicated flows (see also Fig. 1). It is known that
for M/G/k/k systems, minimizingyf”d is equivalent to minimizing the blocking
probability for new flows [31]. This observation is important to understiad
a similar tradeoff (as in B.7) exists between choosing a BS tat maximizes
kP (z) (related only to flow and channel characteristice)aind choosing a BS
whosetotal load pf 4 (related taall users attached to BS.

(B.10 - UL/DL association split)We investigate two scenarios, depending on
the whether a UE is allowed to be attached to different BSs for its DL and UL
traffic [29]:

Split UL/DL: Each UE can be associated to different BSs for its DL and UL
traffic. This allows one to optimize UL and DL performance independentl}; [33

Joint UL/DL: Each UE must be associated with the same BS for both UL and
DL traffic. This is the standard practice in current networks.

2.3 Backhaul Network

(C.1 - Backhaul network topology) Each access network node (either eNB
or SC) is connected to the core network through the eNB aggregation ayatew
via a certain number of backhaul links that constitute the backhaul netwaik
connection can be either direct (“star” topology) or through one or iB@aggre-
gation gateways (“tree” topology). Fig. 2 shows such a backhaul gtaipology.

Without loss of generality, we assume that there is a fiber link from the eNB
to the core network, and focus on the set of capacity-limited backhaul(kviksd
or wireless) connecting SCs to the eNB, denoted3gs We denote as routing
path B (7) the set of all backhaul linkg € B}, along which traffic is routed from
BS i to an eNB aggregation point. For example, in Fig32(1) = {1}, and
Bn(3) = {1,2,3}. We further denote a8(j) the set of all BS € B whose traffic
is routed over backhaul link. E.g.,B(1) = {1,2,3,4} andB(2) = {2,3,4} in
Fig. 2. In the case of a star topology, there is exactly one (unique) batkhk
used for each BS (i.e|l,B,(:)|| = ||1B(j)] = 1, Vi, 7). Finally, we assume that the
backhaul route for each BS ggven e.g., calculated in practice as a Layer 2 (L2)
spanning tree, and is an input to our problem. In Section 5, we highlight some
limitations of L2 backhaul routing.

(C.2 - Backhaul load) Each backhaul linki € By, is characterized by a DL
and UL capacity, denoted & (j) andCY (j) bps. The capacity on the UL and
DL might be the same or different (e.g., Frequency-Division Duplex (J;iD
fixed/dynamic Time-Division Duplex (TDD) systems [34]). Backhaul linksially



don’t implement any particular scheduling algorithm, and can be seen d@sa da
“pipe”.

Without loss of generality, we focus on a scenario with only best-effaffidr
This not only keeps our backhaul model tractable as we shall see latatsb al-
lows us to better understand the impact of backhaul limitations on the wide system
performance. Focusing on the DL, the load on a backhauljliakB3;, consists of
the sum of downlink loads (corresponding to best-effort traffic) oB&k using

that link: Z pD»bgD
PG @)
1€B(j)

whereéP is an estimate of the downlink total rate delivered by BSA BS is
usually characterized by its “peak” rate (often upper bounded by thénmiax
MCS available), and a “busy” rate, when a BS serves many usersTh&]latter
is usually quite smaller than the former, since users near the edge of thencell te
to bring the average rate down. However, the use of channel-baseduding and
related multi-user diversity gains suggest that conservatively settingoser to
its nominal peak value is safer. In practice, a BS could measure this loadard
directly.

(C.3 - Backhaul provisioning) We have derived the backhaul link Ioaﬁgeg(j) pf’bép)

and defined the backhaul capacity Iimitatico’r’%((j)) for each backhaul ling <

By, (see C.2). Thus, each of these links shall introduce a bacldwesitraintto

avoid exceeding its maximum capacity and prohibit backhaul conge@%’%) pf&f’ =<
CP(j) Vi € B)-

Throughout this paper, we assume that the backhaul network is aitder-
provisionedf the capacity of at least one backhaul link is exceedegravisioned
otherwise. We investigate the user-association problem separatelycforsee-
nario in Sections 3 and 4, by focusing on different tradeoffs.

3 User-Association for Provisioned Backhaul Networks

We start our discussion for optimal user-association by assuming thatake ba
haul network is provisioned and so, we can safely ignore it while deyithie opti-
mal association rules. Our aim is to focus on the radio access netwodkiparice
and traffic-differentiation involved tradeoffs.

We remind to the reader that based on our system model, the association policy
consists in finding appropriate values for the routing probabil'ybﬁ&:c), l e
{D,U}, t € {b,d}, for DL and UL, best-effort and dedicated traffic, respectively
(defined earlier in assumption B.5 and B.9). That s, for each locati@are would
like to optimally choose to which B5to route different flow types generated from
(UL) or destined at (DL) users in®. Our goal for this association problem is

5The use of a probabilistic association rule simplifies solving the problem.v# turn out, the
optimal values will be eithed or 1 (deterministic).
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Figure 2: Backhaul topology in future Hetnet.

threefold: (i) ensure that the capacity of no BS is exceeded (later in 8eLtive
will also include the constraint of no backhaul capacity is exceededdfileve a
good tradeoff between user physical data rates, user QoS and leadihg, (iii)
investigate howJL/DL association spliimpacts the optimal rule derivation and
the performance benefits of split UL/DL.

We define the feasible region for the aforementioned routing probabilityes, b
requiring that no BS capacity being exceeded.

Definition 1. (Feasibility): Letl € {U, D},t € {b,d}, and lete be an arbitrarily

small positive constant. The sgt’ of feasible BS loads"t = (o', p', . .. ,pﬁ’g”)

IS
7= LMt = A P (@)t (w) d,
0< i <1—¢
S (@) = 1, ®)
ieB
0<pl(x)<1,VieBVre L}.

Lemma 3.1. The feasible setg?:0, fPd fUb fUd a5 well as the f7:0; fP4],
[FOP FOA L0 fURL [P0 £ f20; f99), are convex.

Proof. The proof for the feasible set”* is presented in [9]. It can be easily
adapted for the other cases, too (e.g., see [35]). O

3.1 Optimal Split UL/DL User Association

We first define the user association problem for the split UL/DL casee,Her
we should require that all DL best-effort and dedicated flowstzve to be down-
loaded from the same BS, i.e2 (x) = p/’(x) = p”*(x). Also, that all UL best-
effort and dedicated should be offloaded to the same Bgl'¢e) = p!"’(x) =
p”*(x). Note thatpP (z) andpl () can take different values (see B.10) in split



UL/DL scenarios. Hence, the problem of optimal DL and UL associateombe
decoupled into two independent problems, one for DL and one fortJthe re-
mainder of this section, we focus on the optimal DL association problem, and we
omit the superscript§D, U} to simplify notation. We return to the joint UL/DL
association problem in the next subsection.

Following [9], we extend the-cost function to consider performance for dedi-
cated flows, along with the best-effort ones. Specifically, we introduceatame-
ter0 < 6 < 1 that linearly weights the relative importance between best-effort and
dedicated traffic, and parameters > 0, o¢ > 0 that define the load balancing
degree for the corresponding resources.

Theorem 3.2. [Split UL/DL User Association rule] The optimal user-association
problem can be expressedw@asn,{¢(p)|p = (o°; p9) € f = (f*; f%)}, where

1—at

o0 = oI g0

b _
icB @ 1 1

Jifad ot £ 1. 9)

If the feasible domairf of the problem is non-empty, apd = (p7, p5, - - - ,pﬁBH)
denotes the optimal load vector, the user-association rule at locatieexpressed
by the following weighted harmonic mean (of individual rules) formula

1— ) (1= prd)®
i(w) = arg max v )ad (L=p) "
() (1= )" +el(@) - (1= p?)

d

(10)

whereeb(z) = Mf(j;;jzx) anded(z) = % optimally weight the corre-

sponding individual association rules depending on the traffic statistics.

Note that ifa® = 1 (or a?=1) the corresponding term in the objective (Eq. 9)
is not defined, antbg(1 — p?)~! (log(1 — p¢)~1) is used instead.

Proof. We prove that the above user-association rule (Eq. 10) indeed minimizes
the cost function of Eq. (9). This problem is a convex optimization becasise
feasible setf is convex (see Lemma 3.1). Also, the objective functigp) is
convex, due to the summation and linear combinations of the convex furgtion

that is proven to be convex in [9]. Let = [p**; p*?] be the optimal solution of
Problem (9). Hence, it is adequate to check the following condition for ofitima

(Vo(p"), Ap") 20 (11)

forall p € f, whereAp* = p — p*. Letp(z) andp*(x) be the associated routing
probability vectors fop andp*, respectively. Using the deterministic cell coverage
generated by(10), the optimal association rule is given by:

_ rb ab. _oxd\@
pi(z) = 1{i = arg max (1—r") _ (1—p)
(@) (1- o) Het(a) - (1 p;?)"

d

. } 12)

10



Then the inner product in Eq. (11) can be written as:

(Vo). A0 = 3 S8 (o= o)
z={b,d} '°

= S = ) G )

1 b ! ¢ &
=03 e A =0 el = o) (13)

i€EB ieB
L A )~ pi e (1= 0) [ o) () — pi )
D (1= o)

b

[ 2@ i) — pi () @A DY+t =)
= [ M) S tonto) = pi e I SIS

= 02222 anded(z) = % Note that,

Zpl 1_pz )a +ed( )(1_pzb)a >

*d)ad

ab
pret (L= p")" (1 —p;

(14)

b

o @@= p ) + @) (1 - p)e
27 (1= P (1 — ;)

b(2) (1—prd)>” el (@) (1-p;)° ’

holds becausg*(z) in (12) is an indicator for the minimizer 6t
Hence, (11) holds.

(1-pzb)e® (1—pyd)ad

While ¢ linearly weights the best effort versus dedicated flow performanee (se
Eqg. 9), the impact of®, o is not obvious. We now discuss their impact on the
system performance and refer to [9], [36] for the respective groof

e Spectral Efficiency Optimizatiom® = 0 maximizes the average physical
rate for best-effort flows (defined in B.3), wherea = 0 maximizes the
average dedicated servers for dedicated flows (defined in B.8). @yjo
these optimize the usé& N R and spectral efficiency.

e Optimizing related QoS metricst o’ = 1 the corresponding optimal rule
tends to maximize the average user throughput? = 2 the per-flow delay
is minimized since the objective for best effort flows corresponds to thg dela
of an M/G/1/PS system. K = 1 the corresponding optimal rule becomes
equivalent to the averagdle dedicated servers in a k-loss system, and the
actual blocking probability is minimized.

e Load-Balancing Efficiency OptimizationAs o’ — oo, we minimize the
maximum BS utilization, i.e. load balancing between tfids achieved.
Similar for a® and p%’s. Note that, the point o’ that all BS best-effort
utilizations are equalized might be different from the one for dedicated, de
pending on the respective traffic statistics.
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The above Theorem, defines in Eq.(10) the optimal association rule fbr eac
user at locatiorx, given the optimal BS load vecter. However, as the optimal
vectorp* is not necessarily known, in Section 6 we proposéenativealgorithm,
that starts within a feasible load vector point, and through an iterative guoeé
converges to the optimal one.

In the case of split UL/DL, the above analysis can be ap@aghratelyon UL
and DL traffic, and optimize UL and DL associations independently. Orvagui
lently, optimize the arithmetic mean (or, sum) of the corresponding rules.

3.2 Optimal Joint UL/DL User Association

Current cellular networks (e.g. 3G/4G) suggest that a UE should beected
to a single BS for both UL and DL traffic [37]. This changes the optimal @éiaso
tion problem, as one now needgaintly optimize UL and DL traffic performance.
E.g., a user at location might end up being associated with a BS offering subop-
timal performance on both the downlink and uplink, because other BS aadid
offer really bad UL (or really bad DL) performance.

We thus need to modify our framework accordingly. First, while deriving the
association rules we will have to requip€ () = pY (z) Vi € B . Second, UL
and DL performance must now be included in the same cost function. Spdgifi
the operator may linearly weigh the importance of DL and UL traffic perfocean
with a parameter < [0,1]".

Theorem 3.3.[Joint UL/DL User Association rule] The optimal association prob-
lem can be expressedasn, { ¢(p)|p = [p0%; g5 pU; pUd] € f = (FD4; pD; pUb; pUd) L,
where

1 7piD,b 1—aP? 1 7piD,d 1—aPd
#(p) = 7 (Z@D( e B

U,b U,d (15)
14— (Zeul—pﬁ“)“a TR N i )

ald —1

If the feasible domairf of the problem is non-empty, and given the set of all flow-
types2 = {(D,b), (D, d), (U,b), (U,d)}, the optimal user-association rule at lo-
cationz is now

I (1= )
) = O S @) T (=) (o

cef) 1eQF#c

9D 2D 2b Dd(,\ _ - (1=02)zPz gy N4 QU 2U 2b
PierE ¢ @) = Tupagpe e @) = -7 i

andeVd(z) = (1 — 7)% are the corresponding weight factors.

whereePt(z) = 7

If o oraV is equal tol, the respective fraction must again be replaced Wwigl{l — p;), as
explained earlier.
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Proof. We refer the interested reader to [36]. Ol

Remark 1. The above optimal rule derived in Eq. (16) suggests that ijotine
UL/DL scenario associated with objectives that potentially conflict with each other
(due to the different flow type performances), it is optimal to associaterawith
the BS that maximizes a weighted version of fle@monic mearof the individual
association rules when considering each objective alone. To bettestanttithis,
we focus on a simple scenario with only DL and UL best-effort traffic. Asgume
the following BS options for a user: (BS A) offers 50Mbps DL and onlykipd
UL; (BS B) 200Mbps DL and 0.5Mbps UL; (BS C) 20Mbps DL and 5Mbpis. U
If we care about UL and DL performance equally (ire= 0.5), one might assume
that the BS that maximizes the arithmetic mean (or arithmetic sum) of rates would
be a fair choice (i.e. BS B). However, this would lead to rather poor Ulfoper
mance. Maximizing the harmonic mean would lead to choosing (BS C) ifstead
Additionally, note that in the case aplit UL/DL, covered in Section 3.1, where
each user is free to be associated with two different BSs for the DL anuidffic
offloading, DL traffic would be associated with (BS B), and UL traffic wi#8(C)
by maximizing the arithmetic mean (or, sum) of their throughgufBhese simple
examples intuitively explain how split UL/DL impacts the user association policies,
by allowing to independently optimize each objective. This also demonstrates wh
UL/DL split may perform considerably better than the joint association. We will
further explore this in the simulations (Section 5).

We finally underline that, the “formula™ of harmonic or arithmetic mean max-
imization further allows to add more dimensions in our setup f#exdbly derive
the optimal rules without any analytical calculations. For instance, coreitere
modern offloading technique, where different downlink, or uplink, ftypes are
able to be offloaded to different BSs (e.qg., per flow/QCI offloading) wathflict-
ing aims. Using our model we can consider an additional respeetfuaction for
each flow type, and either analytically or flexibly, optimize the complete objective
as showed earlier.

4 User-Association for Under-Provisioned Backhaul Net-
works

While the rules derived above, that try to reflect different perforraarede-
offs, always lead to BS loads that are supported from the accessrketivey
perhaps will not be supported from the backhaul link (or the cormedipg back-
haul link path) for that BS, since they ignore potential backhaul limitatiorss. T

8While this simple example captures the main principle, the actual rule is manpler, as it
weighs each objective with the complex factbfz).

“The usage of harmonic mean and arithmetic mean/sum appears in arrafrphgsical exam-
ples, such as in the calculation of the total resistance in circuits whereiathreses are set in series
or in parallel.
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that end, in this section we try to extensively consider the backhaul netwat
related limitations while extracting the optimal association rules, and include to our
goals (i) that no backhaul link is congested, (ii) the impact of backhawlldgy

and capacity on key performance metrics. In order to better elucidate tikepr

at hand and without loss of generality, we focus on a simple scenarioonith
best-effort traffic So, in the remainder of the section we drop the corresponding
superscripts “b", “d" to simplify notation.

One of the main challenges when attempting to consider these backhaul con-
straints is to maintain the user association policy distributed (famous solvers for
such convex problems, e.g. through the Lagrangian dual function [@8lire a
centralized controller entity); in Section 6 we highlight why distributivenegsiis
portant. To that end, we chose to consider the backhaul constraintsabjtative
function as appropriatpenalty function$35]. This not only facilitates deriving a
distributed implementation of the policy, but also allows us to treat the backhaul
constraint as a “soft” constraint that ends up being “hard" and satisfyergence
to a feasible solution, as we shall see later.

4.1 Optimal Split UL/DL User Association

We follow the same presentation as the provisioned case, and start aig-disc
sion, with the split UL/DL case. As the association problem can be decqupled
that case, into two independent problems, we focus on the optimal DLiassnc
problem, and we omit the superscrig®, U }. We return to the joint UL/DL asso-
ciation problem in the next section. To better illustrate our approach, wefipdy
this for a simple star BH topology, and then generalize for a tree BH topalogy)

Optimal User Association for Star BH Topology)

In the following, since for star topologies there is exactly one backhau(jink
associated with each Bg)(itisi = j (see also C.1). Lef(:) be an indicator
variable, that shows whether tli¢h backhaul link is congested (i)=1) or not
(Z(7)=0). Precisely (see C.2)

0, whenZt pi ]
(i) = Cnl0) (17)
1, otherwise.

Theorem 4.1(Split UL/DL User Association rule in a star BH topologylhe opti-
mal user-association problem with a star BH topology is expressed@s{gt(p) lp €

f}, where

¢(p>=2(1_”’ =y S0 ( )2- (18)

i€B i€By
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If the feasible domairf of the problem is non-empty, apd = (p7, p5, - - - ,pﬁBH)
denotes the optimal load vector, the user-association rule at locatisn

(1— pé‘)a' _ ' 19)
I}(l) . (Pici o 1)

Cn(@)  \ Cn(d)

arg max ¢; ()
B ey (- e

Proof. We now prove that the above rule indeed minimizes the cost function of
Eq. (18). This minimization is a convex optimization problem. Its feasible set
f is convex, and the objectivg(p) is also convex due to the summation of two
convex terms: the first is convex as discussed earlier, and the seaend the
composition property of convexity [38]. Let* be the optimal solution of this
minimization problem. Again, it is adequate to check for optimality if

(Vo(p"), Ap™) =0 (20)

forall p € f, whereAp* = p — p*. Letp(z) andp*(x) be the associated routing
probability vectors fop andp*, respectively. Using the deterministic cell coverage
generated by (19), the optimal association rule is given by:

« ) ci(z)(1 — pi)®
p;(x) = 1{2 = argmax *( )(~ Z(i)) E }
T+ 2y-(L=p))* -G g, (clu) a 1)

(1)

Before proceeding to the calculation of the inner product, we analyticdiyiede
the derivative of the corresponding cost functigip), described in Eq. (18). The
derivative is an-th dimensional vector; theth element of which has value:

a0\ if _PiCi
(L—p)™, &G <1 22)

V¢(ﬂi)—{ 202 —25,Cn(D) e pids
(1= pi)™® +Z() 2T O i o >,

Whenp; = C’éi(i) , we work out explicitly from the definition to calculate the deriva-
tive. Itis:
lim  V¢(pi) = lm  Ve(p) = (1—p;i)" " 23)

o)t Cp i)~
i ZZ_(Z) pi%%

&

Summarizing, the-th element of the derivative of the considered function can be

written: ) Ont)

_ A 2pic; — 2¢;Cp (1
i) =(1—pi)) " +71 S

Vo(pi) = (1 —pi)~“ +~vL(i) AGE

To that end, the inner product defined in Eq. (20), becomes:

(24)

« « 1 2078 — 28;Ch(3) .
Vo (p"), ApT) = e L) T (i —
(Vo (p"), Ap") ;{(1_%)0 () s —ol)

14+ 29Z(i)(1 _p;)aw

- EAGL i(x) (pi(x) — pi (z)) dz
-2 = [ oi@) (o) =i ) d

1 4 20=pD* &I (p;faf, _ 1)
Az) On( Ch () .
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Note that,

(1—p}) (i) ( pré

1+ () W@ 1)
Zpi(x){ Cic(w)(l _ p;f)oa } =

1€B

(1—p}) (i) ( pié

1+ 2 i o L
Zp;’k(x){ cic(;))(l - pi‘)c"‘() ) }

iceB

wzrop e (¢6im1)

holds becausg! (x) in (21) is an indicator for the minimizer of A OIETAR
Hence (20) holds. 0

We again expressed the objective (Eq. (18)) with respect to the vaiahle
for convenience. The first sum is the standardost function for each B% al-
ready analyzed in the previous section. The second sum introduceskyer
each backhaul link whose capacity is exceedet({) = 1). This penalty function
is quadratic on the amount of excess load (quadratic penalty functioraftare
considered in convex optimization literature [39]). We chose to solve thHaer
iteratively, by starting with a small constant fgraccording to the magnitude of the
main cost function, that introduces a “soft" constraint (i.e., backhauddty can
be “slightly” violated if this really improves the radio access performanckhgn]
using increasing values it eventually converges to a “hard” constraint (no viola-
tions are allowed), as usually done in optimizations based on penalty fundtions
order to ensure that the algorithm doesn’t get stuck in steep valleys [39]
Regarding the optimal association rule of Eq. (19), we note that when the ca
pacity constraint for the backhaul links not active (i.e.Z(i) = 0, in provisioned
BH networks), the above theorem states that the optimal association rule is the
same as the one found in [9], or the one defined in Eq. (10) when 1. How-
ever, when the backhaul link of BSyets congested, a second term is added in the
denominator that penalizes that BS making it less preferable to UEs at lo¢ation
even if the offered radio access ratér) is high, or the radio interface afis not
itself congested.

Optimal User Association for Tree BH Topology)

We now consider a more complex backhaul scenario, where a singlasadck
link might route traffic from multiple BSs, and the traffic of a single BS might be
routed over multiple backhaul links (multi-hop path) towards the eNB) is now

Cn(9) (25)

0 Whenw <1
(i) =4 .
1, otherwise.

Theorem 4.2.[Split UL/DL User Association rule in a tree BH topology] The opti-
mal user association problem with a tree BH topology is express&d@s{gb(p) lp €

16



(1_ ,)l—a %:Pzéz
o) =3 Py S TG [ -] . (20)

i€B JEB Ch(j)

If the feasible domairf of the problem is non-empty, the optimal user-association
rule at locationz is now

) 1 — p*)o
— i(@)(1 = p})

ieB ~ ) - Y oprck ' 27
Lo £ A (S o) @)
JEBL(1)

Proof. The steps of this proof are similar to the star case, so we present here di-
rectly the corresponding inner product.

(Vo (p™),Ap") =

_ 1 . Zkes(]‘)Pzék~ Ci "
=Slame o X GG e )

i€B v JEB (i)

: / pi(@) (pi() — i (2)) d =
L

> PRk (28)
14 29(1 — pi)é; Z(j) . [ k€BG)_ 1
_ / A(z) > e je%(i) ot ( o) >
L () 5 ci(z)(1 —pi)*
- (pi(x) — pi () dz > 0,
due to the corresponding minimizgf(x) derived from (27). Ol

As one can see, the cost function is similar in nature. The first term pomds
ing to the radio access part remains unchanged. The second term againges
a penalty for each backhaul link that is congested. However, thera awenber
of interesting differences between the star and tree cases. First, @leygerm in
the denominator of the optimal association rule (Eq. (27)) now considevaibie
backhaul pattBy, (i) that traffic from BS; traverses, and adds a penalty évery
link along that path that is congested (outer sum in the denominator). Thés-obs
vation provides some support for the number of backhaul hops hewistiosed
in [27,40]. However, our analysis also suggests that it can be subdpdisreapath
with few hops might still include one or more congested links, and provides the
optimal way to weigh in the amount of congestion on each backhaul link.
Second, the actual congestion on each backhauljlisknow not only depen-
dent on the load of the candidate BSut also on other BSs whose load is routed
over j. Hence, a BS which would otherwise be a good candidate for traffic at
location xz, might still be penalized and not selected, even if it does not impose
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itself a large load on a backhaul ligk This is becausetherBSs sharing the same
backhaul link might be heavily loaded or congested.

In the case of split UL/DL traffic, the above analysis can be ap@ezarately
on UL and DL traffic, and optimize UL and DL associations independently. Fi-
nally, although we have provided separate solutions for star and trelegogm) to
better illustrate our approach, the optimal rule for the tree topology is geaauc
includes star topologies as well.

4.2 Optimal Joint UL/DL User Association

Here, we need to modify our framework accordingly, as we did in Sectign 3.2
to include (i) that? (z) = p¥ (z) Vi € B, (i) the weigh of importance between
DL and UL traffic performance < [0, 1]%0. If p = [p”; pY] € f = {fP; fU}, our
objective now is

172‘D1_QD 1771;]1—0111.
(;S(p)—iGZBT(ag_)l—F(l—T)(ag_)l,lf o a” £1. (29)

We also need to extend the penalty function to consider both uplink and down-
link capacity being exceeded on the backhaul link. Here, we presentsults
directly for the general case of tree backhaul topology, and we reméecetder
that this is applicable to star backhaul topologies as well.

Theorem 4.3(Joint UL/DL User Association rule in a tree BH topologyhe opti-
mal association problem with a generic BH topology is expresseda@{qb(p) lp=[pP;pY] €

f} , Where

DN
slp) =)+ Y > T') % -1 . (30)
ke{D,U} jEB, i ()

If the feasible domairf of the problem is non-empty, the optimal user-association
rule at locationz is

_ D) (= )
i(r) = arg max (1=r") (L-r")

= (31)
€8 D (g) . (1- p;-‘U)a +eV(z)- (1 - pP)

ab?
where ifg? = 7, gV =1 — 7, thenforl € {D,U}:

1 l 1ol 7' (j) 1»-6%(')02,6gc
2 g +2vy(1—p; > e R
( ) seBr () cl () cl ()
pt(@)ci (@) '

0f o or o is equal tol, the respective fraction must again be replaced Wiglil — p;), as
explained earlier.

el(x) =
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Proof. We refer the interested reader to [35]. Ol

The penalty function for the backhaul network is simply the sum of the cespe
tive penalty functions for UL and DL, described in Theorem 4.1. Howelespite
the similarities of the cost functions, as we can see, the resulting associalion p
in the joint UL/DL case is more complex.

For completeness, we present the optimal user-association rule in ahesdi-of
cated traffic too, for the joint UL/DL association. Here, it is adequate ttt"she
DL backhaul resources of theth link (C()) between DL best-effort(, " (j))
and DL dedicated trafﬁca’,?’d(j)), and treat each load of these “pipes"” as a certain
backhaul constraint with further appropriate penalty functions, asethqrevi-
ously. Similarly in the UL scenario.

Theorem 4.4. Given the set of all flow-type? = {(D,b), (D, d), (U,b), (U,d)}
we present the optimal association rule at location

I1((1 = p*)™)

ceN

i(x) = arg max 7 o (32)
2 (@) I (1—p))
ceN leQ#c

where the complex factor$?(z), forl € {D,U} are

alb o [ L2 R
pbb ()l () ’
whereas the!?(z),forl € {D,U} are

«l,d«l,d
1.d | I aa) ! 784 (5) ke%(:)pk °x
zz g (1 - 0) + 2y (1 — P ) Z Ciﬁd(‘j) Ci,d(].) -1

JEB (i)
phd(x)ki ()

5 Simulations

In this section we briefly present some numerical results and discusdrelate
insights. We consider 2 x 2 km? area. Figure 3(a) shows a color-coded map of
the heterogeneous traffic demaxia:) (flows/hour per unit area) (blue implying
low traffic and red high), with 2 hotspots. We assume that this area is cbvere
by two macro BSs and eight SCs. The macro BSs that are shown with asterisk
are numbered from 1-2, and the SCs that are shown with triangles areereonb
from 3-10, as we can see in Fig. 3(b)-(c), Fig. 4, and in Fig. 5. We @ssider
standard parameters as adopted in 3GPP [41], listed in Tabléf hot explicitly

HAs for (i) the sizes and ratios of different flows, (ii) splitting parameters,can use different
values in order to capture different simulation scenarios, and demisresults.
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Table 1: Simulation Parameters

Parameter \ Variable \ Value |
Transm. Power of eNB/ SC/ UE P.xp/Psc /Py | 43/24/12 dBm
BS Bandwidth for DL, UL w/W 10/10 MHz
Noise Power Density No -174 dBm/Hz
Splitting parameter for DL, UL g‘U 0.5/0.5

Average DL/UL flow sizes 100/20 Kbytes

Average DL/UL flow demands| B” ( )/B ( ) | 512,128 kbps
Different flow ratios 20 2P 0.3,0.6

mentioned, we assun#®’ = Y = 7 = 0.5, and the split UL/DL scenario as
default.

Before proceeding, we need to setup a metric to evaluate load balancing (or
utilization) efficiency. Thus, we introduce the Mean Squared ErdSEP?),
between the DL best-effort utilization of different BSs, normalized to 1:

MSEDJ):Q “BHJ [sulzz Pt ' (33)

We define the DL load balancing metric for best-effort traffic tolbe M SEP?,
that increases on the amount of load balantingimilarly, we can define them for
the other three casés— M SEP4, 1 — MSEYb 1 — MSEVA,

5.1 Provisioned Backhaul

We now focus on the case of provisioned backhaul as considerediios8
and investigate the involved tradeoffs both qualitatively and quantitativelg. W
will present the impact of our proposed association rules via coveraggskots
to show how users associate in the considered network, while we will atsalpr
values for related performance metrics that complete our study numerically.

Spectral efficiency vs. Load balancingigure 3(b) outlines the optimal DL
user-associations if?* = a4 =0, i.e., whenspectral efficiencys maximized.
Thus, each UE at is attached to the BS that offers thgghest DL SINRand
promises higher DL physical rate for best effort flomﬁ’b(az), and more “dedi-
cated" servers” (z); i.e. most of UEs are attached to macro BSs due to their high
power transmission, and fewer to SCs, forming small circles around thense€o
guently, macrocells are overloaded and load imbalance within the cells ieslearp
(decreased— M SEP? 1—-MSEP4; seeline 1 of Table 2). However, in Fig. 3(c)
we emphasize thead-balancingefficiency and set”* = P = 10. Now, most

2\We should note that different load balancing metrics could have beeh @se themaximum,
median and minimurBS load; however, we chose to use MSE since it facilitates the visualization of
the network efficiency.
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SCs vastly increase their coverage area in order to offload the ovedaadcro
BSs (e.g., BSs 6, 8, 10); “heavily" loaded (due to the hotspots) BSghlymain-
tain the same coverage (BS 4 and 7). Thus load balancing is improved,catsthe
of E[cP?], E[kP] (see line 2 of Table 2). For further implications@fparameters
we refer the reader to [9].

Best-effort versus dedicated traffic performancalthough in the previous
scenarios the best-effort- and dedicated- related traffic rules (eepessfrom
aPb oP-d) are aligned, one could ask how would two conflicting optimization ob-
jectives affect our network? The answer lays in the usagé’othat judges which
objective carries more importance. E.g., an operator has two main goals: (i) to
maximize the average number of servers for “dedicated" traffic capbyrétji "]
(seta”? = 0), (ii) to better balance the utilization of best-effort resources be-
tween BSs (set”’* = 10). As shown in Fig. 3(d), i# — 0 E[k”] is maximized,
whereas a8 — 1,1 — M SEP? (DL best-effort load balancing) is optimized, and
each objective comes at the price of the other.

05
500
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500 1000 1500 2000 500 1000 1500 2000

(a) Traffic arrival rate. (b) Spectral Efficiency Opti-
mizationa”? = o4 = 0.
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(c) Enhanced Load Balancing (d) Ded. vs. Best-effort flows
aP?t =P = 10. performance.

Figure 3: DL Optimal user-associations (Spectral efficiency vs. lbzdancing and best-effort vs.
ded. traffic performance)

DL vs. UL traffic performancés considered in Figure 3(b), 4(a)-4(b), with re-
spective numerical performance metrics in Table 3. The first two figugstdae
DL and UL optimal associations, in case of split UL/DL, for each user. diow-
ever, if split is not available from the operator point of view, we have t@hite
whether the DL or UL performance is more important while selectisggleBS
for joint UL/DL association, using parameter To that end, Figure 3(b) (also)
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Table 2: Numerical values for Figure 3.

Rates and Servers Load Balancing
E[cP?] (Mbps) E[kP] | 1-MSEPY  1-MSEP-
Fig. 3(b) 16.3 32 0.77 0.78
Fig. 3(c) 14.3 27 0.96 0.995

outlines the optimal associations in the joint UL/DL case if the whole emphasis is
on theDL performancgr = 1): this hurts the UL performance due to the asym-
metric transmission powers of the UEs and BSs (see line 1 of Table 3). 14(&ig.

the emphasis is moved on thi performancgr = 0), and each UE is attached

to the nearest BS, in order to minimize the path loss [33] and enhance therUL pe
formance; this hurts its DL performance though (see line 3 of Table 3).llf5ina
Fig. 4(b) shows the optimal coverage areas when one assigns equaangeoto

the UL and DL performance (i.ex = 0.5): this moderates both DL and UL per-
formance (line 2 of Table 3). This also corroborates the notion that splilésta
simultaneously optimize UL and DL performances, as already discussediry.the

0
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2000
0

500 1000 1500 2000 500 1000 1500 2000

(@) UL performance optimiza- (b) Equal emphasis of DL vs.
tionT = 0. UL 7 =0.5.

Figure 4: Optimal user-associations (DL vs. UL traffic performance)

Table 3: Numerical values for Figure 4.

DL performance UL performance
E[cP?] (Mbps) E[kP] | E[Y*] (Mbps) E[kY]
Fig. 3(b) 16.3 32 2.3 18
Fig. 4(b) 14.7 28 3 24
Fig. 4(a) 13.3 26 3.6 28

5.2 Under-provisioned Backhaul

We now continue with some backhaul-limited network scenarios. We remind
to the reader that our focus is on the backhaul libksveen the macro cells and
SCs(for simplicity we assume provisioned links between the macro cells and core
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network). As already discussed in assumption C.1, we investigate twoeiffer
backhaul topology families: (i) “star" topologies (single-hop paths), (igé"
topologies (with multi-hop paths), along with two backhaul links typesred
and wireles$®. Our aim is to evaluate the derived association rules described in
Section 4 for differentinder-provisionedcenarios, by fixing the aforementioned
trade-offs related to the traffic differentiation as it follow” = 9V = 1 (we
only focus on the best-effort flows by dropping the superscripts Ha'‘@”), and
aP = oV =1 (throughput optimal values). Also, we assufixedbackhaul rout-
ing paths, pre-established with traditional Layer 2 routing, that the BHaiizgm
on the DL and UL are the same (i.€77(j) = CY(j) = Cy, Vj € By), and

if not explicitly mentioned we assume them to be equal@®M bps. We main-
tain this assumption to facilitate our discussion, although our framework vi@rks
heterogeneous backhaul links and UL/DL capacities (see C.2).

0

500

500 1000 1500 2000 500 1000 1500 2000

(a) BH: provisioned. (b) BH: Wired-Star.

500 1000 1500 2000 0 500 1000 1500 2000

(c) BH: Wireless-Star. (d) BH: Wireless-Tree.

Figure 5: DL optimal associations in different scenarios.

Before proceeding, we need to make an assumption about the backikaul lin
capacities. In case ofired backhaul links, we assume that the peak backhaul
capacityC, is always guaranteed. Faiirelessbackhaul links we adopt a simple
model associating peak backhaul capacity to distance: if the length éttHank
is r;, the peak capacity drops as:

d(r) = {( 1, r <1 (34)

Toyn otherwise,

T

3Note that copper and fiber access are the key technologies for wichktidaa links, and mi-
croWave and millimeter-wave P2P or P2MP access are the counteopdhtef wireless backhaul
links [42].
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whererg is some threshold range within which the maximal rate is obtained (e.g.
Line-of-Sight), andh is the attenuation factor. Hence, the available capacity drops
to d(r;)Ch(j) (£ Cr(j)). For our simulations, we assumed thgt = 200m,
andn = 3. While the above model is perhaps oversimplifying, our main goal is
to simply include a generic model for the propagation related impact on wireless
backhaul, compared to wired, without getting into the details of specific laatkh
implementations. For detailed path loss models for different backhaul techno
gies, we refer the interested reader to [28].

Coverage Snapshot$n Fig. 5(a) we depict the optimal DL user-associations
for provisioned backhaul network with respect to the traffic arrigéds shown in
Fig. 3(a). Compared to the associations showed in Figure 3(b) wiHere oV =
0, we note that now some SCs have slightly increased coverage areagmord
improve the mean user throughput [9].

In the following, we focus on differeninder-provisionedackhaul scenarios,
and study the DL associations (similar behavior in the UL as explained in [I8b])
Fig. 5(b) we adopt avired-starbackhaul topology, where SCs shrink their cover-
age areas, by handing-over users to other BSs, in order to offloadifesponding
(under-provisioned) backhaul links; this phenomenon becomes monsénitethe
“hot-spot" areas (e.g., BS7 have vastly decreased their coveraa® dree to the
higher traffic demand. Similarly, in Fig. 5(c), we assumwieeless-starback-
haul topology, where SCs further decrease their coverage artga$y the higher
backhaul capacity loss caused from the long wireless links (see EQ.(34)

In Fig. 5(d) we adopt avireless-treetopology, where some SCs are required
to carry also traffic of other SCs, and end up more congested. As b, resst
SCs further decrease their coverage area, compared to the stassviggielogy.
However, BS7 and BS10 enlarge their coverage areas, compareddiatimase.
This occurs because these SCs are far from the eNB, and multi-hop dgpadio
lows them to route their traffic over shorter wireless links with smaller capacity
losses, compared to the star case (Fig. 5(c)). Hence, there are twoautrsf
affecting the coverage areas in such wireless backhaul netwadglggy each
BS-load might traverse through multi-hop backhaul paths, by “wastirgpurees
from more than one backaul links (drawback for tree topologi@sgation) the
higher then,r( the worse the capacity loss “wastage" over a dedicated direct back-
haul link (drawback for star topologies that require longer links).

As backhaul networks become increasingly complex, e.g. “mesh" topslogie
each BS hamultiplepossible routing paths to follow, beyond what is shown in the
figures (we remind the reader that the above shown topologies are simgiyeine
spanning routing trees). The above observations thus underline thewhings
of predetermined, Layer 2 (L2) backhaul routing mechanisms, andaradljbint
optimization of user-association on the radio access network along witimigna
Layer 3 (L3) backhaul routing (see Section 6).

Under-provisioning impact on user performandégure 6(a), 6(b) depict the
averageDL and UL user throughputs, as a function of the backhaul capacity con
straintC},, on different scenarios. Generally, @s drops, the mean throughputs
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Figure 6: Mean throughputs overall all users in the network.

are decreased, since users are handed over to (potentially fay-avaayo BSs,
causing performance degradation. Interestintylg,slope of the dropping ratee-
comes more steep for lower values(®f, due to the logarithimic capacity formula
chosen in assumption (B.2). Also, &% increases, the average throughputs “con-
verge" to the value corresponding to a provisioned backhaul netwoke that

the average UL throughput convergences more quickly, compared BLthEhis
happens due to the asymmetry between the DL and UL traffic demand on e rad
access network: the UL one is much lower, mainly due to the asymmetry between
the transmission powers of BSs and UEs, as well as different file sigamasl in
each direction. Beyond this point, the UL backhaul resources will benuitized.
This calls for dlexibleTDD duplexing scheme, that will dynamically distribute the
backhaul resources accordingly, for example by giving more batkesources to

DL when the UL demand is already satisfied (e.g. the eIMTA scheme [48]). F
nally, in the wired case, star topology is always slightly better than the tresxpab

in the wireless the opposite, as explained earlier.

Table 4: Mean throughp. for handed-over users (in Mbps).

] Topology | Ch=50 250 500 (Mbps) |
DL/ UL thr.: Star-Wired | 1.1/0.2 3.1/1.6 4.1/ X
DL/ UL thr.: Tree-Wired| 0.6/0.1 24107 3.2/X
DL/ UL thr.: Tree-Wirel.| 0.2/0.03 1.7/0.07 2.1/0.15
DL / UL thr.: Star-Wirel. | 0.1/0.001 1.4/0.05 1.7/0.02

One could notice that user throughputs drop slightly on(@heonstraint, e.g.
in a wired-star topology i}, drops500 — 50 Mbps (10 times), the mean user
throughput only dropd5 — 6 Mbps (~ 3 times). This is due to the fact that,
under-provisioned backhaul links do not affect the whole netwouit, Specific
groups of users associated with the cells that suffer from low backlagalcity. To
better illustrate this, in Table 4 we show the average throughput dfahded-over
users as a function of’,. Indeed, their performance is severely affected: for the
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same scenario, their DL throughput drops all the way.toMbps (~ 15 times).
(In scenarios with no handovers, we mark the respective table entry mvith)a

1 pe a2 1
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E 3 4

i} = t

= 4 [}
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(a) DL Spectral efficiency. (b) DL Load balancing (Utiliza-
tion) Efficiency.

Figure 7: Downlink Network Efficiencies (normalized).

Under-provisioning impact on Network Performandewrning our attention to
network-related performance, Fig. 7(a) considers spectral effigiént/s/H z),
normalizedby themaximuntorresponding value when the network is provisioned.
Load-balancing (“utilization") efficiency is further considered in Fig)46 terms
of the MSE metric, described earlier. Both efficiencies convergeds the net-
work gets provisioned. Low;, values will push users to handover to far-away
BSs, and this will potentially decrease th8if N R (spectral efficiency decrease),
and create steep differences between BSs loads, e.g. by congestiogB8aand
under-utilizing the SCs (load balancing decrease). Note that, the joiradbegn
of these performances also impacts user performance negativelygerghrough-
put), as explained in Section B.6. Regarding spectral efficiency, moo#isp8y,
although in the wired scenario, star topology is always better comparedtethe
in the wireless scenario this is not the case. For low valué$,pthe star topology
is worse, due to the higher capacity loss of the long and direct links. Hoyeeve
C}, isincreased, and some links start becoming provisioned in the star topiiiegy,
capacity loss cost due to the long wireless links in the star topology, is dominated
from the capacity loss cost due to multi-hop sharing links of the tree topdbygy,
making tree a worse choice. We highlight that this trade-off can suggést d
ent topologies as optimal in different under-provisioned scenariascan affect
different performance metrics.

Table 5: UL/DL Split Vs. Joint-association Improvements

| Performance | 7=0 =0.5 T=1 |
DL /UL Throughput| 6% /32% 4% /35% 0% /37%
DL/ UL Spectr. Eff. | 4%/29% 3% /31% 0% /33%
DL /UL Uiliz. Eff. | 7%/34% 4% /38% 0% /41%
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Split UL/DL impact. As discussed earlier, while split is able to optimize the
DL and UL performancesimultaneouslyjoint UL/DL association is incapable of
this parallel optimization and using< = < 1 we can trade-off which dimension
carries more importance. Table 5 illustrates geeformance improvementlat
split promises over the joint UL/DL association, in terms of various metrics, for
variousr when backhaul is underprovisioned. We underline that split enhanees
UL performance considerably, e.g. the average UL throughput isdsettup to
37%. This is due to thdependencyhat joint UL/DL generates between the DL
and UL associations in the access network, that often makes the DL the boktlen
in the backhaul (due to aforementioned asymmetry between the peak eates¥s
Thus, DL will often “preempt" the backhaul constraint, and potentially (iydéea
some UL resources unused, (ii) cause UL performance degradation.

6 Discussion and Future work

In this section, we complete our framework by proposing a distributed imple-
mentation. We also briefly discuss potential extensions of our framewesiqds
the “per-flow" offloading discussed at the end of Section 3.

Framework ImplementationThere have been many efforts in the literature
toward developing variousentralizeduser association rules, to improve load bal-
ancing [44,45]. These require a centralized controller entity that gevbe BSs
and the UEs with access to all the necessary information. However, diagesm
the operator capabilities such an implementation may not be applicable. Addition-
ally, even when it is applicable, it may (a) require excessive messagesackand
computational complexity that increase exponentially in the network size, las we
as (b) allow only for slow adaptation on the queuing statistics at relatively long
timescales, since such a controller is usually implemented in a server deep in the
core network. Thus, to avoid relying on a centralized controller, ctsgstems
aim on distributed implementations.

Following [9], we sketch a distributed implementation that is applied itera-
tively, adapts to spatial traffic loads, and mainly involves two parts:uderand
base statiortier. At the k-th period, each user at some locatiomeceives from
different BSs the required value that relates to its both access andauscidt-
work performance in order to apply the association rule (e.g., in Eq. (Eydlue
corresponds to the fraction seen), e.g. through broadcast conseages’. Then
each new flow request simply selects the BtBat maximizes the corresponding
quantity. Also, at each iteration, BSs measure their average utilizatipfs after
some required period of time (e.g., see Eq. (5)). Then, based on theys &S
loadsp(®), the new BS load vectgi*+1) needed for the broadcast control message
in the next iteration would be

ﬁ(k+1) _ 5(k) ‘p(k) +(1— B(k)) . ﬁ(k), (35)

1EEE 802.16m facilitates these types of message structure [46].
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whereg®) ¢ [0,1) is an exponential-averaging parameter. Note that, in the split
UL/DL scenario, the UL and DL loads can be independently updated,eaben
the joint UL/DL should be updated jointly using the saf{&.

This iteration converges to the globally optimal pojrit requiring a simple
modification to the proof found [9]. Note that our framework could also bdemp
mented in an SDN framework, using a centralized or hierarchical implementation
where a controller derives the optimal associations and directly sendshhaungh
the network to the UEs. We refer the interested reader to [36] [35] fdr an im-
plementation.

Dynamic TDD schemes on the access and backhaul netwaslkdiscussed in
assumption B.2, the (access) resource allocation between best-sffatedicated
traffic is applied according to a paramegewhose optimization is out of the scope
of this paper. Interestingly, one can include this resource allocation ptate
in the considered cost function, and attempt to tackle the complete problem by
optimizing both parameters and ¢, simultaneously. Specifically, the new cost
function will now look like

(1 _ P}?)lfab (1 P? )17ad

B Q)= 30— (1 - 0) LS

‘ ab —1 ad —1
€8

Jif o, a? # 1. (36)

Note that, the above objective is block separable, since for fixgddecomposes

into two problems with optimization parametefsandp?. Thus, it makes sense to
decompose the objective into optimization levels, by following some well-known
principles ofdecomposition optimizatidd 7]. This provably reduces the algorith-
mic complexity and maintains our approach amenable to distributed implementa-
tions. Thus, at the lower level we have two subproblems, where in a finecitees

we attempt to derive the optimal value for the local varigbte [p?; p’] for a fixed

¢, using the iterative methods described in this paper. In the higher level we en
counter the master problem where we attempt to update the complicating variable
¢ in alarger timescale (e.g., through the Newton method [38]), such that thallove
objective described in Eqg. (36) is improved, and we re-solve the twarshlgms.

This procedure is iterated until both local and complicating variables cgewver

their optimal values.

In simulations we showed that fixed split between UL and DL backhaul re-
sources hurt performance; thus, a similar approach can also be tagptinally
allocate backhaul resources (see C.2). Finalliegarchical decomposition algo-
rithm [47] could be used tgointly solve both the backhaul and radio access re-
source allocation (at slower time scales), together with the optimal useli@ssoc
problem.

Joint radio and L3 backhaul routingVlesh backhaul topologies with multiple
available routing paths are expected to be the rule, rather than the exdegtien
ture networks. Our assumption of fixed, L2 backhaul routing is resteicnd as
we saw in the simulations also penalizes performance. It would be interesting to
jointly optimize (a) the BS that each user should be associated with, as wejl as (b
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the routing path up to an aggregation point (L3 routing). Our goal is twofwld
consider (a)per-BS offloadingwhere each BS should offload all flows by using
the same routing path upto an aggregation pointpé@nlocation offloadingwhere
flows at different locations of a certain BS can follow different routiaghs to im-
prove system performance. It remains to be investigated whether thesptioos
retain the convexity and other desirable properties of the original problem.

7 Conclusion

In this paper, we propose a user-association framework for fututiddte by
investigating both (a) provisioned, and (b) underprovisioned badkietork sce-
narios. We showed how traffic differentiation, different backhaubtogies and
capacity limitations affect the user and network performance, with jointiders
tion of the access and backhaul resources. Initial simulation resultsbcoate the
correctness of our framework, and reveal interesting tradeoffifferent network
scenarios, as well as potential drawbacks of schemes operated irckinabk cur-
rently.
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