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ABSTRACT

In previous work, we have shown that in the case of multiple
antennas and/or oversampling, FIR ZF equalizers exist for
FIR channels and can be obtained from the noise-free linear
prediction (LP) problem. The LP problem also lead to a
minimal parameterization of the noise subspace, which was
used to solve the deterministic maximum likelihood (DML)
channel estimation problem. Here we present further con-
tributions along two lines. One is a number of blind equal-
ization techniques of the adaptive filtering type. We also
present some robustifying modifications of the DML prob-
lem.

1. INTRODUCTION

Consider linear digital modulation over a linear channel
with additive Gaussian noise so that the received signal can
be written as

y(t) = ) _anh(t—kT) + o(t) (1)

k

where the a; are the transmitted symbols, T is the symbol
period, h(t) is the (overall) channel impulse response. The
cyclostationarity of {y(¢)} and the fact that after sampling,
multiple received signals from multiple antennas and/or
oversampling lead to a vector of received samples at the
symbol rate have been discussed in [1],{2],[3],[4]. The case of
multiple synchronous transmitting sources has been treated
in [5], but here we’ll stick to one source. We assume the
channel to be FIR with duration of approximately NT. The
vector received signal at the symbol rate can be written (for
m symbol-rate discrete-time channels) as

N-~1
y(k) = Z h(i)ak—i +v(k) = HyAn(k) + v(k),
(k) v (k) Ba(k)
y(k) = : (k) = : yh(k) = :
ym (k) vm (k) hm (k)
Hy = [h(0)--h(N=1)], An(k) = [af ---afL v, ]
(2)

where superscript ¥ denotes Hermitian transpose. We for-
malize the finite duration NT assumption of the channel as
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follows: (AFIR)

h(0) #0, h(N-1) #0 and h(i)=0fori < Oor¢> N.
3)
We introduce a multichannel equalizer structure as in
Fig. 1, i.e., consider a set of m FIR filters of length L op-
erating on the m received signals and take the sum of the
filter outputs as the equalizer output. Let the equalizer co-
efficients be f(k) = [fi(k)}- - fm(k)], Fz = [f(0)--- f(L-1)],
and consider the channel and equalizer transfer functions
H(z) = YN h(k)z™* and F(z) = Y rCo f(k)z~*. The
condition for the equalizer to be zero-forcing (ZF) up to
some delay n is F(z)H(z)=z"" where n=0,1,..., N+ L-2.
The ZF condition can be written in the time-domain as

FZi T, (Hy) = [0---0 1 0---0] (4)

where the 1is in the n+1°° position and T (x) is a (block)
Toeplitz matrix with M (block) rows and [x Opx(M—l)] as
first (block) row (p is the number of rows in x). (4) is a sys-
tem of L+N—1 equations in Lm unknowns. To be able to
equalize, we need to choose the equalizer length L such that
the system of equations (4) is exactly or underdetermined.
Hence N1
LZL—{m—I] ' ©)

The matrix 7 (Hy) is a generalized Sylvester matrix. It
can be shown that fer L > [ it has full column rank if the
FIR assumption (3) is satisfied, and if H(z) # 0, Vz or in
words if the different channel responses have no zeros in
common. Assuming 7z (Hx) to have full column rank, the
nullspace of T# (Hx) has dimension L{m—1)—N+1. If we
take the entries of any vector in this nullspace as equalizer
coefficients, then the equalizer output is zero, regardless of
the transmitted symbols.

Consider now the measured data with additive indepen-
dent white noise v(k) and assume Ev(k)v¥ (k) = 62In. A
vector of L measured data can be expressed as

Yi(k) = T2 (HN) Arsyn-a(k) + VL(K) (6)
where Y1 (k) = [y¥ (k) - y# (k—=L+1)] " and V. (k) is de-

fined similarly. Therefore, the structure of the covariance
matrix of the received signal y(k) is

RY = 7o (HN) Ry v T2 (Hn) + 02 Ime (T)
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Figure 1: Polyphase representation of the single antenna
T/m fractionally-spaced channel and equalizer or discrete-
time representation of a symbol-rate sampled system with
m antennas, for m = 2.

where R{ = EY (k)Y¥#(k) and R = EAL(k)A¥ (k). o2
can be identified as the smallest eigenvalue of R{. Replac-
ing R{ by R{ — 0211 gives us the covariance matrix for

noise-free data. Given the structure of R{ in (7), the col-
umn space of Tz (Hy) is called the signal subspace and its
orthogonal complement the noise subspace [3].

2. MULTICHANNEL LINEAR PREDICTION
(LP) AND EQUALIZATION

Consider first the noiseless case (¢, = 0). And let the
transmitted symbols be uncorrelated (R = 027.). When

L>1, R¥ is singular. If then L increases further by 1, the

rank of R¥ increases by 1 and the dimension of its nullspace
increases by m—1. Consider now the problem of (forward)
predicting y(k) from Y1 (k—1) The prediction error can be
written as

¥i(k) = ¥y, (k1) = Por Yi4a(k) = y(k)-y1(k)
== y(k)— S;(k)IYL(k-l) = [Im _PyilYL+l(k)

Minimizing the prediction error variance leads to the fol-
lowing optimization problem

H

pin (£ —Pﬁ]R{“ [m —Pyi] =d, (9
of

v

or hence

P;iR{H = [a.;.;, o---o] . (10)

L

It can be shown that
Po;Teya (Hy)=h(0)[10---0], 0%, = o2h(0)h¥(0).
yi Yo (1)
11

In other words,
h#(0) ZF
—tP., = F . 12
hZ(0)h(0) ¥i L+1.0 (12)
3. 0 DELAY MMSE EQUALIZATION BY LP

When noise is present, MMSE equalization performs bet-
ter than ZF equalization. For zero delay equalization, the

following relation between the MMSE equalizer and linear
prediction can readily be found:

FYMIE = azh”(o)a§j P (13)

L L

The quantities P~, and azy,, are readily determined from
L L
the linear prediction problem, while h(0) could be deter-

mined from the second-order statistics. Indeed, block sub-
diagonal N—1 of R¥+1 is given by o2h(N—1)h¥(0). Al
ternatively, one could take the vector of prediction errors
y(k)IYL( x—1) and determine an appropriate linear combi-
nation of these m signals by the Constant Modulus Algo-
rithm.

4. MAXIMAL DELAY MMSE EQUALIZATION

The performance of the zero delay MMSE equalizer may be
poor if the first channel coefficient h(0) is small. It is better
to allow a delay so that the RHS of the normal equations
that determine the MMSE equalizer contain all the channel
coefficients. We propose a blind approach to obtain such
an equalizer. One may remark that it would be possible to
first estimate the channel coefficients, from which one can
determine any equalizer. However, the emphasis here is on
a simpler alternative. The approach consists of two steps:

1. do blind zero-delay ZF equalization. The equalizer
output will be (L+1 > L)

T =ax + F%fl,ovl+l (k) . (14)

2. obtain F%AA'{IS_% as a linear combination of a Wiener
filter with Y as(k) as input vector and @x—ar41 as de-
sired response, and the backward linear prediction
filter on the vector Y ar(k). Preferably, M > N.

For step 1, Ff-fl,o can be found by LP in the noise-free
case. In the case of additive (white) noise, the noise-free
second-order statistics can easily be found after identify-
ing the smallest eigenvalue of R{ +1- Alternatively, the
Least-Squares approach of the noise-free case can be modi-
fied into a Total Least-Squares approach for the noisy case.
Appropriate adaptive algorithms can be extrapolated from
(6]. Alternatively, the method discussed in the next section
could be used for step 1.
For step 2, consider the FIR Wiener filtering problem

%1%1 E [@k-p41 ~ FR Yur(k)|* (15)
which leads to the normal equations

FYRY, = Eax—ms1 Y (F)

= Eakem1 Yig(k) + FEL 0EV L (k=M +1) Vi (k)

=FYMSERY, +[0---0 £(0)] o2
(16)
where f{0) represents the first m coefficients of Fgfl ,0- Con-
sider now the multichannel backward prediction problem

Yaoa(k) = YE=M+ly,, xn= Py;{ 1YM(’°) (17)
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where P~y = [—PAs In], with normal equations
Ynm-1 Yrmar
P RY, = [0---0a£., ] . (18)
Yr- Yrm-a
From (16) and (18), we conclude
FMAE = Fy — o2f(0)o 2 Poy (19)
yM 1 M—

In this expression for FX¥X5E  all quantities can easily be
M,M~1 q

found by adaptive filtering except perhaps o2. But an esti-
mate for o2 results as a byproduct of step 1.

5. CONSTRAINED IIR FILTER DFE

Whereas the equalizers considered in the previous sections
are linear, here we consider an equalizer structure with de-
cision feedback. The approach is in fact a multichannel ex-
tension of the adaptive notch filter approach for sinusoids
in noise. As a consequence, the method will continue to
work well even if the additive noise and/or the transmitted
symbols are colored.

Let PS;; () and ny (2) be the ztransforms of the for-

L L

ward prediction and prediction error filters (of the noise-
free case) so that P~, (2)=Im—=z 1P,-\, (2). To alleviate

the notation, P(z) w1ll continue to represent P~, (z) and

let ¢~! be the unit delay operator: ¢ ly(k) = y(k 1).
Since P(z)H{z) = h(0), the noise-free received vector signal
¥(k) = H(q)ax, which is a multichannel MA process, is also

a (singular) multichannel AR process: P(q)y(k) = h(0)ax.
For the noisy received signal y(k) = H(g)ax + v(k), we get
P(g)y (k) = h(0)ax + P(q)v(k) (20)

which is a constrained multichannel ARMA process, apart
from the term h(0)ax. In the scalar case, the prediction
error filter is minimum-phase. For the multichannel case,
the extension is that det[P(z)] is minimum-phase. However

since in the noise-free case RL 41 is singular, zeros on the
unit circle can occur. Hence, if we want to use (20) to

recover v(k), we need to introduce a damping factor p 21

v(k) = P~ (q/p)[P(q)y (k) -

It would perhaps be preferable to replace P~*(g/p) by
Adj[P(q))/ det[P(q/p)], but (21) can be more straightfor-
wardly implemented by the following procedure

s(k) = Pgr (9)y(k) - PP"I(‘I/P)V(k 1)

ax = dec[—”ﬁl—l(la (k)] (22)

$(k) = s(k) — h(0)ax

h(0)as] . (21)

where dec denotes the decision operation, whose argument

is ideally ax + ﬁ)@ (k). Various algorithms are now

possible to adapt the coefficients P~; such as the Recursive

L
Prediction Error Method and its simplifications.

6. n-STEP AHEAD LINEAR PREDICION

In section 2, we have shown how Fgfu) can be obtained by
linear prediction (LP) in the noise-free case. In the noisy
case, but with high SNR, one might be tempted to con-
tinue to pursue the LP approach by e.g. replacing h(0) in
(12) by the eigenvector of 02, corresponding to its largest

eigenvalue. This approach willi clearly not work very well if
h(0) is small, which can occur since the channel is not nec-
essarily minimum-phase. In the approach outline below, a
ZFE with arbitrary delay is obtained in the noise-free case,
involving a corresponding channel coefficient.

Consider n-step ahead (forward) linear prediction of the
noise-free y(k) of order L > L:

Falk) = Ty, om = Py @) (29)

The use of the optimal predictor will result in

n—1

Vink) =Py (@y(®) =D h()awi.  (249)
=0

For n = 1, we find the results of section 2. Note that we
can regard Ay'{l,"(k) as the received signal from a truncated
channel. If we now apply backward linear prediction of
sufficient order M (replace N by n in the expression in
(5) for L) to the signal S"{,,,(k), then we obtain as optimal
prediction error

Fuu(k) = P (@7 (k) =

Yu

h(n—l)ak_n+1 . (25)

From (25) and (23), we deduce that we can obtain a ZF
equalizer with delay n—1 as

h¥(n-1)
et 5, WP
(26)
It is true that any h(n—1) could be small. So the way
these results should be used is perhaps through the com-
bination of several ZFEs corresponding to several delays
(=0,1,...,n), such that the chance for 5 _ |(h(i)||* be-
ing small becomes small. The outputs of these ZFEs should
be properly delayed to align them at the same ax_n.

F
FrZ|+L+M,n—1 (9) =

7. DML CHANNEL ESTIMATION

Consider additive white Gaussian noise but deterministic
(D) transmitted symbols ax. Maximizing the likelihood
function for the data Y a(k) leads to the following sepa-
rable LS problem

min 1Y 2 (F) = Tar (HN) Amanv—a(R)|l; -
Hy Apgn-1(k)
(27)

Eliminating Ay 4n—1(k) in terms of Hy, we get
min 1P 51, Yo ) (29)

In order to find an attractive iterative procedure for solv-
ing this optimization problem, we should work with a mini-
mal parameterization of the noise subspace, which we have
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obtained in [4] from the prediction problem of the noise-
free signal. We get P'ZJ:M(HN) = Pc,{’,,(GN)‘ The number
of degrees of freedom in Hy and Gy is both mN -1 (the
proper scaling factor cannot be determined). So Hy can
be uniquely determined from Gy and vice versa. Hence, we
can reformulate the optimization problem in (28) as

min || Pogy g Y (R)IE - (29)

Due to the (almost) block Toeplitz character of Gas, the
product GarY (k) represents a convolution. Due to the

commutativity of convolution, we can write Ga(GN)Y s (k) =
In(Y (k)1 GE]¥ for some properly structured Yy (Y a(k)).

This leads us to rewrite (29) as the following IQML problem

min [ ]oEramen (onamrofiom) ™ nraetn [ &,

(30)
An initial estimate may be obtained from a subspace fit-
ting approach [3] or from the LP problem. Such an ini-
tial estimate is consistent and hence one iteration of (30)
will be sufficient to generate an estimate that is asymptoti-
cally equivalent to the global optimizer of (30). Cramer-Rao
bounds have been obtained and analyzed in [3].

The characterization Gam(Gn) of the noise subspace is
not very robust because N (and hi(N—1) # 0) is assumed
known. Note however that asymptotically the DML crite-
rion (29) becomes the sum of the squares of w(k) in

Bay(k) = Flawvr) = (PP (/a0) " wie) ()

obtained from (20), where P(¢) = h*#(0)P(q), h*(0) is
a m x (m—1) matrix of rank m—1 s.t. h*#(0)h(0) = 0,
and (.)*/? is a minimum-phase factor of its argument. This
leads us to introduce a more robust approximate DML as

in || P = Y (B
mFm I i (P (k)2 (32)

for any L > L. (32) can again be solved in the IQML fash-
ion as in (30). A minimal parameterization for P is
h*#(0)P = [[Im-1 g]P Q] where g ((m—1) x 1) and Q
((m—1) x mL) are the free parameters and P is a pernm-
tation matrix that permutes g into the column of h*#(0)
that corresponds to the largest element of (an LP based
estimate of) h(0).

8. GML: ML WITH GAUSSIAN PRIOR

Computer simulations have shown that for small m, the
channel estimate from DML can be relatively bad if the
channel impulse response tapers off near the ends. As an in-
termediate step to the computationally expensive stochastic
ML in which the discrete distribution of the ax is exploited,
we propose to introduce a Gaussian i.i.d. prior for the ax.
The GML criterion is

. k Tv (H 2
min [OYM( ) ] _ QJ\IJ( N) ]AM+N—1(’C)
HN.AM+N_1(k) N+M-1 Ta N4+M-—-1 )

(33)

The Cramer-Rao bound for the channel CRBﬁ:T for the
problem (33) can be found to be: Y

C(ﬁ;f)=63[;cﬁ,N(k)P;M(HN)icM,N(k)]‘1 (34

& (Hy) = g{“}N(fIJ_)I ] K (k) = [Oiﬂ;ﬂ(?ﬁ,]
Apn(k) = AM::r(k) ® Im and
a(k) o a(k=N+1)
Amn(k)=| S
a(k—M+1) a(k—M—N+2)

(35)
Due to the Gaussian prior, the singularity in the CRB gets
eliminated w.r.t. the DML problem. Moreover, as computer
simulations have shown, the CRB for the GML problem re-
mains small even for channels whose impulse response ta-
pers off near the ends. A simple way to find the channel
estimate from the GDML problem is to start with the DML
problem. In the DML problem, the estimate of the data
corresponds to a ZFE, while in the GML problem, the data
estimate corresponds to a MMSE equalizer. Using the esti-
mates for the channel and for o,/0, from DML, apply the
MMSE equalizer and then estimate the channel again with
these estimated data from the LS problem in 27). Since
the DML method leads to a consistent channel estimate,
this one iteration will lead to a channel estimate that can
asymptotically not be distinguished from the GDML esti-
mate.
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