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Abstract—This extended abstract paper provides the mod-
eling approach and some indicative results on the expected
performance of received power-based multiple source localization
in spatially-correlated log-normal propagation environment. By
proper modeling approximation of the received signal strength
we are able to evaluate the Crammer-Rao Lower Bound (CRLB)
given the positions of the sources and sensors. Probabilistic
models are used for both the sensor network as well as the
multiple sources and a semi-analytic approach is taken to
compute the average performance lower bound. The results are
indicative on the expected localization accuracy in a multi-source
localization scenario, when the correlation of the propagation
environment is exploited.

Index Terms—Receive signal strength; Multi-Source; localiza-
tion; log-normal; spatial correlation, Cramer-Rao Lower Bound;

I. INTRODUCTION

While the topic of source localization has been addressed
extensively, multi-source localization is less popular due to
its inherent difficulty. This is because: There is a limited
number of scenarios where multiple non-orthogonal sources
may overlap in the same band. For multi-source scenario, the
amount of requiring sensors should be at least equal to prob-
lem’s degrees of freedom, thus, for each unknown transmitter,
including power estimation, 3N sensors are needed (xi, yi, Pi)
and in order to make our estimation more resilient to noise we
have to use even more. Therefore, the cost of a large number
of sensors, a condition necessary for accurate localization,
has been thus far prohibitive. However, the potential for
cognitive-radio applications (even in 5G), the decreasing cost
of sensors, and the availability of databases with localized
channel strength measurements are changing this picture.

Theoretical accuracy limits are valuable in order to design
a localization system. The most common theoretical bound
for power-based localization (Received Signal Strength, RSS)
localization, is Crammer-Rao Lower Bound (CRLB) which
gives closed form expression about the minimum achievable
variance of an estimator. There is extensive literature on the
CRLB for single in non-correlated and correlated environment
[1] , [2]. Approximate CRLB and localization algorithms for
the multi-source problem was derived in [3]. Our work herein
addresses the performance evaluation via the Crammer-Rao

Lower Bound (CRLB) of multi-source, power-based localiza-
tion in spatially-correlated log-normal propagation environ-
ment.

The rest of the paper is organized as follows, Section II
presents propagation model, basic assumptions and generally
clarify all necessary components of our model. Section III
presents only some indicative results of the performance
analysis due to space limitations.

II. OUR MODEL
Power measurements are drawn either from a set of sensors.

For each set of i-th sensor and j-th transmitter we adopt the
classic log-normal propagation model

Ri,j = Pj − L0 − 10αlog(di,j/d0)− nsi,j − n
f
i,j , (1)

where Ri,j is the j-th source power, measured by i-th
sensor, di,j = ‖xi − sj‖ is their respective distance (xi,sj are
the coordinates of i-th sensor and j-th source, respectively),
Pj is j-th emitter power, d0 is a reference distance and L0 is
the power loss in that reference distance, α is the path-loss
exponent, nfi,j is the noise due to fast fading, which is hereby
modeled as zero-mean Gaussian (in linear scale) and (nsi,j) is
the shadow-fading rv. We follow common practice to assume
that the fast fading component can be averaged out and the
shadow fading follows log-normal distribution: a Gaussian rv
in the log domain with zero mean and variance σ2

s .
The model for the correlation factor of Shadow Fading

(autocorrelation) in respect to distance is given in [4] :

ρ(∆x,∆y) = ρ(d) = e−
ln(2)d

dc , (2)

where dc is the de-correlation distance, meaning that, is the
distance where the correlation of tow variables became 0.5. In
respect to the reciprocity of the propagation model, we have
two types of correlation. One between different sensors and
same transmitter, and one by different transmitters and the
same sensor.

Due to the eq.1 the receiving power of i-th sensor from
j-th source is following log-normal distribution at the linear
domain. So, the total received power of i-th sensor is Ri =∑N
j=0Ri,j , where N is the total number of transmitters. But
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the sum of log-normal is not trivial and approximation needed.
As we mention at previews paragraph the shadow fading is
spatially correlated, so, in order to capture the correlation
from transmitters side, we use the correlated approximation
for the sum of log-normal [5], which give as again a log-
normal distribution with mean and variance eq.6
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where c = ln(10)
10 is a constant which is originated from the

transformations between natural and log domains, ρtxi,j is the
correlation factor between i-th and the j-th transmitter and
calculated from 2.

With given mean and variance for each sensor, the general
Fisher Information matrix for Gaussian rv is (see [6]):
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where tr() is the trace of the matrix and with use of σi
from eq.6 and ρsij correlation factor between i-th and the j-th
sensor again from eq.2 the covariance matrix of sensors

C =

 ρs11σ1σ1 · · · ρs1Nσ1σN
...

. . .
...

ρsN1σNσ1 · · · ρsNNσNσN

 . (5)

III. RESULTS

Some indicative performance results are depicted in follow-
ing two Figures. Fig. 1 depicts the performance degradation
on localizing a source when a second one is at close distance
as a function of the sensor network density. The performance
for a single source is also depicted for comparative reasons.
The parameters used are: pathloss equal to 3, decorrelation
distance equal to 5m and shadow fading variance equal to
8dB.

Fig. 2 depicts how the CRLB is scales w.r.t sensors density,
for different number of surrounding sources and the same
propagation environment. The number of sources is chosen
from a poison point process. The NoS parameter shows us
the average number of sources within the coverage area of a
source, i.e. the expected area where a sensor can detect its
presence.
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Fig. 1. Performance by adding second source
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Fig. 2. Performance for different amount of sources
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