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Abstract

Linear prediction based algorithms have been applied to
the multi-channel FIR identification problem. In [11], it
was shown that oversampled and/or multiple antenna re-
ceived signals may be modeled as well as low rank MA
processes as low rank AR processes. Indeed, taking FIR
nature and the singularity of the MA process into account
(due to the fact that the number of channels is bigger than
the number of sources) leads to a finite order prediction
filter (i.e. AR(L < 1) modeling), which is automati-
cally identified by, e.g., a singular multichannel Levinson
algorithm, and can be shown to be robust to AR order
overestimation. On the other hand, K.A. Meraim and A.
Gorokhov derive other robustness properties based on the
equationsP(z)H(z) = h(0), whereP(z) is the prediction
filter H(z) is the channel andh(0) its first coefficient. Al-
though usingP(z) of overestimated order, clever use of
the previous equations leads to robustness of the estima-
tion of H(z) to channel length overestimation. This pa-
per investigates these robustness issues, comparing both
methods (and derived methods) to order estimation algo-
rithms for, e.g., subspace-fitting methods. An important
point developed hereunder is the implicit order estima-
tion schemes present in linear prediction based methods
and their influence on identification performance. Fur-
thermore, we develop a new order estimation method, of
low computational cost and giving the channel estimate
as a by-product.

1 Introduction

Lots of batch multichannel identification algorithms
based on Second Order Statistics have been developed re-
cently [3, 1]. Among these, the Linear Prediction (LP)
based algorithms have the following advantages:� They are robust to order overestimation. We will

study the mechanisms which lead to this robustness
and to what extent this robustness holds.

� They are computationally efficient, as will be
demonstrated hereunder.� The weighted LP can be shown to be asymptot-
ically statistically equivalent to Weighted Noise
Subspace Fitting with proper parameterization (see
companion paper in this conference).� They are able to identify minimum phase common
zeros among the different channels [12].

All these advantages leads us to think that LP meth-
ods are good candidates for blind channel identification,
at least as a startup method.

LP methods consist in two main part, the first one
identifies the noiseless equivalent AR model, the second
part deduces the channel from the LP filter coefficients.
The niceties of LP are that both steps are robust, the first
to AR model order overestimation and the second to chan-
nel order overestimation. We will first present the differ-
ent approaches to LP for channel estimation, identify the
robustness features and then propose a global approach
where the three first cited advantages are combined. The
first part of the algorithm consists of a multichannel sin-
gular Levinson algorithm with AR order estimation and
the second part of the Weighted LP approach introduced
by [4].

2 Data Model

Consider linear digital modulation over a linear channel
with additive Gaussian noise. Assume that we havep
transmitters at a certain carrier frequency andm anten-
nas receiving mixtures of the signals. We shall assume
thatm > p. The received signals can be written in the
baseband asyi(t) = pXj=1Xk aj(k)hji (t� kT ) + vi(t) (1)�The work of Luc Deneire is supported by the EC by a Marie-CurieFellowship (TMR program) under contract No ERBFMBICT950155



where theaj(k) are the transmitted symbols from sourcej, T is the common symbol period,hji (t) is the (over-
all) channel impulse response from transmitterj to re-
ceiver antennai. Assuming the

�aj(k)	 andfvi(t)g to
be jointly (wide-sense) stationary, the processesfyi(t)g
are (wide-sense) cyclostationary with periodT . If fyi(t)g
is sampled with periodT , the sampled process is (wide-
sense) stationary. Sampling in this way leads to an equiv-
alent discrete-time representation. We could also ob-
tain multiple channels in the discrete-time domain by
oversampling the continuous-time received signals, see
[7],[11].

We assume the channels to be FIR. In particular, after
sampling we assume the (vector) impulse response from
sourcej to be of lengthN j. Without loss of generality, we
assume the first non-zero vector impulse response sample
to occur at discrete-time zero. LetN = Ppj=1N j andN1 = maxj(N j) . The discrete-time received signal can
be represented in vector form asy(k) = pXj=1 Nj�1Xi=0 hj(i)aj(k�i) + v(k)= N1�1Xi=0 h(i)a(k�i) + v(k)= pXj=1HjAjNj (k) + v(k) = HAN (k) + v(k)

(2)y(k) = �yH1 (k) � � �yHm (k)�H ;v(k) = �vH1 (k) � � �vHm(k)�H ;hj(k) = hhjH1 (k) � � �hjHm (k)iHHj = �hj(N j�1) � � �hj(0)� ;H = �H1 � � �Hp� ;h(k) = �h1(k) � � �hp(k)� ;Hji = line i ofHja(k) = �a1H(k) � � �apH (k)�H ;Ajn(k) = �ajH(k�n+1) � � �ajH(k)�H ;AN (k) = hA1HN1 (k) � � �ApHNp (k)iH
(3)

where superscriptH denotes Hermitian transpose.
We consider additive temporally and spatially white

Gaussian circular noisev(k) with Rvv(k � i) =
E
�v(k)vH(i)	 = �2vIm�ki. Assume we receiveM sam-

ples :Y M(k) = T pM (H) AN+p(M�1)(k+M�1) + V M (k)
(4)

where Y M(k) = hY H(k) � � �Y H (k+M�1)iH andV M(k) is defined similarly whereasT pM(H) is the mul-
tichannel multiuser convolution matrix ofH, with M
block lines. Therefore, the structure of the covariance ma-
trix of the received signalY (k) isRYY = T pM (H)RAAT pHM (H) + �2vImM (5)

where RAA = E
nAN+p(M�1)(k)AHN+p(M�1)(k)o.

From here on, we will assume white sources with power�2a(RAA = �2aI).
3 FIR Zero-Forcing Equalization

We consider an equalizerF (z) such thatF (z)H(z) =
diagfz�n1 : : : z�npg, which can be written in the time-
domain asFT pL (H) = 264 0 � � �1 � � �0 � � � 0 � � �0

...
...

...0 � � �0 � � � 0 � � �1 � � �0 375 (6)F (z) is ap�m filter of orderL.
(6) is a system ofp(N + p(L� 1)) equations inLmp

unknowns. The minimum lengthL of the FIR equalizer
is such that the system (6) is exactly or under-determined.
Hence L � L = �N � pm� p� (7)

We assume thanH has full rank ifN � m, otherwise,
there is lack of channel diversity (space or time diversity
according to the manner the channels were obtained) and
only a subset of the channels is relevant.

4 LP and Equalization

4.1 Noise-free Linear Prediction

Consider the problem of predictingy(k) fromY L(k�1),
whereY L(k � 1) is considered noiseless (in ”real life”,
we will useRYY = RYY � �2vI). The prediction error
can be written asey(k)jY L(k�1) = y(k)� by(k)jY L(k�1) = PLY L+1(k)

(8)
with P L = [PL;L � � �PL;1 PL;0] ; PL;0 = Im. Mini-
mizing the prediction error variance leads to the following
optimization problemminP L:P L;0=Im PLRYY PHL = �2~y;L (9)

hence PLRYY = �0 � � �0 �2~y;L � : (10)

All this holds forL � L. As a function ofL, the rank
profile of�2~y;L behaves like

rank
��2~y;L� 8<: = p ; L � L= m�m 2 fp+ 1; : : : ;mg ; L = L�1= m ; L < L�1

(11)
wherem = mL�(L+N�1) 2 f0; 1; : : : ;m�1� pg
represents the degree of singularity ofRYY;L.



4.2 LP and inverse ofRY Y
Note that multichannel linear prediction corresponds to
block triangular factorization of (some generalized) in-
verse ofRYY . Indeed,LLRYY LHL = DL ; (LL)i;j = P i�1;i�j ;(DL)i;i = �2~y;i�1 (12)

whereLL is block lower triangular andDL is block diag-
onal. (A slight generalization to the singular case of) the
multichannel Levinson algorithm can be used to compute
the prediction quantities and hence the triangular factor-
ization above in a fast way. In the case thatRY Y;L is sin-
gular, some precaution is necessary in the determination
of the last block coefficientPL;L, which is not unique (see
[8]). Similar singularities will then arise at higher orders.

4.3 Other LP algorithms

Rewriting equation (10) at the correct order as[�QLjIm] = 2664 RYY;L rHr r0 3775 = [0 � � �0j�2y] (13)

gives : � �2y = r0 � r(RY Y;L)�1rHQL = r(RY Y;L)�1 (14)

In this method, the inverse is replaced by a pseudo-
inverse in the overestimated case, which gives slightly dif-
ferent results than the singular multichannel Levinson al-
gorithm (this is another choice for the non-uniqueP(z) in
the case of singular correlation matrix). The drawback of
this method is that the pseudo-inverse resorts to computa-
tionally intensive SVD.

The main advantage of this method, besides its robust-
ness to order overestimation, is that it allows the use of
a correlation of a smoothing windowK (i.e. a correla-
tion matrix sizeMK � MK) bigger than thanL, op-
posed to the Levinson method. The correct use of the
pseudo-inverse, as will be shown hereunder, corresponds
to the use of the signal subspace part of it and can be
seen as resorting to the correlation matrix cleaned from
its noise subspace (the whole algorithm has strong con-
nections with [13]).

To get this averaging effect, but without the cost of
the SVD, we propose the following “simplified” method,
which, when the order is correctly estimated, relies on :

[0 � � �0j �QLjIm]2666666666664 � � � �� �
...

...� � � �� ��Rrect

...r � 3777777777775 = [0 � � �0j�2y]
(15)

which, solved in a least-squares manner, gives :QL = (RrectRH
rect)�1RrectrH (16)

Further investigation should lead to a weighted least-
squares solution.

4.4 LP filter as ZF equalizer

Consider the noise-free received signal, which is a singu-
lar multivariate MA process, then forL = L we havey(k) + LXi=1 PL;iy(k�i) = eyL(k) = h(0)a(k) (17)

so that the prediction error is a singular white noise. This
means that the noise-free received signaly(k) is also a
singular multivariate AR process. HenceP L = �� � �0 PL� ; �2~y;L = �2~y;L ; L > L : (18)

Hence the factorsLL andDL in the factorization (12) be-
come block Toeplitz afterL lines.

For L = L, �2y = �2ahH (0)h(0) allows us to findh(0) up to a unitary matrix. We see from (8) and fromey(k)jY L�L(k�1) = a(k) that hH (0)hH (0)h(0)PL is a zero-

delay ZF equalizer. Along with the preceding section, this
gives us a ZF equalizer of minimum length.

5 LP and Identification

5.1 Identifiability

The channel can be found fromPL E
nY L+1(k)Y HN (k+N�1)o= �2a h(0)[hH(0) � � �hH (N�1)] (19)

or from PL(z)H(z) = h(0) ) H(z) = P�1L (z)h(0)
using the lattice parameterization forPL(z) obtained with
the Levinson algorithm.

Consider for a moment that we do not have chan-
nel overestimation problems (and that the singularities are
properly handled), thenP(z) is consistently estimated and
the fundamental equation is



P(z)H(z) = h(0) (20)

whereh(0) is computed from�2y = �2ahH (0)h(0) up to
a unitary matrix (say U). Obviously,H0(z) = H(z)U ful-
fills (20), which is a fundamental limitation of the second
order methods. Identification of the unitary matrix must
be done by resorting to higher order statistics, by finding
the innovations of the AR process and applying a source
separation to these. Taking into account the whiteness
of the sources allows then proper identification ofh(0).
Some refinements appear when the orders of the channels
of the different users are different [4].

5.2 Weighted Linear Prediction

Alternatively, givenh(0) andPL, we can solve for the
channel impulse responseH from P(z)H(z) = h(0), us-
ing a weighted least squares procedure [4] :cH = argminH jjW :5(T tH(P )H � [ĥ(0)H ; 0 � � �0]H)jj2

(21)
We retain here the “practical” algorithm proposed by the
this author, where the weighting matrix is :W = I 
 (�̂2~y + �̂2vIm)�1 (22)

which is some weighting between the signal innovations
subspace, which would be sufficient if the order were
known and the noise innovations subspace, which yields
some robustness through the regularization of the LS
equations system.

6 LP Order overestimation

6.1 “Pseudo-inverse” method

In this method, equation (14) becomes :� �2y = r0 � r(RYY;L)�#rHQL = r(RYY;L)# (23)

where# denotes the Moore-Penrose pseudo-inverse.
This pseudo-inverse relies on the correct separation

of the signal and noise subspaces of the correlation ma-
trix. When working with the true value of the noise power
(or the ML estimate, which can be computed as the mean
value of the noise singular values), simulations and some
theoretical considerations (e.g. appendix F of [4]) show
that incorrect separation of this signals do not worsen the
performance of the channel estimation. More precisely,
this is due to the following conjecture :bP� = bP + bP? + O( 1pL ) bP?RY Y = 0 (24)

Unfortunately, in “practical” situations, simulations
do not agree with this. Indeed, when overestimating the
channel length (N 0 > N ), the noise power is underesti-
mated :�̂2v = mLXi=N 0+L�1�i < mLXi=N+L�1 �i = �̂2v;ML (25)

where�i are the eigenvalues ofRYY , which leads to :bP� = bP + bP?+��̂2vI +O( 1pL ) P?RYY = 0 (26)

Hence �̂2~y = �2ahH(0)h(0) + ��̂2vrrH (27)

which will introduce an estimation error onh(0). This
error is a function of the channel itself viar and can be
hardly specified statistically. Moreover, the error on the
prediction filter will also affect the channel estimate via
the WLS estimator.

6.2 “Levinson” method

In the Levinson method, in a noiseless context, the pre-
diction coefficients of overestimated order become zero.
Without going into the details of the algorithm, the cal-
culations rely on the backward and forward prediction er-
ror powers (this latter corresponding to�2~y), and on some
pseudo-inverse and the rank of these powers. To get the
correct prediction filter, detection of this rank is neces-
sary, even if the type of pseudo-inverse is of no influ-
ence on the prediction error variances’ values. When this
rank is not correctly estimated, there is no result as in the
“pseudo-inverse” method (one can consider that the use of
the “Levinson” method leads to a minimum length gener-
alized inverse, while the “pseudo-inverse” method leads
to a minimum norm generalized inverse, which has more
robustness virtues). Nevertheless, the values of the pre-
diction error variances will give us a good method for de-
termination of the AR order.

7 Order estimation

7.1 Channel order estimation based on�i
In a subspace fitting algorithm, it is natural to try to esti-
mate the order by examining the eigenvalues of the corre-
lation matrix. In the Direction of Arrival context, Wax de-
veloped a method described in [14] and based on Informa-
tion Theoretic criterions. Unfortunately, this method does
not apply here. He further worked out a general method
in [15], but this method resorts to non linear minimization
and its complexity does not suit our purposes.



7.2 AR order estimation

Order estimation for vector AR(L < 1) processes are
usually based either on test statistics of the ideally zero
prediction coefficients or the prediction error variances.
Another class of estimation procedures rely on Infor-
mation Theoretic considerations and were initiated by
Akaike, Rissanen, Hannan and Quinn (see [9] and ref-
erences therein). These methods use the prediction error
variances. We will use these latter results and adapt them
to the singular case.

The classical Infomation Theoretic Criteria try to min-
imize :

AIC log j�2~y;kj+ 2km2L
HQ log j�2~y;kj+ 2km2 log logLL

MDL log j�2~y;kj+ km2 logL2L (28)

wherek are the candidate orders andj:j denotes the deter-
minant.

These expression are based on the maximized log-
likelihood of the prediction error, with different bias cor-
rection terms based on the number of free parameters
(km2) and the length of the data burst used (L). Rissa-
nen’s MDL (Minimum Description Length) and Hannan
and Quinn’s HQ criteria give strongly consistent estimates
for true AR(L) processes and Akaike’s AIC criterion has
a tendency to overestimate the order. As we will use a
subsequent procedure which is robust to order overesti-
mation, we will use the latter in the simulations.

In the singular case, using classic results concerning
singular normal multivariate distributions, these criteria
extend to our case, but gave poor results, so we propose
the following modification.

Remind that~y(n) = h(0)a(n) whereRaa = �2aIm.
This mean that we can reason on the equivalent lower di-
mensionhH(0)~y(n) = hH (0)h(0)a(n) and its predic-
tion error. Since the sources have been considered uncor-
related, we can further consider the uncorrelated predic-
tion error powers, the total prediction pozer being the sum
of the single prediction error powers, i.e. the trace of this
matrix. Hence, thej�2~y;kj by trace(�2~y;k).

More involved and heavier related methods are pre-
sented (for the non-singular case) in [5].

8 Overall algorithm

The overall algorithm(s) proposed simply use the AR or-
der selection + inspection of the eigenvalues of the next
to last�2~y to get a channel length estimate. Once we have
these order estimates, we proceed with the various clas-
sical WLP algorithms where the prediction coefficients
are estimated according to the various methods described.

The ultimate choice will depend on the price we are will-
ing to pay for estimation accuracy.

9 Simulations

9.1 Channel estimation

In order to characterize the robustness of the WLP to
channel length overestimation, we made various simula-
tions illustrating the different effects of channel lenghtes-
timation errors and of the overall algorithm.

The performance measure is the Normalized Root
MSE (NRMSE) which is computed over 100 Monte Carlo
runs as

NRMSE =vuut 1100 100Xi=1 hHP?bh(i)h=khk2
wherehHP?bhh = min� k�bh � hk2. We use the real

channelhwithN = 6,m = 4 andp = 1 which was used
in [2].

The symbols are i.i.d. QPSK, and the data length isL = 250. The SNR is defined as(khk2�2a)=(mM�2v).
The eigenvalues profile of the correlation matrix is re-

produced hereunder, which gives an idea of how easy it
should be to determine order at the different SNR’s.
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Figure 1: Eigenvalues ofRY Y .

Use of�̂2v;ML The simulations agree with the conjecture
that, using the ML estimate of the noise power, there is no
loss of performance due to overestimation of the channel
length. The smoothing window isK = 6 (i.e. RYY of
sizemK �mK).
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Use of�̂2v Here, the simulations show clearly the influ-
ence of��̂2v, mostly at high SNR, where order estimation
is the easiest to perform. We first show the results with
the minimum smoothing window and then for a smooth-
ing windowK = N̂ . Comparison of these clearly favor
non-minimum smoothing window.
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Figure 4: WLP without order estimation or
knowledge,K = N̂

Use of the prior order estimation This final figure
compares the different practical WLP algorithms, namely
the WLP without order estimation, WLP with AR order
estimation, WLP with channel order estimation followed
by a ’pseudo-inverse’ LP modeling method or a ’Levin-
son’ LP modeling method. In this latter case, we use
a two-step procedure where the first step consists of the
channel length estimation and the second step is again LP
modeling by Levinson, based on the covariance matrix of
minimum size (RYY;L) and �̂2v = �min(RYY;L) The re-
sults agree with what we expected, namely the channel
order estimation greatly improve the performance and the
’pseudo-inverse’LP method is far better then the Levinson
method on the raw correlation matrix.
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9.2 LP order estimation

Hereunder, we reproduce the tests for a channel withm = 4 sub-channels, one user and lengthN = 6, leading



to an AR of true order 2. The results are rather convinc-
ing for relatively low SNR. The noise power is computed
under the assumption that we have an AR(6) process.

AIC SNR

ord. 25 20 15 10 5 0 -5
1 0 0 0 0 0 1 69
2 99 99 82 11 2 23 15
3 0 0 18 87 86 61 3
4 0 0 0 0 1 2 0
5 0 0 0 0 1 1 2
6 1 1 0 2 10 12 11

MDL SNR

ord. 25 20 15 10 5 0 -5
1 0 0 0 0 0 2 99
2 100 100 100 56 33 79 1
3 0 0 0 44 67 19 0
4 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0

HQ SNR

ord. 25 20 15 10 5 0 -5
1 0 0 0 0 0 17 100
2 100 100 100 86 78 81 0
3 0 0 0 14 22 2 0
4 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0

These are the results of the tests for a channel withm = 4 sub-channels, 2 users and lengthN = 12, leading
to an AR of true order 5. The results are rather convincing
for high to moderate SNR. The noise power is computed
under the assumption that we have an AR(10) process.

AIC SNR

ord. 25 20 15 10 5 0 -5
1 0 0 0 0 0 70 100
2 0 0 0 0 0 1 0
3 0 0 0 0 1 9 0
4 0 0 0 0 57 20 0
5 87 97 100 100 39 0 0
6 13 3 0 0 0 0 0
7 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0
10 0 0 0 0 3 0 0

MDL SNR

ord. 25 20 15 10 5 0 -5
1 0 0 0 0 30 100 100
2 0 0 0 0 0 0 0
3 0 0 0 0 18 0 0
4 0 0 0 3 49 0 0
5 100 100 100 97 3 0 0
6 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0

HQ SNR

ord. 25 20 15 10 5 0 -5
1 0 0 0 3 92 100 100
2 0 0 0 0 0 0 0
3 0 0 0 0 6 0 0
4 0 0 0 17 2 0 0
5 100 100 100 72 0 0 0
6 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0

10 Conclusions

We have investigated Linear Prediction robustness char-
acteristics, comparing various methods yielding the pre-
diction coefficients of a singular AR(L < 1) process.
The “pseudo-inverse” method is robust, but its perfor-
mance critically relies on the noise power estimation and
on the use of a big enough smoothing window. The
“Levinson” method needs to perform order estimation
to prove robust. This led to the development of perfor-
mant order estimation algorithms at almost no cost, and
yielding the prediction coefficients as a by-product. Al-
though computationally far less demanding than the first
method, it does not use a non-minimum smoothing win-
dow, yielding poorer channel estimates. In order to con-
jugate low computational complexity and better perfor-
mance, we propose a solution where a bigger smooth-
ing window is used but without the need of an SVD, this
method should be further refined with the use of a weight-
ing matrix and thus attain comparable performance to the
best method.
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