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User Association in over- and under- provisioned Backhaul
HetNets

Nikolaos Sapountzis, Thrasyvoulos Spyropoulos, Navid Nikaein and Umer Salim.

Abstract

Operators, struggling to continuously add capacity and upgrade their ar-
chitecture to keep up with data traffic increase, are turningtheir attention to
denser deployments that improve spectral efficiency. Denser deployments
make the problem of user association challenging, and much work has been
devoted to finding algorithms that strike a tradeoff betweenuser quality of
service (QoS), and network-wide performance (load-balancing). Neverthe-
less, the majority of these algorithms typically consider simple setups with a
single type of traffic, usually elastic non-GBR (GuaranteedBit Rate). They
also focus on the radio access part, ignoring the backhaul topology and po-
tential capacity limitations. Backhaul constraints are emerging as a key per-
formance bottleneck in future networks, partly due to the continuous im-
provement of the radio interface, and partly due to the need for inexpensive
backhaul links to reduce capital and operational expenditures. To this end,
we propose an analytical framework for user association that jointly consid-
ers radio access and backhaul network performance. Specifically, we derive
an algorithm that takes into account spectral efficiency, base station load,
backhaul link capacities and topology, and two traffic classes (GBR and non-
GBR) in both the uplink and downlink directions. We prove analytically an
optimal user association rule that ends up maximizing either an arithmetic
or a weighted harmonic mean of the achieved performance along different
dimensions (e.g. UL and DL performance or GBR and non-GBR perfor-
mance). We then use extensive simulations to study the impact of (i) traffic
differentiation, and (ii) backhaul capacity limitations and topology on key
performance metrics.

Index Terms

hetnets; backhaul; optimization; traffic differentiation; user-association;
load balancing; spectral efficiency.
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1 Introduction

Driven by the exponential growth in wireless data traffic, operators areincreas-
ingly considering denser, heterogeneous network (HetNet) deployments. In a Het-
Net, a large number of small cells (SC) are deployed along with macrocells to
improve spatial reuse [1–3]. The higher the deployment density, the betterthe
chance that a user equipment (UE) can be associated with a nearby basestation
(BS) with high signal strength, and the more the options to balance the load. At
the same time, denser deployments experience high spatio-temporal load varia-
tions, and require sophisticated user association algorithms. There are twokey,
often conflicting concerns when assigning UEs to a BS: (i) maximizing the spec-
tral efficiency, and (ii) ensuring that the load across BSs is balanced to improve
the utilization efficiency, and preempt congestion events. The former is usually
achieved by associating the UE to the BS with maximum SINR: this association
rule was the base up to LTE (Long-Term Evolution)-release 8. While this rule also
maximizes theinstantaneousrate of a user (i.e., the modulation and coding scheme
- MCS - supported), it reflects user QoS only when the BS is lightly loaded. How-
ever, user performance, in terms ofper flow delay, may be severely affected if the
BS offering the best SINR is congested [4,5].

As a result, a number of research works have studied the problem of user as-
sociation in heterogeneous networks, optimizing user rates [6, 7], balancing BS
loads [8], or pursuing a weighted tradeoff of them [9]. For instance, adistributed
user-association algorithm is proposed in [10], where the global outageprobability
and the long term rate maximization are well studied, in the context of load bal-
ancing. The authors in [11] propose a framework that studies the interplay of user
association and resource allocation in future HetNets, by formulating a non-convex
optimization problem and deriving performance upper bounds. Range-expansion
techniques, where the SINR of lightly loaded BSs is biased to make them more
attractive to the users are also popular [2, 3]. Finally, a framework that has re-
ceived much attention is [9]. This framework jointly considers a family of objec-
tive functions, each of which directs the optimal solution towards differentgoals
(e.g. throughput optimal, delay-optimal, load balancing, etc.), using an iterative
algorithm. [12–14] extend this framework to further include energy management,
e.g., by switching off under-loaded BSs.

Nevertheless, the majority of these works are relatively simplified, not taking
into account key features of future networks. Firstly, most existing studies only
consider homogeneous traffic profiles. For example, [9, 12, 15] assume that all
flows generated by a UE are “best-effort” (i.e. elastic). However, modern and fu-
ture networks will have to deal with high traffic differentiation, with certain flows

This work was partially supported by the project “Network-level Optimizations for Small Cell
Networks", funded by Intel Mobile Communications.
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being able to require specific,dedicated1 (i.e., non-elastic) resources [16]. Such
dedicated flows do not share BS resources like best-effort ones, are subject to ad-
mission control, and sensitive to different performance metrics [17]. Secondly, the
majority of related studies only consider downlink (DL) traffic. Uplink (UL) traf-
fic is becoming important, due to symmetric (e.g. social networking) applications,
Machine-Type Communication (MTC), etc. Yet, due to the asymmetric transmit
powers of UEs and BSs, leading to different physical data rates, the BSwhich is
optimal for DL traffic might lead to severely degraded performance for UL traf-
fic. Summarizing, a proper user-association scheme should consider all the above
dimensions, and attempt to strike an appropriate tradeoff between them.

On top of that, most related works focus on the radio access part (e.g., con-
sidering the user rate on the radio interface or BS load), ignoring the backhaul
(BH) network. While this might be reasonable for legacy cellular networks,given
that the macrocell backhaul is often over-provisioned (e.g., fiber), thismight be
quite suboptimal for future cellular networks. The considerably higher number of
small cells, and related Capital Expenditure (CAPEX) and Operational Expendi-
ture (OPEX) suggest that backhaul links will mostly be inexpensive wiredor wire-
less (in licensed or unlicensed bands), and underprovisioned [18]. Multiple BS
might also have to share the capacity of a single backhaul link due to, e.g, point-
to-multipoint (PMP) or multi-hop mesh topologies to the aggregation node(s) [19].
Finally, various BS-coordinated schemes have been proposed in the literature as a
promising way to better use the available spectrum and further improve systemper-
formance, e.g., enhanced Inter-Cell Interference Coordination (eICIC) [20,21] and
Coordinated Multi-Point (CoMP) transmission [22] scenarios. Such schemes are
expected to further stress the backhaul network capacities. Hence, asthe radio ac-
cess technologies are constantly improving, it is argued that the backhaulnetwork
will emerge as a major performance bottleneck, and user association algorithms
that ignore the backhaul load and topology can lead to poor performance[23].

As a result of this increasing focus on the backhaul, some recent workshave ap-
peared that attempt to jointly consider radio access and backhaul. These are mostly
concerned with joint scheduling issues (for in-band or PMP backhaul links) [23,
24], signaling overhead and performance tradeoffs for cooperative multi-point com-
munication [25], Software-Defined-Networking (SDN)-based implementation flex-
ibility [26], or propose some simple heuristics to include the impact of the backhaul
network on user association [27]. Finally, Chen et al. attempt to derive thetotal
expected delay by taking into account retransmission over the wireless links, as
well as the backhaul delay in the wireless backhaul links [28]. Nevertheless, to our
best knowledge, none of these works formally addresses the problem of optimal
user association in future and potentially backhaul-limited HetNets.

To this end, we revisit the user association problem, jointly considering the
radio access and backhaul networks. Specifically, our main contributions can be

1In terms of LTE systems, dedicated flows are differentiated by their QoS class (QCI) ranging
from 1 to 4, whereas best-effort from 5 to 9 [16].
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summarized as follows
1) We use the popular framework ofα-optimal user association [9] as our start-

ing point, and considerably extend it to include (i) traffic differentiation, (ii)UL
traffic, and (iii) backhaul topology and capacity constraints.

2) We then analytically prove different association rules, depending on whether
UL and DL traffic of the same UE can be “split” to different BSs or not [29].
Interestingly, depending on this UL/DL “split" the derived rules end up maximizing
either an arithmetic or a weighted harmonic mean of the optimal association rules
per problem dimension.

3) We use our framework to investigate the various tradeoffs arising in this
complex association problem, and provide some initial insights and guidelines
about the impact of traffic differentiation and backhaul limitations in optimal user-
association policies for future HetNets.

4) Our results also highlight some shortcomings of future HetNets, and indicate
potential extensions to tackle them within our framework. These include the need
for joint radio access and Layer 3 routing on the transport (backhaul)network, and
dynamic allocation of access as well as backhaul resources (e.g., in the context of
dynamic TDD).

The remainder of the paper is organized as follows: Section 2 describes the
system model and related assumptions. In Sections 3 and 4 we derive the optimal
user-association policies for provisioned and under-provisioned backhaul network.
In Section 5 we simulate our proposed optimal association rules and attempt to
shed some light on the impact of traffic differentiation, backhaul topology and
capacity on system performance. Section 6 discusses potential extensions of our
framework, and Section 7 concludes the paper.

2 System Model and Assumptions

In the following, we describe our traffic arrival model (Section 2.1), thedis-
cuss our assumptions related to the access (Section 2.2) and backhaul networks
(Section 2.3).

We use a similar problem setup as the one used in a number of related works [9,
12,13,30], and extend it accordingly. To keep notation consistent, forall variables
considered a first superscript “D" and “U" refers to downlink (DL) and uplink
(UL) traffic, respectively. A second superscript “b” or “d” refers to best-effort
and dedicated traffic, respectively. For brevity, in the followingwe present most
notation and assumptions in terms of downlink traffic only, assuming that theuplink
case and notation is symmetric. Specific differences will be elaborated, where
necessary.
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Figure 1: Access network queuing systems for different flows.

2.1 Traffic Model

(A.1 - Traffic arrival rates) Traffic at locationx ∈ L consists of file (or more
generallyflow) requests arriving according to an inhomogeneous Poisson point
process with arrival rate per unit areaλ(x)2. This inhomogeneity facilitates the
creation of “hotspot” areas. Each new arriving request is for adownlink (DL)flow,
with probabilityzD, or uplink (UL) flow with probabilityzU = 1− zD. Each DL
(or UL) flow can furher be abest-effortflow (e.g., file download) with probability
zb, or dedicatedflow (e.g., a VoIP call), with probabilityzd = 1 − zb. zD andzb

are input parameters that depend on the traffic mix.
Using a Poisson splitting argument [31], it follows that the above gives riseto

4 independent, Poisson flow arrival processes with respective rates

λD,b(x) = zD · zb · λ(x), λD,d(x) = zD · zd · λ(x) (1)

λU,b(x) = zU · zb · λ(x), λU,d(x) = zU · zd · λ(x), (2)

(λD,b(x) for the downlink best-effort flows,λU,b(x) for the uplink best-effort flows,
etc.).

(A.2 - Best effort flow characteristics)Eachbest-effortflow is associated with
a flow-size(in bits) drawn from a generic distribution with mean1/µD,b(x). This
can model heterogeneous flow characteristics across locations.

(A.3 - Dedicated flow characteristics)Eachdedicatedflow has arequired
data-rate(in bits per second) that is drawn from a generic distribution with mean
BD(x). This rate must be guaranteed by the network throughout the flow’s dura-
tion. This duration (in seconds) is another, independent random variable with mean
1/µD,d(x).

2Without loss of generality, we do not distinguish between users at locationx, as we assume that
all users/flows related to locationx are treated similarly.
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2.2 Access Network

(B.1 - Access network topology)We assume an areaL ⊂ R
2 served by a set

of base stationsB, that are either macro BSs (eNBs) or small cells (SCs). These
together constitute the access network.

(B.2 - DL resources)Each BSi ∈ B is associated with a transmit powerPi and
a total downlink bandwidthwD

i . Out of the total bandwidth,ζDi ·wD
i is allocated to

best-effort traffic and(1−ζDi )·wD
i for dedicated traffic (0 ≤ ζDi ≤ 1). Throughout

this paper, we will assume that this allocation is static, at least for a given time
window of interest (based on long term traffic characteristics and operator policy).
Dynamically updating theζDi parameters could further improve performance, but
is related more to the MAC scheduler of each BS and is out of the scope of this
paper. Nevertheless, in Section 6, we discuss how one could include this inour
framework.

(B.3 - DL physical data rate)BS i can deliver amaximumphysical data trans-
mission rate ofcD,b

i (x) to a user asking for a best-effort flow at locationx, in
absence of any other best-effort flows served, which is given by theShannon ca-
pacity3

cD,b
i (x) = ζDi · wD

i · log2(1 + SINRi(x)), (3)

where SINRi(x) =
Gi(x)Pi

∑

j 6=i Gj(x)Pj+N0
. N0 is the noise power, andGi(x) represents

the path loss and shadowing effects between thei-th BS and the UE located atx
(as well as antenna and coding gains, etc.)4. We assume that effects of fast fading
are filtered out. Our model assumes that the total intercell interference at location
x is static, and considered as another noise source, as is previously considered in
most aforementioned works [9,12].

The next 4 points (B.4-B.7) describe the scheduling and performance model
for best effort traffic only. We return to dedicated traffic in (B.8-B.9).

(B.4 - Best effort load density)We introduce theload densityfor best effort
flows, at different locationsx,

ρD,b
i (x) =

λD,b(x)

µD,b(x)cD,b
i (x)

, (4)

which is the contribution of locationx to the total load of a BSi, when locationx
is associated to BSi.

(B.5 - Best effort load)Each locationx is associated with routing probabilities
pD,b
i (x) ∈ [0, 1], which are the probabilities that best effort DL flows generated for

3We use Shannon capacity for clarity of presentation. However, our approach could be easily
adapted to include modulation and coding schemes (MCS). Furthermore,capacity improving tech-
nologies, e.g., the use of MIMO, and modifications to this capacity formulaare othogonal to our
framework.

4In the case of UL, we assume that the Tx power of each user isPUE , and slightly abuse notation
for SINR, G, etc., as these don’t play a major role in the remaining discussion.
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users at locationx get associated with (i.e., are served by) BSi. We can thus define
thetotal best effort loadρD,b

i for BS i as

ρi
D,b =

∫

L
pD,b
i (x)ρD,b

i (x)dx. (5)

Similarly to [4,9], we are interested in theflow-level dynamicsof this system, and
model the service of DL best-effort flows at each BS as a queueing system with
load ρD,b

i shown in Fig. 1. Finally, since we are interested in the aggregation of
all flows at BS level (i.e., all flows from all locationsx assosicated to BSi), even
if flow arrivals at each location are not Poisson (as in A.1), the Palm-Khintchine
theorem [31] suggests that Poisson assumption could be a good approximation for
the input traffic to a BS.

(B.6 - Best effort scheduling)Proportionally fair scheduling is often imple-
mented in 3G/4G networks for best-effort flows, due to its good fairness and spec-
tral efficiency properties [16]. This can be modeled as an M/G/1 multi-class pro-
cessor sharing (PS) system (see, e.g., [4,9,12]). It is multi-class, because each flow
might get different rates for similarly allocated resources, due to different channel
quality and MCS atx. Channel-based scheduling could also be included in the
model and can be accounted for using a multiplicative factor in the average service
rate [32].

(B.7 - Performance for best effort flows)The stationary number of flows in

BS i is equal toE[Ni] =
ρ
D,b
i

1−ρ
D,b
i

[31]. Hence, minimizingρD,b
i minimizesE[Ni],

and by Little’s law it also minimizes the per-flow delay for that base station [31].
Also, the throughput for a flow at locationx is cD,b

i (x)(1−ρD,b
i ). This observation

is important to understand how the user’s physical data ratecD,b
i (x) (related to

users at locationx only) and the BS loadρD,b
i (related toall users associated with

BS i) affect the optimal association rule.
(B.8 - Dedicated traffic load density)Unlike best-effort flows which are elas-

tic, dedicated flows are subject to admission control, since they require somere-
sources for exclusive usage in order to be accepted in the system. Specifically,
let ciD,d(x) denote the maximum offered rate to users at locationx corresponding
to dedicated flows only (referred to(1 − ζi) - see B.3 above). If each flow atx

demands, on average, a rate ofBD(x) (see A.3), then at mostkDi (x) = ci
D,d(x)
B(x)

dedicated flows fromx could be served in parallel by BSi (assuming againno
other flows in the system), and any additional flows would be rejected5. Similarly
to the best effort case (B.4), we can define a system load density for dedicated
traffic atx

ρi
D,d(x) =

λD,d(x)

µD,d(x)kDi (x)
=

λD,d(x) ·BD(x)

µD,d(x) · ciD,d(x)
. (6)

5In fact, since the rate requirement for each flow is a random variable, using its meanBD(x) in
the denominator yields a lower bound forkD

i (x) (by Jensen’s inequality), which can be used as a
conservative estimate.
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Hence, a different number of resourceskDi (x) can be offered to different loca-
tionsx, depending on the rate demandBD(x) as well as the channel quality (rate
ci

D,d(x)) at locationx.
(B.9 - Dedicated traffic performance)Given the above heterogeneous block-

ing model for dedicated flows, we can approximate the allocation of BSi dedicated
resources with an M/G/k/k (ork-loss) system, where the total loadρD,d

i can be cal-
culated as in (B.5) and Eq. (5), using the density of Eq. (6) and corresponding
routing probabilitypD,d

i (x) for dedicated flows (see also Fig. 1). It is known that
for M/G/k/k systems, minimizingρD,d

i is equivalent to minimizing the blocking
probability for new flows [31]. This observation is important to understandthat
a similar tradeoff (as in B.7) exists between choosing a BS atx that maximizes
kDi (x) (related only to flow and channel characteristics atx) and choosing a BS
whosetotal loadρD,d

i (related toall users attached to BSi).
(B.10 - UL/DL association split)We investigate two scenarios, depending on

the whether a UE is allowed to be attached to different BSs for its DL and UL
traffic [29]:

Split UL/DL: Each UE can be associated to different BSs for its DL and UL
traffic. This allows one to optimize UL and DL performance independently [33].

Joint UL/DL: Each UE must be associated with the same BS for both UL and
DL traffic. This is the standard practice in current networks.

2.3 Backhaul Network

(C.1 - Backhaul network topology)Each access network node (either eNB
or SC) is connected to the core network through the eNB aggregation gateway
via a certain number of backhaul links that constitute the backhaul network. This
connection can be either direct (“star” topology) or through one or moreSC aggre-
gation gateways (“tree” topology). Fig. 2 shows such a backhaul routing topology.

Without loss of generality, we assume that there is a fiber link from the eNB
to the core network, and focus on the set of capacity-limited backhaul links(wired
or wireless) connecting SCs to the eNB, denoted asBh. We denote as routing
pathBh(i) the set of all backhaul linksj ∈ Bh along which traffic is routed from
BS i to an eNB aggregation point. For example, in Fig. 2,Bh(1) = {1}, and
Bh(3) = {1, 2, 3}. We further denote asB(j) the set of all BSi ∈ B whose traffic
is routed over backhaul linkj. E.g.,B(1) = {1, 2, 3, 4} andB(2) = {2, 3, 4} in
Fig. 2. In the case of a star topology, there is exactly one (unique) backhaul link
used for each BS (i.e.,‖Bh(i)‖ = ‖B(j)‖ = 1, ∀i, j). Finally, we assume that the
backhaul route for each BS isgiven, e.g., calculated in practice as a Layer 2 (L2)
spanning tree, and is an input to our problem. In Section 5, we highlight some
limitations of L2 backhaul routing.

(C.2 - Backhaul load)Each backhaul linkj ∈ Bh is characterized by a DL
and UL capacity, denoted asCD

h (j) andCU
h (j) bps. The capacity on the UL and

DL might be the same or different (e.g., Frequency-Division Duplex (FDD), or
fixed/dynamic Time-Division Duplex (TDD) systems [34]). Backhaul links usually
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don’t implement any particular scheduling algorithm, and can be seen as a data
“pipe”.

Without loss of generality, we focus on a scenario with only best-effort traffic.
This not only keeps our backhaul model tractable as we shall see later, but also al-
lows us to better understand the impact of backhaul limitations on the wide system
performance. Focusing on the DL, the load on a backhaul linkj ∈ Bh consists of
the sum of downlink loads (corresponding to best-effort traffic) of allBSs using
that link: ∑

i∈B(j)

ρD,b
i c̃Di , (7)

where c̃Di is an estimate of the downlink total rate delivered by BSi. A BS is
usually characterized by its “peak” rate (often upper bounded by the maximum
MCS available), and a “busy” rate, when a BS serves many users [18].The latter
is usually quite smaller than the former, since users near the edge of the cell tend
to bring the average rate down. However, the use of channel-based scheduling and
related multi-user diversity gains suggest that conservatively settingc̃Di closer to
its nominal peak value is safer. In practice, a BS could measure this load anduse it
directly.

(C.3 - Backhaul provisioning)We have derived the backhaul link load (
∑

i∈B(j) ρ
D,b
i c̃Di )

and defined the backhaul capacity limitation (CD
h (j)) for each backhaul linkj ∈

Bh (see C.2). Thus, each of these links shall introduce a backhaulconstraintto
avoid exceeding its maximum capacity and prohibit backhaul congestion (

∑

i∈B(j) ρ
D
i c̃

D
i ≺

CD
h (j) ∀j ∈ Bh).

Throughout this paper, we assume that the backhaul network is eitherunder-
provisionedif the capacity of at least one backhaul link is exceeded, orprovisioned
otherwise. We investigate the user-association problem separately for each sce-
nario in Sections 3 and 4, by focusing on different tradeoffs.

3 User-Association for Provisioned Backhaul Networks

We start our discussion for optimal user-association by assuming that the back-
haul network is provisioned and so, we can safely ignore it while deriving the opti-
mal association rules. Our aim is to focus on the radio access network performance
and traffic-differentiation involved tradeoffs.

We remind to the reader that based on our system model, the association policy
consists in finding appropriate values for the routing probabilitiespl,ti (x), l ∈
{D,U}, t ∈ {b, d}, for DL and UL, best-effort and dedicated traffic, respectively
(defined earlier in assumption B.5 and B.9). That is, for each locationx, we would
like to optimally choose to which BSi to route different flow types generated from
(UL) or destined at (DL) users inx6. Our goal for this association problem is

6The use of a probabilistic association rule simplifies solving the problem. As itwill turn out, the
optimal values will be either0 or 1 (deterministic).
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Figure 2: Backhaul topology in future Hetnet.

threefold: (i) ensure that the capacity of no BS is exceeded (later in Section 4, we
will also include the constraint of no backhaul capacity is exceeded); (ii)achieve a
good tradeoff between user physical data rates, user QoS and load balancing, (iii)
investigate howUL/DL association splitimpacts the optimal rule derivation and
the performance benefits of split UL/DL.

We define the feasible region for the aforementioned routing probabilities, by
requiring that no BS capacity being exceeded.

Definition 1. (Feasibility): Letl ∈ {U,D}, t ∈ {b, d}, and letǫ be an arbitrarily
small positive constant. The setf l,t of feasible BS loadsρl,t = (ρl,t1 , ρl,t2 , . . . , ρl,t‖B‖)
is

f l,t =
{

ρl,t | ρl,ti =

∫

L
pl,ti (x)ρl,ti (x)dx,

0 ≤ ρl,ti ≤ 1− ǫ,
∑

i∈B

pli,t(x) = 1,

0 ≤ pli,t(x) ≤ 1, ∀i ∈ B, ∀x ∈ L
}

.

(8)

Lemma 3.1. The feasible setsfD,b, fD,d, fU,b, fU,d as well as the[fD,b; fD,d],
[fU,b; fU,d], [fD,b; fU,b], [fD,b; fD,d; fU,b; fU,d], are convex.

Proof. The proof for the feasible setfD,b is presented in [9]. It can be easily
adapted for the other cases, too (e.g., see [35]).

3.1 Optimal Split UL/DL User Association

We first define the user association problem for the split UL/DL case. Here,
we should require that all DL best-effort and dedicated flows atx have to be down-
loaded from the same BS, i.e.,pDi (x) = pD,b

i (x) = pD,d
i (x). Also, that all UL best-

effort and dedicated should be offloaded to the same BS, sopUi (x) = pU,bi (x) =

pU,di (x). Note that,pDi (x) andpUi (x) can take different values (see B.10) in split
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UL/DL scenarios. Hence, the problem of optimal DL and UL associationcan be
decoupled into two independent problems, one for DL and one for UL. In the re-
mainder of this section, we focus on the optimal DL association problem, and we
omit the superscripts{D,U} to simplify notation. We return to the joint UL/DL
association problem in the next subsection.

Following [9], we extend theα-cost function to consider performance for dedi-
cated flows, along with the best-effort ones. Specifically, we introduce theparame-
ter0 ≤ θ ≤ 1 that linearly weights the relative importance between best-effort and
dedicated traffic, and parametersαb ≥ 0, αd ≥ 0 that define the load balancing
degree for the corresponding resources.

Theorem 3.2. [Split UL/DL User Association rule] The optimal user-association
problem can be expressed asminρ{φ(ρ)|ρ = (ρb; ρd) ∈ f = (f b; fd)}, where

φ(ρ) =
∑

i∈B

θ
(1− ρbi )

1−αb

αb − 1
+ (1− θ)

(1− ρdi )
1−αd

αd − 1
, if αd

, α
d 6= 1. (9)

If the feasible domainf of the problem is non-empty, andρ∗ = (ρ∗1, ρ
∗
2, · · · , ρ

∗
||B||)

denotes the optimal load vector, the user-association rule at locationx is expressed
by the following weighted harmonic mean (of individual rules) formula

i(x) = argmax
i∈B

(

1− ρ∗bi
)αb

·
(

1− ρ∗di
)αd

eb(x) ·
(

1− ρ∗di
)αd

+ ed(x) ·
(

1− ρ∗bi
)αb

(10)

whereeb(x) = θzDzb

µb(x)ci(x)
and ed(x) = (1−θ)zDzd

µd(x)ki(x)
, optimally weight the corre-

sponding individual association rules depending on the traffic statistics.

Note that ifαb = 1 (or αd=1) the corresponding term in the objective (Eq. 9)
is not defined, andlog(1− ρbi)

−1 (log(1− ρdi )
−1) is used instead.

Proof. We prove that the above user-association rule (Eq. 10) indeed minimizes
the cost function of Eq. (9). This problem is a convex optimization becauseits
feasible setf is convex (see Lemma 3.1). Also, the objective functionφ(ρ) is
convex, due to the summation and linear combinations of the convex functionφ(ρ)
that is proven to be convex in [9]. Letρ∗ = [ρ∗b; ρ∗d] be the optimal solution of
Problem (9). Hence, it is adequate to check the following condition for optimality

〈∇φ(ρ∗),∆ρ∗〉 ≥ 0 (11)

for all ρ ∈ f , where∆ρ∗ = ρ − ρ∗. Let p(x) andp∗(x) be the associated routing
probability vectors forρ andρ∗, respectively. Using the deterministic cell coverage
generated by(10), the optimal association rule is given by:

p
∗
i (x) = 1

{

i = argmax
i∈B

(

1− ρ∗bi
)αb

·
(

1− ρ∗di
)αd

eb(x) ·
(

1− ρ∗di
)αd

+ ed(x) ·
(

1− ρ∗bi
)αb

}

. (12)

10



Then the inner product in Eq. (11) can be written as:

〈∇φ (ρ∗) ,∆ρ
∗〉 =

∑

z={b,d}

∂φ

∂ρz
(ρ∗) (ρz − ρ

∗
z)

=
∂φ

∂ρb
(ρ∗)(ρb − ρ

∗b) +
∂φ

∂ρd
(ρ∗)(ρd − ρ

∗d)

= θ
∑

i∈B

1

(1− ρbi )
αb

(ρbi − ρ
∗b
i ) + (1− θ)

∑

i∈B

1

(1− ρdi )
αd

(ρdi − ρ
d∗
i )

=
∑

i∈B

θ
∫

ρbi (x)(pi(x)− p∗i (x))dx

(1− ρbi )
αb

+
(1− θ)

∫

ρdi (x)(pi(x)− p∗i (x))dx

(1− ρdi )
αd

=

∫

L

λ(x)
∑

i∈B

(pi(x)− p
∗
i (x))

eb(x)(1− ρ∗di )α
d

+ ed(x)(1− ρ∗bi )α
b

(1− ρ∗bi )αb(1− ρ∗di )αd
dx

(13)

whereeb(x) = θzDLzb

µb(x)ci(x)
anded(x) = (1−θ)zDzd

µd(x)ki(x)
. Note that,

∑

i∈B

pi(x)
eb(x)(1− ρ∗di )α

d

+ ed(x)(1− ρ∗bi )α
b

(1− ρ∗bi )αb(1− ρ∗di )αd
≥

∑

i∈B

p
∗
i (x)

eb(x)(1− ρ∗di )α
d

+ ed(x)(1− ρ∗bi )α
b

(1− ρ∗bi )αb(1− ρ∗di )αd

(14)

holds becausep∗(x) in (12) is an indicator for the minimizer ofe
b(x)(1−ρ∗di )α

d
+ed(x)(1−ρ∗bi )α

b

(1−ρ∗bi )α
b
(1−ρ∗di )α

d .

Hence, (11) holds.

While θ linearly weights the best effort versus dedicated flow performance (see
Eq. 9), the impact ofαb, αd is not obvious. We now discuss their impact on the
system performance and refer to [9], [36] for the respective proofs.

• Spectral Efficiency Optimization:αb = 0 maximizes the average physical
rate for best-effort flows (defined in B.3), whereasαd = 0 maximizes the
average dedicated servers for dedicated flows (defined in B.8). Obviously,
these optimize the userSINR and spectral efficiency.

• Optimizing related QoS metrics:if αb = 1 the corresponding optimal rule
tends to maximize the average user throughput. Ifαb = 2 the per-flow delay
is minimized since the objective for best effort flows corresponds to the delay
of an M/G/1/PS system. Ifαd = 1 the corresponding optimal rule becomes
equivalent to the averageidle dedicated servers in a k-loss system, and the
actual blocking probability is minimized.

• Load-Balancing Efficiency Optimization:As αb → ∞, we minimize the
maximum BS utilization, i.e. load balancing between theρb is achieved.
Similar for αd andρd’s. Note that, the point ofαb that all BS best-effort
utilizations are equalized might be different from the one for dedicated, de-
pending on the respective traffic statistics.
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The above Theorem, defines in Eq.(10) the optimal association rule for each
user at locationx, given the optimal BS load vectorρ∗. However, as the optimal
vectorρ∗ is not necessarily known, in Section 6 we propose aniterativealgorithm,
that starts within a feasible load vector point, and through an iterative procedure it
converges to the optimal one.

In the case of split UL/DL, the above analysis can be appliedseparatelyon UL
and DL traffic, and optimize UL and DL associations independently. Or equiva-
lently, optimize the arithmetic mean (or, sum) of the corresponding rules.

3.2 Optimal Joint UL/DL User Association

Current cellular networks (e.g. 3G/4G) suggest that a UE should be connected
to a single BS for both UL and DL traffic [37]. This changes the optimal associa-
tion problem, as one now needs tojointly optimize UL and DL traffic performance.
E.g., a user at locationx might end up being associated with a BS offering subop-
timal performance on both the downlink and uplink, because other BS candidates
offer really bad UL (or really bad DL) performance.

We thus need to modify our framework accordingly. First, while deriving the
association rules we will have to requirepDi (x) = pUi (x) ∀i ∈ B . Second, UL
and DL performance must now be included in the same cost function. Specifically,
the operator may linearly weigh the importance of DL and UL traffic performance
with a parameterτ ∈ [0, 1]7.

Theorem 3.3. [Joint UL/DL User Association rule] The optimal association prob-

lem can be expressed asminρ

{

φ(ρ)|ρ = [ρD,b; ρD,d; ρU,b; ρU,d] ∈ f = (fD,b; fD,d; fU,b; fU,d)
}

,

where

φ(ρ) = τ

(

∑

i∈B

θ
D (1− ρ

D,b
i )1−αD,b

αD,b − 1
+ (1− θ

D)
(1− ρ

D,d
i )1−αD,d

αD,d − 1

)

+

(1− τ)

(

∑

i∈B

θ
U (1− ρ

U,b
i )1−αU,b

αU,b − 1
+ (1− θ

U )
(1− ρ

U,d
i )1−αU,d

αU,d − 1

)

.

(15)

If the feasible domainf of the problem is non-empty, and given the set of all flow-
typesΩ = {(D, b), (D, d), (U, b), (U, d)}, the optimal user-association rule at lo-
cationx is now

i(x) = argmax
i∈B

∏

c∈Ω

((1− ρ∗c)α
c
)

∑

c∈Ω

ec(x)
∏

l∈Ω 6=c

((1− ρ∗c)αc)
, (16)

whereeD,b(x) = τ θDzDzb

µD,b(x)cDi (x)
, eD,d(x) = τ (1−θD)zDzd

µD,d(x)kDi (x)
, eU,b(x) = (1−τ) θUzUzb

µU,b(x)cUi (x)

andeU,d(x) = (1− τ) (1−θU )zUzd

µU,d(x)kUi (x)
are the corresponding weight factors.

7If αD or αU is equal to1, the respective fraction must again be replaced withlog(1 − ρi), as
explained earlier.
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Proof. We refer the interested reader to [36].

Remark 1. The above optimal rule derived in Eq. (16) suggests that in thejoint
UL/DL scenario associated with objectives that potentially conflict with each other
(due to the different flow type performances), it is optimal to associate a user with
the BS that maximizes a weighted version of theharmonic meanof the individual
association rules when considering each objective alone. To better understand this,
we focus on a simple scenario with only DL and UL best-effort traffic. Andassume
the following BS options for a user: (BS A) offers 50Mbps DL and only 1Mbps
UL; (BS B) 200Mbps DL and 0.5Mbps UL; (BS C) 20Mbps DL and 5Mbps UL.
If we care about UL and DL performance equally (i.e.τ = 0.5), one might assume
that the BS that maximizes the arithmetic mean (or arithmetic sum) of rates would
be a fair choice (i.e. BS B). However, this would lead to rather poor UL perfor-
mance. Maximizing the harmonic mean would lead to choosing (BS C) instead8.
Additionally, note that in the case ofsplit UL/DL, covered in Section 3.1, where
each user is free to be associated with two different BSs for the DL and ULtraffic
offloading, DL traffic would be associated with (BS B), and UL traffic with (BS C)
by maximizing the arithmetic mean (or, sum) of their throughputs9. These simple
examples intuitively explain how split UL/DL impacts the user association policies,
by allowing to independently optimize each objective. This also demonstrates why
UL/DL split may perform considerably better than the joint association. We will
further explore this in the simulations (Section 5).

We finally underline that, the “formula" of harmonic or arithmetic mean max-
imization further allows to add more dimensions in our setup andflexibly derive
the optimal rules without any analytical calculations. For instance, considera more
modern offloading technique, where different downlink, or uplink, flowtypes are
able to be offloaded to different BSs (e.g., per flow/QCI offloading) with conflict-
ing aims. Using our model we can consider an additional respectiveα-function for
each flow type, and either analytically or flexibly, optimize the complete objective
as showed earlier.

4 User-Association for Under-Provisioned Backhaul Net-
works

While the rules derived above, that try to reflect different performance trade-
offs, always lead to BS loads that are supported from the access network, they
perhaps will not be supported from the backhaul link (or the corresponding back-
haul link path) for that BS, since they ignore potential backhaul limitations. To

8While this simple example captures the main principle, the actual rule is more complex, as it
weighs each objective with the complex factorel(x).

9The usage of harmonic mean and arithmetic mean/sum appears in a number of physical exam-
ples, such as in the calculation of the total resistance in circuits where all resistances are set in series
or in parallel.
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that end, in this section we try to extensively consider the backhaul network and
related limitations while extracting the optimal association rules, and include to our
goals (i) that no backhaul link is congested, (ii) the impact of backhaul topology
and capacity on key performance metrics. In order to better elucidate this problem
at hand and without loss of generality, we focus on a simple scenario withonly
best-effort traffic. So, in the remainder of the section we drop the corresponding
superscripts “b", “d" to simplify notation.

One of the main challenges when attempting to consider these backhaul con-
straints is to maintain the user association policy distributed (famous solvers for
such convex problems, e.g. through the Lagrangian dual function [38], require a
centralized controller entity); in Section 6 we highlight why distributiveness isim-
portant. To that end, we chose to consider the backhaul constraints in theobjective
function as appropriatepenalty functions[35]. This not only facilitates deriving a
distributed implementation of the policy, but also allows us to treat the backhaul
constraint as a “soft” constraint that ends up being “hard" and satisfyconvergence
to a feasible solution, as we shall see later.

4.1 Optimal Split UL/DL User Association

We follow the same presentation as the provisioned case, and start out discus-
sion, with the split UL/DL case. As the association problem can be decoupled, in
that case, into two independent problems, we focus on the optimal DL association
problem, and we omit the superscripts{D,U}. We return to the joint UL/DL asso-
ciation problem in the next section. To better illustrate our approach, we first apply
this for a simple star BH topology, and then generalize for a tree BH topology).

Optimal User Association for Star BH Topology)
In the following, since for star topologies there is exactly one backhaul link(j)

associated with each BS (i), it is i = j (see also C.1). LetI(i) be an indicator
variable, that shows whether thei-th backhaul link is congested (I(i)=1) or not
(I(i)=0). Precisely (see C.2)

I(i) =

{

0, when ρic̃i
Ch(i)

< 1

1, otherwise.
(17)

Theorem 4.1(Split UL/DL User Association rule in a star BH topology). The opti-

mal user-association problem with a star BH topology is expressed asminρ

{

φ(ρ)|ρ ∈

f
}

, where

φ(ρ) =
∑

i∈B

(1− ρi)
1−α

α− 1
+ γ

∑

i∈Bh

I(i)

(

ρic̃i
Ch(i)

− 1

)2

. (18)
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If the feasible domainf of the problem is non-empty, andρ∗ = (ρ∗1, ρ
∗
2, · · · , ρ

∗
||B||)

denotes the optimal load vector, the user-association rule at locationx is

argmax
i∈B

ci(x)
(1− ρ∗i )

α

1 + 2γ · (1− ρ∗i )
α · c̃i ·

I(i)
Ch(i)

·
(

ρ∗i c̃i
Ch(i)

− 1
) . (19)

Proof. We now prove that the above rule indeed minimizes the cost function of
Eq. (18). This minimization is a convex optimization problem. Its feasible set
f is convex, and the objectiveφ(ρ) is also convex due to the summation of two
convex terms: the first is convex as discussed earlier, and the second due to the
composition property of convexity [38]. Letρ∗ be the optimal solution of this
minimization problem. Again, it is adequate to check for optimality if

〈∇φ(ρ∗),∆ρ∗〉 ≥ 0 (20)

for all ρ ∈ f , where∆ρ∗ = ρ − ρ∗. Let p(x) andp∗(x) be the associated routing
probability vectors forρ andρ∗, respectively. Using the deterministic cell coverage
generated by (19), the optimal association rule is given by:

p
∗
i (x) = 1

{

i = argmax
i∈B

ci(x)(1− ρ∗i )
α

1 + 2γ · (1− ρ∗i )
α · c̃i ·

I(i)
Ch(i)

·
(

ρ∗
i
c̃i

Ch(i)
− 1
)

}

. (21)

Before proceeding to the calculation of the inner product, we analytically calculate
the derivative of the corresponding cost functionφ(ρ), described in Eq. (18). The
derivative is ani-th dimensional vector; thei-th element of which has value:

∇φ(ρi) =

{

(1− ρi)
−α, if ρic̃i

Ch(i)
≤ 1

(1− ρi)
−α + γI(i)

2ρic̃
2
i−2c̃iCh(i)

Ch(i)2
, if ρic̃i

Ch(i)
≥ 1.

(22)

Whenρi =
Ch(i)
c̃i

, we work out explicitly from the definition to calculate the deriva-
tive. It is:

lim
ρi→

Ch(i)

c̃i

+
∇φ(ρi) = lim

ρi→
Ch(i)

c̃i

−
∇φ(ρi) = (1− ρi)

−α.
(23)

Summarizing, thei-th element of the derivative of the considered function can be
written:

∇φ(ρi) = (1− ρi)
−α + γI(i)

2ρic̃
2
i − 2c̃iCh(i)

Ch(i)2
. (24)

To that end, the inner product defined in Eq. (20), becomes:

〈∇φ (ρ∗) ,∆ρ
∗〉 =

∑

i∈B

{ 1

(1− ρ∗i )
α
+ γI(i)

2ρ∗i c̃
2
i − 2c̃iCh(i)

Ch(i)2

}

(ρi − ρ
∗
i )

=
∑

i∈B

1 + 2γI(i)(1− ρ∗i )
α (ρ∗i c̃

2
i−c̃iCh(i))

Ch(i)2

(1− ρ∗i )
α

∫

L

ρi(x) (pi(x)− p
∗
i (x)) dx

=

∫

L

λ(x)

µ(x)

∑

i∈B





1 +
2γ(1−ρ∗i )

αc̃iI(i)

Ch(i)

(

ρ∗i c̃i
Ch(i)

− 1
)

ci(x)(1− ρ∗i )
α



 (pi(x)− p
∗
i (x)) dx
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Note that,

∑

i∈B

pi(x)

{1 +
2γ(1−ρ∗i )

αc̃iI(i)
Ch(i)

(

ρ∗i c̃i
Ch(i)

− 1
)

ci(x)(1− ρ∗i )
α

}

≥

∑

i∈B

p∗i (x)

{1 +
2γ(1−ρ∗i )

αc̃iI(i)
Ch(i)

(

ρ∗i c̃i
Ch(i)

− 1
)

ci(x)(1− ρ∗i )
α

}

holds becausep∗i (x) in (21) is an indicator for the minimizer of
1+2γ·(1−ρ∗i )

α·c̃i·
I(i)
Ch(i)

·

(

ρ∗i c̃i
Ch(i)

−1

)

ci(x)(1−ρ∗i )
α .

Hence (20) holds.

We again expressed the objective (Eq. (18)) with respect to the variables ρi,
for convenience. The first sum is the standardα-cost function for each BSi, al-
ready analyzed in the previous section. The second sum introduces a penalty for
each backhaul linki whose capacity is exceeded (I(i) = 1). This penalty function
is quadratic on the amount of excess load (quadratic penalty functions areoften
considered in convex optimization literature [39]). We chose to solve the problem
iteratively, by starting with a small constant forγ, according to the magnitude of the
main cost function, that introduces a “soft" constraint (i.e., backhaul capacity can
be “slightly” violated if this really improves the radio access performance). Then,
using increasingγ values it eventually converges to a “hard” constraint (no viola-
tions are allowed), as usually done in optimizations based on penalty functions, in
order to ensure that the algorithm doesn’t get stuck in steep valleys [39].

Regarding the optimal association rule of Eq. (19), we note that when the ca-
pacity constraint for the backhaul linki is not active (i.e.,I(i) = 0, in provisioned
BH networks), the above theorem states that the optimal association rule is the
same as the one found in [9], or the one defined in Eq. (10) whenθ → 1. How-
ever, when the backhaul link of BSi gets congested, a second term is added in the
denominator that penalizes that BS making it less preferable to UEs at locationi,
even if the offered radio access rateci(x) is high, or the radio interface ofi is not
itself congested.

Optimal User Association for Tree BH Topology)
We now consider a more complex backhaul scenario, where a single backhaul

link might route traffic from multiple BSs, and the traffic of a single BS might be
routed over multiple backhaul links (multi-hop path) towards the eNB.I(j) is now

I(i) =

{

0, when
∑

i∈B(j) ρic̃i

Ch(j)
< 1

1, otherwise.
(25)

Theorem 4.2. [Split UL/DL User Association rule in a tree BH topology] The opti-

mal user association problem with a tree BH topology is expressed asminρ

{

φ(ρ)|ρ ∈
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f
}

, where

φ(ρ) =
∑

i∈B

(1− ρi)
1−α

α− 1
+ γ

∑

j∈Bh

I(j)







∑

i∈B(j)

ρic̃i

Ch(j)
− 1







2

. (26)

If the feasible domainf of the problem is non-empty, the optimal user-association
rule at locationx is now

argmax
i∈B

ci(x)(1− ρ∗i )
α

1 + 2γ · (1− ρ∗i )
α · c̃i

∑

j∈Bh(i)

I(j)
Ch(j)

·

(

·
k∈B(j)

∑

ρ∗
k
c̃k

Ch(j)
− 1

) .
(27)

Proof. The steps of this proof are similar to the star case, so we present here di-
rectly the corresponding inner product.

〈∇φ (ρ∗) ,∆ρ
∗〉 =

=
∑

i∈B

{ 1

(1− ρ∗i )
α
+ 2γ

∑

j∈Bh(i)

I(j)
[

∑

k∈B(j) ρ
∗
k c̃k

Ch(j)2
c̃i −

c̃i

Ch(j)

]

}

(ρi − ρ
∗
i )

·

∫

L

ρi(x) (pi(x)− p
∗
i (x)) dx =

=

∫

L

λ(x)

µ(x)

∑

i∈B













1 + 2γ(1− ρ∗i )
αc̃i

∑

j∈Bh(i)

I(j)
Ch(j)

·

( ∑

k∈B(j)

ρ∗k c̃k

Ch(j)
− 1

)

ci(x)(1− ρ∗i )
α













·

· (pi(x)− p
∗
i (x)) dx ≥ 0,

(28)

due to the corresponding minimizerp∗i (x) derived from (27).

As one can see, the cost function is similar in nature. The first term correspond-
ing to the radio access part remains unchanged. The second term again introduces
a penalty for each backhaul link that is congested. However, there area number
of interesting differences between the star and tree cases. First, the penalty term in
the denominator of the optimal association rule (Eq. (27)) now considers thewhole
backhaul pathBh(i) that traffic from BSi traverses, and adds a penalty forevery
link along that path that is congested (outer sum in the denominator). This obser-
vation provides some support for the number of backhaul hops heuristicproposed
in [27,40]. However, our analysis also suggests that it can be suboptimal, as a path
with few hops might still include one or more congested links, and provides the
optimal way to weigh in the amount of congestion on each backhaul link.

Second, the actual congestion on each backhaul linkj is now not only depen-
dent on the load of the candidate BSi, but also on other BSs whose load is routed
over j. Hence, a BSi which would otherwise be a good candidate for traffic at
locationx, might still be penalized and not selected, even if it does not impose
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itself a large load on a backhaul linkj. This is becauseotherBSs sharing the same
backhaul link might be heavily loaded or congested.

In the case of split UL/DL traffic, the above analysis can be appliedseparately
on UL and DL traffic, and optimize UL and DL associations independently. Fi-
nally, although we have provided separate solutions for star and tree topologies, to
better illustrate our approach, the optimal rule for the tree topology is generic, and
includes star topologies as well.

4.2 Optimal Joint UL/DL User Association

Here, we need to modify our framework accordingly, as we did in Section 3.2,
to include (i) thatpDi (x) = pUi (x) ∀i ∈ B , (ii) the weigh of importance between
DL and UL traffic performanceτ ∈ [0, 1]10. If ρ = [ρD; ρU ] ∈ f = {fD; fU}, our
objective now is

φ(ρ) =
∑

i∈B

τ
(1− ρDi )1−αD

αD − 1
+ (1− τ)

(1− ρUi )
1−αU

αU − 1
, if αD

, α
U 6= 1. (29)

We also need to extend the penalty function to consider both uplink and down-
link capacity being exceeded on the backhaul link. Here, we present our results
directly for the general case of tree backhaul topology, and we remind the reader
that this is applicable to star backhaul topologies as well.

Theorem 4.3(Joint UL/DL User Association rule in a tree BH topology). The opti-

mal association problem with a generic BH topology is expressed asminρ

{

φ(ρ)|ρ = [ρD; ρU] ∈

f
}

, where

φ(ρ) = φ(ρ) + γ
∑

k∈{D,U}

∑

j∈Bh

Ik(j)







∑

i∈B(j)

ρki c̃
k
i

Ck
h(j)

− 1







2

. (30)

If the feasible domainf of the problem is non-empty, the optimal user-association
rule at locationx is

i(x) = argmax
i∈B

(

1− ρ∗Di
)αD

·
(

1− ρ∗Ui
)αU

eD(x) ·
(

1− ρ∗Ui
)αU

+ eU (x) ·
(

1− ρ∗Di
)αD

, (31)

where ifgD = τ, gU = 1− τ , then forl ∈ {D,U}:

e
l(x) =

zl

(

gl + 2γ
(

1− ρ∗li
)αl

∑

j∈Bh(i)

Il(j)

Cl
h
(j)

( ∑

k∈B(j)

ρ∗lk c̃lk

Cl
h
(j)

− 1

))

µl(x)cli(x)
.

10If αD or αU is equal to1, the respective fraction must again be replaced withlog(1 − ρi), as
explained earlier.
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Proof. We refer the interested reader to [35].

The penalty function for the backhaul network is simply the sum of the respec-
tive penalty functions for UL and DL, described in Theorem 4.1. However, despite
the similarities of the cost functions, as we can see, the resulting association policy
in the joint UL/DL case is more complex.

For completeness, we present the optimal user-association rule in case ofdedi-
cated traffic too, for the joint UL/DL association. Here, it is adequate to “split" the
DL backhaul resources of thej-th link (CD

h (j)) between DL best-effort (CD,b
h (j))

and DL dedicated traffic (CD,d
h (j)), and treat each load of these “pipes" as a certain

backhaul constraint with further appropriate penalty functions, as showed previ-
ously. Similarly in the UL scenario.

Theorem 4.4. Given the set of all flow-typesΩ = {(D, b), (D, d), (U, b), (U, d)}
we present the optimal association rule at locationx

i(x) = argmax
i∈B

∏

c∈Ω

((1− ρ∗c)α
c
)

∑

c∈Ω

ec(x)
4
∏

l∈Ω 6=c

((1− ρ∗c)αc)

, (32)

where the complex factorsel,b(x), for l ∈ {D,U} are

zlzb



glθl + 2γ
(

1− ρ
∗l,t
i

)αl,b
∑

j∈Bh(i)

Il,b(j)

C
l,b
h

(j)





∑

k∈B(j)
ρ
∗l,b
k

c̃
l,b
k

C
l,b
h

(j)
− 1









µl,b(x)cli(x)
,

whereas theel,d(x), for l ∈ {D,U} are

zlzd



gl(1− θ)l + 2γ
(

1− ρ
∗l,d
i

)αl,d
∑

j∈Bh(i)

Il,d(j)

C
l,d
h

(j)





∑

k∈B(j)

ρ
∗l,d
k

c̃
l,d
k

C
l,d
h

(j)
− 1









µl,d(x)kl
i(x)

.

5 Simulations

In this section we briefly present some numerical results and discuss related
insights. We consider a2 × 2 km2 area. Figure 3(a) shows a color-coded map of
the heterogeneous traffic demandλ(x) (flows/hour per unit area) (blue implying
low traffic and red high), with 2 hotspots. We assume that this area is covered
by two macro BSs and eight SCs. The macro BSs that are shown with asterisks
are numbered from 1-2, and the SCs that are shown with triangles are numbered
from 3-10, as we can see in Fig. 3(b)-(c), Fig. 4, and in Fig. 5. We alsoconsider
standard parameters as adopted in 3GPP [41], listed in Table 111. If not explicitly

11As for (i) the sizes and ratios of different flows, (ii) splitting parameters,we can use different
values in order to capture different simulation scenarios, and derive similar results.
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Table 1: Simulation Parameters

Parameter Variable Value

Transm. Power of eNB/ SC/ UEPeNB/PSC/PUE 43/24/12 dBm
BS Bandwidth for DL, UL w/W 10/10 MHz

Noise Power Density N0 -174 dBm/Hz
Splitting parameter for DL, UL ζDi , ζUi 0.5/0.5

Average DL/UL flow sizes 1
µD,b /

1
µU,b 100/20 Kbytes

Average DL/UL flow demands BD(x)/BU (x) 512, 128 kbps
Different flow ratios zb, zD 0.3,0.6

mentioned, we assumeθD = θU = τ = 0.5, and the split UL/DL scenario as
default.

Before proceeding, we need to setup a metric to evaluate load balancing (or,
utilization) efficiency. Thus, we introduce the Mean Squared Error (MSED,b),
between the DL best-effort utilization of different BSs, normalized to 1:

MSED,b =
1

2 ·
⌊

‖B‖
2

⌋

·
⌈

‖B‖
2

⌉

∑

i

∑

j

(ρD,b
i − ρD,b

j )2. (33)

We define the DL load balancing metric for best-effort traffic to be1 −MSED,b,
that increases on the amount of load balancing12. Similarly, we can define them for
the other three cases1−MSED,d, 1−MSEU,b, 1−MSEU,d.

5.1 Provisioned Backhaul

We now focus on the case of provisioned backhaul as considered in Section 3
and investigate the involved tradeoffs both qualitatively and quantitatively. We
will present the impact of our proposed association rules via coverage snapshots
to show how users associate in the considered network, while we will also provide
values for related performance metrics that complete our study numerically.

Spectral efficiency vs. Load balancing.Figure 3(b) outlines the optimal DL
user-associations ifαD,b = αD,d = 0, i.e., whenspectral efficiencyis maximized.
Thus, each UE atx is attached to the BS that offers thehighest DL SINRand
promises higher DL physical rate for best effort flowscD,b

i (x), and more “dedi-
cated" serverskDi (x); i.e. most of UEs are attached to macro BSs due to their high
power transmission, and fewer to SCs, forming small circles around them. Conse-
quently, macrocells are overloaded and load imbalance within the cells is sharpened
(decreased1−MSED,b, 1−MSED,d; see line 1 of Table 2). However, in Fig. 3(c)
we emphasize theload-balancingefficiency and setαD,b = αD,b = 10. Now, most

12We should note that different load balancing metrics could have been used, e.g. themaximum,
median and minimumBS load; however, we chose to use MSE since it facilitates the visualization of
the network efficiency.
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SCs vastly increase their coverage area in order to offload the overloaded macro
BSs (e.g., BSs 6, 8, 10); “heavily" loaded (due to the hotspots) BSs, roughly main-
tain the same coverage (BS 4 and 7). Thus load balancing is improved, at thecost
of E[cD,b], E[kD] (see line 2 of Table 2). For further implications ofα parameters
we refer the reader to [9].

Best-effort versus dedicated traffic performance.Although in the previous
scenarios the best-effort- and dedicated- related traffic rules (represented from
αD,b, αD,d) are aligned, one could ask how would two conflicting optimization ob-
jectives affect our network? The answer lays in the usage ofθD, that judges which
objective carries more importance. E.g., an operator has two main goals: (i) to
maximize the average number of servers for “dedicated" traffic capturedbyE[kD]
(setαD,d = 0), (ii) to better balance the utilization of best-effort resources be-
tween BSs (setαD,b = 10). As shown in Fig. 3(d), ifθ → 0 E[kD] is maximized,
whereas asθ → 1, 1−MSED,b (DL best-effort load balancing) is optimized, and
each objective comes at the price of the other.

(a) Traffic arrival rate.
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Figure 3: DL Optimal user-associations (Spectral efficiency vs. Loadbalancing and best-effort vs.
ded. traffic performance)

DL vs. UL traffic performanceis considered in Figure 3(b), 4(a)-4(b), with re-
spective numerical performance metrics in Table 3. The first two figures depict the
DL and UL optimal associations, in case of split UL/DL, for each user atx. How-
ever, if split is not available from the operator point of view, we have to weight
whether the DL or UL performance is more important while selecting asingleBS
for joint UL/DL association, using parameterτ . To that end, Figure 3(b) (also)
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Table 2: Numerical values for Figure 3.

Rates and Servers Load Balancing
E[cD,b] (Mbps) E[kD] 1-MSED,b 1-MSED,d

Fig. 3(b) 16.3 32 0.77 0.78
Fig. 3(c) 14.3 27 0.96 0.995

outlines the optimal associations in the joint UL/DL case if the whole emphasis is
on theDL performance(τ = 1): this hurts the UL performance due to the asym-
metric transmission powers of the UEs and BSs (see line 1 of Table 3). In Fig.4(a)
the emphasis is moved on theUL performance(τ = 0), and each UE is attached
to the nearest BS, in order to minimize the path loss [33] and enhance the UL per-
formance; this hurts its DL performance though (see line 3 of Table 3). Finally,
Fig. 4(b) shows the optimal coverage areas when one assigns equal importance to
the UL and DL performance (i.e.τ = 0.5): this moderates both DL and UL per-
formance (line 2 of Table 3). This also corroborates the notion that split is able to
simultaneously optimize UL and DL performances, as already discussed in theory.

   0  500 1000 1500 2000

   0

 500

1000

1500

2000

(a) UL performance optimiza-
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UL τ = 0.5.

Figure 4: Optimal user-associations (DL vs. UL traffic performance)

Table 3: Numerical values for Figure 4.

DL performance UL performance
E[cD,b] (Mbps) E[kD] E[cU,b] (Mbps) E[kU ]

Fig. 3(b) 16.3 32 2.3 18
Fig. 4(b) 14.7 28 3 24
Fig. 4(a) 13.3 26 3.6 28

5.2 Under-provisioned Backhaul

We now continue with some backhaul-limited network scenarios. We remind
to the reader that our focus is on the backhaul linksbetween the macro cells and
SCs(for simplicity we assume provisioned links between the macro cells and core
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network). As already discussed in assumption C.1, we investigate two different
backhaul topology families: (i) “star" topologies (single-hop paths), (ii) “tree"
topologies (with multi-hop paths), along with two backhaul links types:wired
and wireless13. Our aim is to evaluate the derived association rules described in
Section 4 for differentunder-provisionedscenarios, by fixing the aforementioned
trade-offs related to the traffic differentiation as it follows:θD = θU = 1 (we
only focus on the best-effort flows by dropping the superscripts “b” and “d”), and
αD = αU = 1 (throughput optimal values). Also, we assumefixedbackhaul rout-
ing paths, pre-established with traditional Layer 2 routing, that the BH capacities
on the DL and UL are the same (i.e.CD

h (j) = CU
h (j) = Ch, ∀j ∈ Bh), and

if not explicitly mentioned we assume them to be equal to400Mbps. We main-
tain this assumption to facilitate our discussion, although our framework worksfor
heterogeneous backhaul links and UL/DL capacities (see C.2).
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Figure 5: DL optimal associations in different scenarios.

Before proceeding, we need to make an assumption about the backhaul link
capacities. In case ofwired backhaul links, we assume that the peak backhaul
capacityCh is always guaranteed. Forwirelessbackhaul links we adopt a simple
model associating peak backhaul capacity to distance: if the length of thei-th link
is ri, the peak capacity drops as:

d(ri) =

{

1, ri ≤ r0

( r0
ri
)n, otherwise,

(34)

13Note that copper and fiber access are the key technologies for wired backhaul links, and mi-
croWave and millimeter-wave P2P or P2MP access are the counterpart for the wireless backhaul
links [42].
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wherer0 is some threshold range within which the maximal rate is obtained (e.g.
Line-of-Sight), andn is the attenuation factor. Hence, the available capacity drops
to d(ri)Ch(j) (≤ Ch(j)). For our simulations, we assumed thatr0 = 200m,
andn = 3. While the above model is perhaps oversimplifying, our main goal is
to simply include a generic model for the propagation related impact on wireless
backhaul, compared to wired, without getting into the details of specific backhaul
implementations. For detailed path loss models for different backhaul technolo-
gies, we refer the interested reader to [28].

Coverage Snapshots.In Fig. 5(a) we depict the optimal DL user-associations
for provisioned backhaul network with respect to the traffic arrival rates shown in
Fig. 3(a). Compared to the associations showed in Figure 3(b) whereαD = αU =
0, we note that now some SCs have slightly increased coverage area, in order to
improve the mean user throughput [9].

In the following, we focus on differentunder-provisionedbackhaul scenarios,
and study the DL associations (similar behavior in the UL as explained in [35]). In
Fig. 5(b) we adopt awired-starbackhaul topology, where SCs shrink their cover-
age areas, by handing-over users to other BSs, in order to offload thecorresponding
(under-provisioned) backhaul links; this phenomenon becomes more intense in the
“hot-spot" areas (e.g., BS7 have vastly decreased their coverage areas) due to the
higher traffic demand. Similarly, in Fig. 5(c), we assume awireless-starback-
haul topology, where SCs further decrease their coverage areas, due to the higher
backhaul capacity loss caused from the long wireless links (see Eq.(34)).

In Fig. 5(d) we adopt awireless-treetopology, where some SCs are required
to carry also traffic of other SCs, and end up more congested. As a result, most
SCs further decrease their coverage area, compared to the star-wireless topology.
However, BS7 and BS10 enlarge their coverage areas, compared to thestar case.
This occurs because these SCs are far from the eNB, and multi-hop topology al-
lows them to route their traffic over shorter wireless links with smaller capacity
losses, compared to the star case (Fig. 5(c)). Hence, there are two main factors
affecting the coverage areas in such wireless backhaul networks: (topology) each
BS-load might traverse through multi-hop backhaul paths, by “wasting" resources
from more than one backaul links (drawback for tree topologies);(location) the
higher theη,r0 the worse the capacity loss “wastage" over a dedicated direct back-
haul link (drawback for star topologies that require longer links).

As backhaul networks become increasingly complex, e.g. “mesh" topologies,
each BS hasmultiplepossible routing paths to follow, beyond what is shown in the
figures (we remind the reader that the above shown topologies are simply thegiven
spanning routing trees). The above observations thus underline the shortcomings
of predetermined, Layer 2 (L2) backhaul routing mechanisms, and call for a joint
optimization of user-association on the radio access network along with dynamic,
Layer 3 (L3) backhaul routing (see Section 6).

Under-provisioning impact on user performance.Figure 6(a), 6(b) depict the
averageDL and UL user throughputs, as a function of the backhaul capacity con-
straintCh, on different scenarios. Generally, asCh drops, the mean throughputs
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(b) UL (global) user throughput.

Figure 6: Mean throughputs overall all users in the network.

are decreased, since users are handed over to (potentially far-away) macro BSs,
causing performance degradation. Interestingly,the slope of the dropping ratebe-
comes more steep for lower values ofCh, due to the logarithimic capacity formula
chosen in assumption (B.2). Also, asCh increases, the average throughputs “con-
verge" to the value corresponding to a provisioned backhaul network.Note that
the average UL throughput convergences more quickly, compared to theDL. This
happens due to the asymmetry between the DL and UL traffic demand on the radio
access network: the UL one is much lower, mainly due to the asymmetry between
the transmission powers of BSs and UEs, as well as different file sizes assumed in
each direction. Beyond this point, the UL backhaul resources will be underutilized.
This calls for aflexibleTDD duplexing scheme, that will dynamically distribute the
backhaul resources accordingly, for example by giving more backhaul resources to
DL when the UL demand is already satisfied (e.g. the eIMTA scheme [43]). Fi-
nally, in the wired case, star topology is always slightly better than the tree, whereas
in the wireless the opposite, as explained earlier.

Table 4: Mean throughp. for handed-over users (in Mbps).

Topology Ch = 50 250 500 (Mbps)

DL / UL thr.: Star-Wired 1.1 / 0.2 3.1 / 1.6 4.1 / X
DL / UL thr.: Tree-Wired 0.6 / 0.1 2.4 / 0.7 3.2 / X
DL / UL thr.: Tree-Wirel. 0.2 / 0.03 1.7 / 0.07 2.1 / 0.15
DL / UL thr.: Star-Wirel. 0.1 / 0.001 1.4 / 0.05 1.7 / 0.02

One could notice that user throughputs drop slightly on theCh constraint, e.g.
in a wired-star topology ifCh drops500 → 50 Mbps (10 times), the mean user
throughput only drops15 → 6 Mbps (∼ 3 times). This is due to the fact that,
under-provisioned backhaul links do not affect the whole network, but specific
groups of users associated with the cells that suffer from low backhaulcapacity. To
better illustrate this, in Table 4 we show the average throughput of thehanded-over
users, as a function ofCh. Indeed, their performance is severely affected: for the
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same scenario, their DL throughput drops all the way to1.1 Mbps (∼ 15 times).
(In scenarios with no handovers, we mark the respective table entry with anX.)
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(a) DL Spectral efficiency.
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Figure 7: Downlink Network Efficiencies (normalized).

Under-provisioning impact on Network Performance.Turning our attention to
network-related performance, Fig. 7(a) considers spectral efficiency (bit/s/Hz),
normalizedby themaximumcorresponding value when the network is provisioned.
Load-balancing (“utilization") efficiency is further considered in Fig. 7(b) in terms
of the MSE metric, described earlier. Both efficiencies converge to1 as the net-
work gets provisioned. LowCh values will push users to handover to far-away
BSs, and this will potentially decrease theirSINR (spectral efficiency decrease),
and create steep differences between BSs loads, e.g. by congesting macro BSs and
under-utilizing the SCs (load balancing decrease). Note that, the joint degradation
of these performances also impacts user performance negatively (e.g. user through-
put), as explained in Section B.6. Regarding spectral efficiency, more specifically,
although in the wired scenario, star topology is always better compared to thetree,
in the wireless scenario this is not the case. For low values ofCh, the star topology
is worse, due to the higher capacity loss of the long and direct links. However, as
Ch is increased, and some links start becoming provisioned in the star topology,the
capacity loss cost due to the long wireless links in the star topology, is dominated
from the capacity loss cost due to multi-hop sharing links of the tree topology,by
making tree a worse choice. We highlight that this trade-off can suggest differ-
ent topologies as optimal in different under-provisioned scenarios, and can affect
different performance metrics.

Table 5: UL/DL Split Vs. Joint-association Improvements

Performance τ = 0 τ = 0.5 τ = 1

DL / UL Throughput 6% / 32% 4% / 35% 0% / 37%
DL / UL Spectr. Eff. 4% / 29% 3% / 31% 0% / 33%
DL / UL Uiliz. Eff. 7% / 34% 4% / 38% 0% / 41%
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Split UL/DL impact. As discussed earlier, while split is able to optimize the
DL and UL performance,simultaneously, joint UL/DL association is incapable of
this parallel optimization and using0 ≤ τ ≤ 1 we can trade-off which dimension
carries more importance. Table 5 illustrates theperformance improvementsthat
split promises over the joint UL/DL association, in terms of various metrics, for
variousτ when backhaul is underprovisioned. We underline that split enhancesthe
UL performance considerably, e.g. the average UL throughput is increased up to
37%. This is due to thedependencythat joint UL/DL generates between the DL
and UL associations in the access network, that often makes the DL the bottleneck
in the backhaul (due to aforementioned asymmetry between the peak accessrates).
Thus, DL will often “preempt" the backhaul constraint, and potentially (i) leave
some UL resources unused, (ii) cause UL performance degradation.

6 Discussion and Future work

In this section, we complete our framework by proposing a distributed imple-
mentation. We also briefly discuss potential extensions of our framework, besides
the “per-flow" offloading discussed at the end of Section 3.

Framework Implementation.There have been many efforts in the literature
toward developing variouscentralizeduser association rules, to improve load bal-
ancing [44, 45]. These require a centralized controller entity that governs the BSs
and the UEs with access to all the necessary information. However, depending on
the operator capabilities such an implementation may not be applicable. Addition-
ally, even when it is applicable, it may (a) require excessive message overhead and
computational complexity that increase exponentially in the network size, as well
as (b) allow only for slow adaptation on the queuing statistics at relatively long
timescales, since such a controller is usually implemented in a server deep in the
core network. Thus, to avoid relying on a centralized controller, current systems
aim on distributed implementations.

Following [9], we sketch a distributed implementation that is applied itera-
tively, adapts to spatial traffic loads, and mainly involves two parts: theuserand
base stationtier. At thek-th period, each user at some locationx receives from
different BSs the required value that relates to its both access and backhaul net-
work performance in order to apply the association rule (e.g., in Eq. (19) this value
corresponds to the fraction seen), e.g. through broadcast control messages14. Then
each new flow request simply selects the BSi that maximizes the corresponding
quantity. Also, at eachk iteration, BSs measure their average utilizationsρ(k) after
some required period of time (e.g., see Eq. (5)). Then, based on the previous BS
loadsρ̃(k), the new BS load vector̃ρ(k+1) needed for the broadcast control message
in the next iteration would be

ρ̃(k+1) = β(k) · ρ(k) + (1− β(k)) · ρ̃(k), (35)

14IEEE 802.16m facilitates these types of message structure [46].
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whereβ(k) ∈ [0, 1) is an exponential-averaging parameter. Note that, in the split
UL/DL scenario, the UL and DL loads can be independently updated, whereas in
the joint UL/DL should be updated jointly using the sameβ(k).

This iteration converges to the globally optimal pointρ∗, requiring a simple
modification to the proof found [9]. Note that our framework could also be imple-
mented in an SDN framework, using a centralized or hierarchical implementation,
where a controller derives the optimal associations and directly sends themthrough
the network to the UEs. We refer the interested reader to [36] [35] for such an im-
plementation.

Dynamic TDD schemes on the access and backhaul networks.As discussed in
assumption B.2, the (access) resource allocation between best-effort and dedicated
traffic is applied according to a parameterζ, whose optimization is out of the scope
of this paper. Interestingly, one can include this resource allocation parameter ζ
in the considered cost function, and attempt to tackle the complete problem by
optimizing both parametersρ and ζ, simultaneously. Specifically, the new cost
function will now look like

φ(ρ, ζ) =
∑

i∈B

θ
(1−

ρbi
ζi
)1−αb

αb − 1
+ (1− θ)

(1−
ρdi

1−ζi
)1−αd

αd − 1
, if αd

, α
d 6= 1. (36)

Note that, the above objective is block separable, since for fixedζ, it decomposes
into two problems with optimization parametersρb andρd. Thus, it makes sense to
decompose the objective into optimization levels, by following some well-known
principles ofdecomposition optimization[47]. This provably reduces the algorith-
mic complexity and maintains our approach amenable to distributed implementa-
tions. Thus, at the lower level we have two subproblems, where in a fine timescale
we attempt to derive the optimal value for the local variableρ = [ρd; ρb] for a fixed
ζ, using the iterative methods described in this paper. In the higher level we en-
counter the master problem where we attempt to update the complicating variable
ζ in a larger timescale (e.g., through the Newton method [38]), such that the overall
objective described in Eq. (36) is improved, and we re-solve the two subproblems.
This procedure is iterated until both local and complicating variables converge to
their optimal values.

In simulations we showed that fixed split between UL and DL backhaul re-
sources hurt performance; thus, a similar approach can also be taken tooptimally
allocate backhaul resources (see C.2). Finally, ahierarchical decomposition algo-
rithm [47] could be used tojointly solve both the backhaul and radio access re-
source allocation (at slower time scales), together with the optimal user association
problem.

Joint radio and L3 backhaul routing.Mesh backhaul topologies with multiple
available routing paths are expected to be the rule, rather than the exceptionin fu-
ture networks. Our assumption of fixed, L2 backhaul routing is restrictive, and as
we saw in the simulations also penalizes performance. It would be interesting to
jointly optimize (a) the BS that each user should be associated with, as well as (b)
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the routing path up to an aggregation point (L3 routing). Our goal is twofold: to
consider (a)per-BS offloading, where each BS should offload all flows by using
the same routing path upto an aggregation point, (b)per-location offloading, where
flows at different locations of a certain BS can follow different routing paths to im-
prove system performance. It remains to be investigated whether these twooptions
retain the convexity and other desirable properties of the original problem.

7 Conclusion

In this paper, we propose a user-association framework for future HetNets by
investigating both (a) provisioned, and (b) underprovisioned backhaul network sce-
narios. We showed how traffic differentiation, different backhaul topologies and
capacity limitations affect the user and network performance, with joint considera-
tion of the access and backhaul resources. Initial simulation results corroborate the
correctness of our framework, and reveal interesting tradeoffs fordifferent network
scenarios, as well as potential drawbacks of schemes operated in the backhaul, cur-
rently.
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