
Distributed Sensing and Transmission of Sporadic
Random Samples
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Abstract—This work considers distributed sensing and trans-
mission of sporadic random samples. Lower bounds are derived
for the reconstruction error of a single normally or uniformly-
distributed vector imperfectly measured by a network of sensors
and transmitted with finite energy to a common receiver via
an additive white Gaussian noise asynchronous multiple-access
channel. Transmission makes use of a perfect causal feedback
link to the encoder connected to each sensor. A retransmission
protocol inspired by the classical scheme in [1] applied to the
transmission of single and bi-variate analog samples analyzed in
[2] and [3] is extended to the more general network scenario,
for which asymptotic upper-bounds on the reconstruction error
are provided. Both the upper and lower-bounds show that
collaboration can be achieved through energy accumulation
under certain circumstances.

I. INTRODUCTION

The objective of this work is to provide asymptotic perfor-
mance measures and a realizable, simple transmission strategy
for large one-hop sensor networks. We model systems where
each sensor measures signals with a finite and small num-
ber of source dimensions, in comparison to the number of
channel dimensions. This is motivated by applications such as
remote sensing using broadband wireless infrastructure (e.g.
4G cellular networks) where sensors take sporadic samples
of a random event, feed them back to the network via base
stations and subsequently return to an idle state to conserve
power. As a result, we do not consider coding of sequences of
samples, but rather exploit spatial expansion and correlation
between a network of sensors with independent observation
noise. Since the applications target 4G wireless networks, it is
reasonable to assume a feedback-based transmission strategy,
and both the asymptotic results as well as the transmission
strategy studied here will exploit feedback. The latter allows
for simple and energy-efficient strategies, even if feedback is
not required for optimality.

The main results of this work are firstly the derivation of
lower-bounds governing the reconstruction error of a single
random vector imperfectly measured by a network of sensors
and transmitted to a common receiver via an additive white
Gaussian noise asynchronous multiple-access channel with
a perfect causal feedback link to the encoder connected to
each sensor. The bounds are expressed both for a uniform
random-vector source with uniformly-distributed observation
noise and for a Gaussian source with Gaussian observation
noise. Secondly, we extend a retransmission protocol inspired
by the classical scheme in [1] applied to the transmission of
single and bi-variate analog samples analyzed in [2] and [3]

to the more general network with M noisy observations of
a common random sample. We restrict the second analysis
to uniform one-dimensional sources. The simple two-round
transmission scheme combines uniform quantization and or-
thogonal modulation, for which we provide asymptotic upper-
bounds on the reconstruction error as a function of the total
received energy and observation noise level. Both the upper
and lower-bounds show that a trade-off exists between the
source SNR and channel SNR indicating the extent to which
collaboration to be achieved through energy accumulation.

With respect to multiple-source systems, the authors in
[4] and [5] derive a threshold signal-to-noise ratio (SNR)
through the correlation between the sources so that below
this threshold, minimum distortion is attained by uncoded
transmission in a Gaussian multiple access channel with and
without feedback, respectively. In these works, the authors
consider transmission of a bi-variate normal source and the
distortion can be characterized by two regimes as a function
of the relationship between the channel SNR and the source
SNR. In the high-correlation regime the distortion is reduced
through collaboration in the received energy from the multiple-
access channel and amounts to essentially the distortion of
a single-source with a factor 4 in energy efficiency. [6] and
[7] can be given as further examples where collaboration has
the effect of linearly increasing the reconstruction fidelity of
the source with the network size. In [6], however, the system
parameters are chosen so that the trade-off between source and
channel collaboration is not immediately evident.

The outline of the paper is as follows: in the following
subsection II-A, we give a description of the general model to
explain the problem addressed. It is followed by the derivation
of the information-theoretic bounds on the reconstruction error
for the two different distribution outlined above. In Section III,
we provide an M -sensor adaptation of Yamamoto’s protocol
for a uniformly-distributed source with uniform observation
error along with analysis of its asymptotic performance. We
then draw conclusions based on the results of the two analy-
ses.

II. SYSTEM MODEL AND LOWER-BOUNDS ON
DISTORTION

A. Model description

Let us begin with the description of the system shown in
Figure 1. The construction of the sources is given by the
following linear expression.

Vj = ρU +
√

1− ρ2U′j (1)



Here we denote the M auxiliary random vectors representing

Fig. 1. Pictorial representation of the described system

the observation noise in each sensor by U′j and the observation
of the mutual source U by Vj , both of dimension K, for
j = 1, 2, ...,M . Each realization of Vj is mapped into
X , (X1, . . . , XN ) which is then sent across the channel
corrupted by a white complex circularly symmetric Gaussian
noise sequence Z, and is received as the output signal Y. The
receiver constructs an estimate Û of U given Y. The transmit-
ted sequence X is encoded as Xi = fi,j(Vj , Y1, · · · , Yi−1),
where the function fi,j is an arbitrary mapping for the jth

sensor in dimension i and depends on perfect knowledge of
past observations. The latter models an ideal causal feedback
path from the receiver. The dimension of the channel input is
denoted by N and can be assumed to be large, whereas K is
assumed to be finite and small.

We consider two cases for the distribution of U. In the first
case, both the U′j and U are uniformly distributed with zero
mean and unit variance, i.e. defined in the range (−

√
3,
√

3).
Depending on the level of correlation, Vj defined by (1) has a
contaminated uniform distribution. We will consider the case
where Vj , U and U′j are standard normally distributed which
is equivalent to having the parameters N (0, 1). The output
signal and the power constraints are given in the following by

Yi =

M∑
j=1

Xi,je
iφi,j + Zi,

1

K

N∑
i=1

E[|Xi,j |2] ≤ Ej (2)

for j = 1, 2, ...,M and i = 1, ..., N , respectively. The criteria
for source-channel code design is chosen as the squared-
error distortion measure, which is d(ui, ûi) = (ui − ûi)

2

for i = 1, 2, · · ·K, and the average distortion is defined as
D = 1

KE
[∑K

k=1 d(ui, û)
]
. φj = {φj,i; i = 1, ..., N} denotes

the random phase sequences which are assumed to be i.i.d.
uniform over [0, 2π) and unknown to the transmitter and
receiver. The latter models an asynchronous network and the
fact that a coherent reception model is unrealistic for sporadic
information transfer. These assumptions are implicitly relaxed
in the lower bounds on the distortion discussed in the following
section but are applied in the coding strategy considered in
Section III.

B. Derivation of the Bounds

In order to obtain a bound on the fidelity of estimating the
random vector U, we obtain upper and lower bounds on a
cut-set mutual information functional I(U;Y|{Vj}S) based

on a subset S ⊆ 1, 2, · · · ,M and its complement Sc. {Vj}S
denotes the subset of Vj’s for j ∈ S. The derivations of the
two bounds are given in the Appendix for both uniform and
normal distributions. The bounds are summarized as

I(U;Y|{Vj}S) ≥ −h({Vj}S) + h({Vj}S |U)

+ h(U)− h(U− Û). (3)

I(U;Y|{Vj}S) ≤ N log

(
1 +

K
∑
j∈Sc Ej

NN0

)
. (4)

Combination of these two bounds allows us to express the
distortion level for estimating the mutual random vector U as

D ≥ max
|S|

CD(1− ρ2)|S|
(

1 +
K
∑
j∈Sc Ej

NN0

)− 2N
K

(5)

with CD being a constant which varies based on the distribu-
tion type and defined as

CD =

{
( 6
πe )|S|+1 for U ∼ U(−

√
3,
√

3)

1 for U ∼ N (0, 1).

The general bound given above by (5) includes two parame-
ters; the correlation coefficient ρ and the energy term and is
valid for all 0 ≤ |S| ≤M .

In the source-channel coding scheme proposed in the fol-
lowing section which targets broadband networks and small
amounts of analog information, we are mostly interested in
the case where N � K, or where the channel bandwidth is
significantly higher than the source bandwidth. For N → ∞
and Ej = E ∀j, (5) becomes

D ≥ max
|S|

CD(1− ρ2)|S| exp

(
−2(M − |S|)E

N0

)
. (6)

which can easily be simplified to

D ≥

CD(1− ρ2)M 1− ρ2 ≥ e−
2E
N0

CD exp
(
− 2ME

N0

)
1− ρ2 ≤ e−

2E
N0 .

(7)

The above result brings to light the effect of collaboration
between the sensors which is achieved either through the
spatial expansion in the channel or in the source. To see this,
we note that the condition 1 − ρ2 ≥ e−

2E
N0 is equivalent to

saying that the distortion in each sensor node induced by
the observation process is more significant than the lowest
distortion offered by the channel when estimating Vj (which
is Dc ≥ e−

2E
N0 ) in the absence of the signals from the other

sensors. Note that this is the classical point-to-point optimal
distortion derived in [8]. Under this condition the channel is
used to convey the Vj independently and the estimation of U
results in a distortion of at least (1 − ρ2)M , which through
spatial expansion reduces the point-to-point distortion at the
sources exponentially in M . A comparable trade-off regarding
the collaboration effect due to the source or channel can be
seen in [4], [5] for the case K = N . As mentioned in the
introduction, another example is the Gaussian sensor network
application [6, sections VI and VII] (again for K = N ) or the
CEO problem studied in [7], where estimation fidelity decays
linearly with the size of the network in a manner similar to
(5).



III. ACHIEVABLE SCHEME FOR A NETWORK WITH
UNIFORM SOURCES

The two-way protocol introduced in [2] for a single source
and its extension to dual-source studied in detail in [3] is
generalized to large networks where the same approach is
applied to a scheme with M sources for M ≥ 2. The protocol
consists of two phases; a data and a control phase, which
constitute one round and can be repeated twice based on the
outcome of the control phase making use of ACK/NACK
signals. It should be noted that the scheme could be gen-
eralized to more than two rounds. We fix the total energy
which is used by the protocol and for the sake of simplicity
the energy used in one round is allocated equally among the
sources Vj for j = 1, 2, ...,M . For the data phase of the
first round the aggregate energy is denoted by ED,1 where
ED,1 =

∑M
j=1 ED,1,j . We assume that the source sample of

the jth source which is uniformly quantized is subsequently
encoded into 2Bj messages with dimension N where Bj’s
are equal to the same value B. The chosen method is 2B-
ary orthogonal modulation with non-coherent reception. In the
data phase, the jthsource sends its message mj = Q(Vj)
to the receiver with energy ED,1,j . The aggregated source
messages are denoted by m which is a vector of the messages
(m1,m2, ...,mM ) with dimension M . Note that all messages
from different sources are mutually orthogonal. The receiver
decodes m̂j and feeds it back. The output signal based on
the N dimensional observation of the jth source is given by
Ydj =

√
ED,1,jejΦjSmj+Zdj . We assume the random phases

Φj to be distributed uniformly on [0, 2π), the channel noise
Zdj to have zero mean and equal auto-correlation N0IN×N
for j = 1, 2, ...,M and Smj are the N -dimensional messages,
with m = 1, 2, · · · , 2B . At the receiver end, we consider
the following exhaustive search. To decode the first message
m1, there are 2B possibilities whereas mj>1 is constrained

to 2B(
2
√

1−ρ2

ρ+
√

1−ρ2
) since it cannot fall outside of the interval

V1 +
√

1− ρ2(U ′j − U ′1) as depicted in Figure 2. Using
the notation from [9, Chapter 12], the M possible detection
metrics Um′ =

∑M
j=1 |SHm′jYj |2, are computed. Assuming the

message (m1,m2, ...,mM ) is transmitted, the decision metrics
can be written as

M∑
j=1

|SHm′jYj |2 =
∑

j:mj=m′j

|
√
ED,1,j +Nj |2 +

∑
j:mj 6=m′j

|Nj |2.

(8)
According to (8), the receiver chooses m̂ = argmaxm̂′ Um′ .
After the estimation and feedback of m̂j to each encoder,
the data phase of the first round ends and the encoders enter
the control phase to inform the receiver about the correctness
of its decision by sending ACK/NACK signals regarding its
own message to the decoder. During the control phase the
receiver observes Yc with Ycj =

√
EC,1,jAje

jΦjScj + Zcj
for jth source where Aj takes the value 0 for a signal ACK
and 1 for a NACK and EC,1,j here denotes the energy of the
control phase in the first round on one source. So the encoders
inform the receiver whether or not its decision was correct
via a signal

√
EC,1,jScj of energy

√
EC,1,j if the decision is

incorrect and 0 if the decision was correct. A NACK is chosen
for the jth source if ej = I

(
|yc,j |2 > λEC,1,j

)
= 1, with

yc,j = YH
c,jSc,j , where I(·) is the indicator function and λ is

a threshold to be optimized and included within the interval
[0, 1). Pr(Ee→c,1|k in error) denotes the total probability
of uncorrectable error given that k sources are in error in the
first round. Using the recent bound introduced in [10, eq. 12]
Pr(Ee→c,1|k in error) is bounded as

Pr(Ee→c,1|k in error) ≤ 1

2
exp

(
−k(
√
λ− 1)2EC,1
MN0

)
(9)

where EC,1 =
∑M
j=1 EC,1,j is the aggregate energy in the

control phase of the first round. In the case of at least one

Fig. 2. Pictorial representation of detection

NACK out of M control signals is received, the protocol
goes on one more round for retransmission, otherwise it
is terminated. And the second data phase starts after the
sources are instructed by the destination in order to do the
retransmission using the energy per source ED,2,j .

The union bound on Pe(m), the probability of error at the
end of the first round, is given by (10) on the top of the
next page. To bound Pe(m), the decision variables defined
by (8) are used to bound the conditional probability through
(10). P2(k) is defined in [9, eq:12-1-24] through the following
equality

P2(k) =
1

22k−1
e−γCk (11)

with Ck defined as Ck =
∑k−1
n=0

(
1
n!

∑k−1−n
l=0

(
2k − 1

l

))
γn

where γ denotes the SNR. The second round decision variables
are represented by U

(2)
m′ = Um′+

∑M
j=1 |SHmjY

(2)
j |2. We note

that this is analogous to soft or Chase-combining in conven-
tional hybrid automatic-repeat-request (HARQ) protocols. As
in the first round, the receiver chooses m̂ = argmaxm̂′ U

(2)
m′ .

Using the estimator û = 1
M

∑M
i=1 v̂j/ρ, the protocol termi-

nates with the following distortion at the end of the second
round, D = Dq(1−Pe)+

∑M−1
k=1 De,kPe,k+De,MPe,M , where

k corresponds to the number of the sources in error. The error
probability corresponding to the case where at least one out of
M sources being correct is represented in the above expression
by Pe,k which is the case of k sources being in error including
the uncorrectable error after the first round, or k being in error
at the end of the second round. Pe,M represents all of the M
sources being in error after the first or second round. Note
that P2(M) and P2(2M) shape together Pe,M . In the same
way, Pe,k is the sum of P2(2k) and P2(k). Accordingly, the
corresponding distortion terms are denoted by De,k and De,M

respectively. When m is decoded correctly, the reconstruction
error Dq is caused solely by the quantization process and



Pe(m) ≤
∑

mj 6=m′j

Pr(Umj < Um′j |m) ≤ P2(M)2B

⌈
2B+1

√
1− ρ2

ρ+
√

1− ρ2

⌉M−1

+

M−1∑
k=1

(
M

k

)
P2(k)

⌈
2B+1

√
1− ρ2

ρ+
√

1− ρ2

⌉k
.(10)

source observation error. Let us denote the estimation error
by e, so that its variance E[u− û|l in error]2 for l = 0 yields
the quantization distortion with the following expansion,

Dq = E

 1

ρM

M∑
j=1

(√
1− ρ2u′j + eq,j

)2

(12)

where eq = 1
ρM

∑M
j=1 eq,j denotes the estimation error. In

order to bound Dq , each tail of the distribution is considered
as one quantization bin with a size proportional to 1− ρ2 and
the interior part which is composed by 2B−2 bins is uniformly
quantized. The squared distortion when k out of M sources are
decoded in error at the end of the second round is calculated
through De,k = E [u− û|k in error]2 for k = 1, 2, ...,M −1
by using the chosen estimator expanded as

De,k = E

 1

ρM

 ∑
j s.t.
v̂j 6=vj

(ρu− v̂j) +
∑
j s.t.
v̂j=vj

(ρu− v̂j)




2

(13)
and bounded considering the furthest distances between u and
its estimate for the cases when v̂j is correctly and incorrectly
decoded. Note that, Dq and De,k (1 < k < M ) are in the
exponential order of 2−2B while De,M is upper bounded by
an order of 1. Using the above defined error probabilities, the
distortion can be written in the form given by (14) on the top of
the next page, where K1 is O(1), K2,K3 are O((ED,1)M−1),
K4,K5 are O((ED,1 + ED,2)M−1) whereas K6(k) and K7(k)
are O((ED,1)k−1), K8(k) and K9(k) correspond to O((ED,1+
ED,2)k−1) with ε(ρ) ∈ [0, 1).

In order to have a vanishing Pe(m) in the first round, we set
the relations of the energies as EC,1 =

ED,2
2(1−

√
λ)2

and ED,2 =

(2 − µ)ED,1 where µ is an arbitrary constant satisfying µ ∈
(0, 2), so that the average energy used by the protocol

E ≤ ED,1 + EC,1Pe(m) + ED,2[Pe(m)(1− Pr(Ee→c,1))

+ (1− Pe(m)) Pr(Ec→e,1)] (15)

can be made arbitrarily close to ED,1 guaranteed by vanishing
union error probability. Here, Pr(Ec→e,1) represents the total
mis-detected acknowledged error probability in the first round
which is equivalent to exp{−λEC,1N0

}. When the condition of

2B+1

√
1−ρ2

ρ+
√

1−ρ2
< θ is satisfied, we obtain the asymptotic

bound with respect to B on distortion as

D ≤ α(ED,1, ρ,M) exp

{
−ED,1(1− µ/3)

N0

}
+ β(ED,1, ρ,M)

(16)
In order to emphasize the significant term, it is isolated in
the above given bound. Here, α and β denote functions of
ED,1, ρ and M which arose from the terms K3, K5 and

corresponding distortion in (14) and from the terms K7,
K9 and corresponding distortions with lower order terms,
respectively. Clearly, k does not play a role on the exponential
behaviour of the bound (16). Note that in (14) k equals to
M for the terms with the factors from K2 to K5. Because
of the quantizer construction, 1 − ρ2 is considered as in the
same order of 2−2B and consequently should be chosen to
behave as exp

{
−ED,1N0

}
. As a result we obtain the same

collaboration effect as in (7) albeit with a factor 2 gap in
energy efficiency. The latter may be due to simplifying steps
in the outer-bound. Furthermore, we notice that condition
for exploiting collaboration between the sources is based on
relationship between the observation error variance (1 − ρ2)
and the aggregate energy as opposed to the individual source
energies.

IV. CONCLUSION

This paper covered an adaptation of two-way low-latency
feedback protocol for minimal distortion studied in [2] and [3]
to a large network with multiple sources. Specifically, we have
provided lower-bounds on the reconstruction error of arbitrary
multi-sensor transmission strategies which can serve in a sub-
sequent step to determine the optimality of particular multiple-
accces and encoding strategies. To this end, we have proposed
one such collaborative strategy exploiting correlation between
sensors. Asymptotic upper-bounds on the reconstruction error
have been provided for the proposed protocol. Both the upper
and lower-bounds show that collaboration can be achieved
through energy accumulation and bring to light a trade-off in
source and channel SNR allowing it to occur. Future work will
consider more general distributed sensing and transmission
strategies for multi-dimensional sources aiming at energy-
efficiency and low-latency protocols as well as tightening the
lower-bounds (6).
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VI. APPENDIX

For the first expansion of I(U;Y|{Vj}S) based on the
sources, we have two different derivations for the two dis-
tribution types.

I(U;Y|{Vj}S) = h(U|{Vj}S)− h(U|Y, {Vj}S)

= −I(U; {Vj}S) + h(U)− h(U− Û|Y, {Vj}S)

≥ −h({Vj}S) + h({Vj}S |U) + h(U)− h(U− Û). (17)



D ≤ K1Dq +De,M

(
K2

√
1− ρ2

ρ+
√

1− ρ2
e(B+1) ln 2 +K3ε(ρ)

)M−1

e(B−2M+2) ln 2−
ED,1+2EC,1(

√
λ−1)2

2N0

+De,M

(
K4

√
1− ρ2

ρ+
√

1− ρ2
e(B+1) ln 2 +K5ε(ρ)

)M−1

e(B−4M+2) ln 2−
ED,1+ED,2

2N0

+

M−1∑
k=1

De,k

(
M

k

)(
K6(k)

√
1− ρ2

ρ+
√

1− ρ2
e(B+1) ln 2 +K7(k)ε(ρ)

)k
e−

k(ED,1+2EC,1(
√
λ−1)2)

2MN0

+

M−1∑
k=1

De,k

(
M

k

)(
K8(k)

√
1− ρ2

ρ+
√

1− ρ2
e(B+1) ln 2 +K9(k)ε(ρ)

)k
e−

k(ED,1+ED,2)

2MN0 (14)

For the case where U and whole set of Uj’s are uniformly
distributed, the above expansion (17) becomes

I(U;Y|{Vj}S) ≥ −|S|K
2

log 2πe+ |S|K log(2
√

3(1− ρ2))

+K log 2
√

3− K

2
log(2πeD)

≥ K log

(
(2
√

3)|S|+1(1− ρ2)
|S|
2

(2πe)
|S|+1

2 D1/2

)
(18)

whereas the same expansion becomes

I(U;Y|{Vj}S) ≥ −|S|K
2

log(2πe)

+
|S|K

2
log(1− ρ2)2πe+

K

2
log(2πe)− K

2
log(2πeD)

=
K

2
log

(
(1− ρ2)|S|

D

)
(19)

for the Gaussian case where |S| denotes the size of the set
Vj and using the following bound on entropy h(U− Û)

h(U− Û) ≤
K∑
j=1

h(Uj − Ûj) ≤
K

2
log

(
2πe

K

K∑
j=1

E[(Uj − Ûj)2]

)
≤ K log

(√
2πeD

)
. (20)

The second expansion of (17) based on the output signals is
given by

I(U;Y|{Vj}S)
(a)

≤ I(U;Y|{Vj}S ,Φ)

= h(Y|{Vj}S ,Φ)− h(Y|U, {Vj}S ,Φ)

=

N∑
i=1

h(Yi|Y i−1, {Vj}S ,Φ)−
N∑
i=1

h(Yi|Y i−1, {Vj}S ,U,Φ)

≤
N∑
i=1

h(Yi|Y i−1, {Vj}S , {Xje
iφj}S ,Φ)

−
N∑
i=1

h(Yi|Y i−1,U, {Xje
iφj}S , {Xje

iφj}Sc ,Φ)

=

N∑
i=1

h(Yi −
∑
j∈S

Xi,je
iφi,j |Y i−1, {Vj}S , {Xje

iφj}S ,Φ)

−
N∑
i=1

h(Yi −
∑
j∈S

Xi,je
iφi,j −

∑
j∈Sc

Xi,je
iφi,j |Y i−1,U,

{Xje
iφj}S , {Xje

iφj}Sc ,Φ)

=

N∑
i=1

h(
∑
j∈Sc

Xi,je
iφi,j + Zi|Y i−1, {Vj}S , {Xje

iφj}S ,Φ)

−
N∑
i=1

h(Zi)

≤
N∑
i=1

log

(
1 +

∑
j∈Sc Ei,j
N0

)

≤ N log

(
1 +

∑N
i=1

∑
j∈Sc Ej

NN0

)

≤ N log

(
1 +

K
∑
j∈Sc Ej
NN0

)
. (21)

where (a) is a result of the fact that U and Φ are independent.
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