

Optimizing Vehicular Communication Resources: From Vehicular Connectivity To Infrastructure Deployment

Jérôme Härri - EURECOM Workshop on Wireless Vehicular Communications Halmstad University, Sweden, November 9th 2011

EURECOM: A Graduate School and a Research Center in Communication Systems

A network of prestigious academic partners:

Telecom ParisTech, EPFL (Lausanne), EPFZ (Zurich), Politecnico di Torino, Aalto University Helsinki, Technische Universität München, Norwegian University of Science and Technology (NTNU)

Multinational industrial partners:

Swisscom, CISCO, ST-Ericsson, BMW, Symantec …

A multilingual environment:

- 100 % classes in English
- 70 % foreign professors
- 60 % foreign students

Organization:

- Students:
 - 160 Masters
 - 75 PhDs
- Around 150 staff members
 - Faculty: 23
 - Research staff: 26
 - PhD students: 75
 - Teaching support staff: 8
 - Administration: 10
- 24 visiting scientists
- A 10,2 M€ budget in 2010

THE MOBILE COMMUNICATIONS DEPARTMENT

Scope

- Mobile Networks (radio access and infrastructure)
- Local and cellular networks
- Phy and Protocols

Themes

- Signal processing
- Information theory
- Wireless protocols
- Wireless vehicular networks and ITS
- Software radio platforms (including RF)

People:

- 10 Faculty
- 15 Engineers and Postdocs
- > 30 Doctoral Students (on site)

J. Härri, From Vehicular Connectivity to Infrastructure Deployment Workshop on Vehicular Communication, Halmstad University

ITS Activities in EURECOM

- EURECOM is involved in two 'religions' for Intelligent Transportation Networks (but we are not exclusive)
 - > LTE-A
 - DSRC

Tools (Open-source):

- Large scale simulation platforms with iTETRIS
- FOT and Emulation with OpenAir Interface

Involved in National and European Projects for ITS

- National:
 - SCORE@F / VELCRI / CORRIDOR / SYSTUF
- European:
 - LOLA/EVITA/iTETRIS

Intelligent Transport Networks in EURECOM

- LTE-A for vehicular communications
- DSRC-802.11p: 1-hop Broadcast/Multicast / congestion management
- Infrastructure deployment Optimizations
- Machine-2-Machine communications
- IPv6 Mobility Proxi-MIPv6

More Information:

its@eurecom.fr

Jerome.Haerri@eurecom.fr

ITS Team:

- Cross-department team
- MM Department:
 - Prof. Benoît Huet
- RS Department:
 - Prof. Yves Roudier
- CM Department:
 - Prof. Bonnet
 - Prof. Knopp
 - Prof. Härri
 - Prof. Nikaein
 - Prof, Kaltenberger
 - Prof. Spyropoulos
 - M. Wetterwald

Electro-Mobility and Smart Grids

Distributing the Charging station

- In Points of Interests
- As function of mobility

Designing the communication networks

- > At the charging stations
 - Multiple interfaces
- Between charging stations

Objective Function of electromobility

- Optimization of Energy
 - quick- load vs. long charge
 - Shortest path vs. least energy demanding path
 - Selling energy vs. using it

Urban Sensing and Vehicular Clouds

EURECOM

Evolution Phases in Vehicular Communications for ITS

Safe Traffic

- According to the American Automotive Association study [1], the cost for the US economy of traffic accident is 160 billion \$ yearly
 - Approx \$1000 per citizen per year

[1] Car Accidents In The US Cost \$164.2 billion, 2008]

Traffic Fatalities in the US between 1996-2006

Approx 40,000 human beings per year, the size of a city like Grasse !

[Source: National Transportation Statistics, Bureau of Transportation Statistics]

Sustainable Traffic

- Traffic Congestion is estimated to cost approximately the UK economy 15 billion €^[1] yearly
- UK department of Transportation estimates an increase in congestion in 2010 of 25% over the value of 2000^[1].
- Reducing traffic congestion could also reduce C0₂ emissions by up to 10% over 10 years^[1]. [1] Feasibility Study of road pricing in the UK, UK department of transportation, 2004]

Example of successful regulation of Traffic Congestion: London^[2]

- 15% reduction in traffic
- > 30% reduction in congestion
- 12% average speed increase

[2] London's Congestion Charge, Institute for Fiscal Studies , 2003]

Traffic Efficiency is therefore also a promising application !

The world of Vehicular Wireless Networks

Not sounding too dramatic:

Have we asked ourselves the right questions?

What will come next ?

- p 10

Multiple Antenna Techniques and Testing

Impact of Antenna Placement on vehicles:

Unidirectional Radiation:

Cumulative percentage packet error:

Source: S. Kaul et al., "Effect of Antenna Placement and Diversity on Vehicular Network Communications", ICC 2010

Multiple Antenna Techniques and Testing

- Multi-standard & multi-mode functionality
- Integration of multiple antennas with limited form factors
- Integrated into a dielectric housing

J. Härri, From Vehicular Connectivity to Infrastructure Deployment Workshop on Vehicular Communication, Halmstad University

Application(s)-centric: Information Relevance

Information relevance communication

- Information does not have the same worth/relevance in space or time
- Not adapted to application requirements
- Channel Congestion: cannot provide maximal freshness and coverage everywhere
 - But could adjust transmit profiles to provide it where and when needed

Example: Cooperative Application-based TX Rate control

[Source: Fatma Hrizi, Jérôme Härri, Christian Bonnet, " Every Bit Counts: Tracking and Predicting Awareness"]

Example: Cooperative Application-based TX Power control

-p13

Static and Mobile Radio Obstacles

Source: T. Mangel et al., "Vehicular Safety Communication at Intersections: Buildings, Non-Line-Of-Sight and Representative Scenarios", IEEE WONS 201

Not all vehicles are to be considered similar

11/11/2011 -

Connectivity Characteristics in Vehicular Networks – Different Worlds

Vehicular Communications have different Connectivity characteristics

Traffic Efficiency / Infotainement

Mostly Unicast

Link Connectivity

Bursty Traffic

Throughput Oriented

Delay 'tolerant'

Large-scale

Infrastructure Required

Traffic Safety

Mostly Broadcast P-Connectivity Mostly Periodic Traffic Message Oriented Delay Centric Local Scale

Limited Infrastructure Requirements

Connectivity Analysis

Sparse Initial Vehicular Network:

- Network strongly disconnected
 - Requires infrastructure assistance

Mature Vehicular Network:

- Network is clustered
 - Requires partial infrastructure assistance

Common Aspect:

- Deployment not based on coverage
 - Rather on connectivity context
 Mobility, degree, NLOS..

Trade-off

- Optimizing connectivity: customer satisfied
- Minimizing infrastructure size: provider satisfied

M. Fiore, J. Härri, The Networking Shape of Vehicular Mobility, ACM Mobihoc 2008, Hong Kong, 2008

P. Cataldi, J. Härri, User/Operator Utility-Based Infrastructure Deployment Strategies for Vehicular Networks, IEEE WiVEC 2011, San Francisco, 2011

CONNECTIVITY-BASED INFRASTRUCTURE DEPLOYMENT

P. Cataldi, J. Härri, User/Operator Utility-Based Infrastructure Deployment Strategies for Vehicular Networks, IEEE WiVEC 2011, San Francisco, 2011

- p 17

Infrastructure Connectivity vs- Coverage

Coverage Intensity Function

- Generic Function
- In this work:
 - WINNER B1
 - Path loss + Shadow Fading + Fast Fading
 - Considering LOS/NLOS

Connectivity vs. Coverage

- p 18

Over-estimation of Coverage

Circular homogeneous coverage-based approach

- Does not reflect directional coverage
- Over-estimates coverage, also where not possible/necessary
- Convex Polygon-based coveragebased approach
 - Reflects directional coverage
 - Still over-estimates coverage, also where not possible/necessary

Non-convex polygon-based coveragebased approach

- Reflects directional coverage
- Manages to estimate coverage with more granularity

Infrastructure Optimization Algorithm

Maximum Benefit Problem: Given a collection of N sets $S = \{s_1, s_2, ..., s_N\}$, where each set is a subset of a given set of ground elements $E = \{e1, e2, ..., eM\}$, each of those associated with a benefit value w(ej), select the k sets that maximize the benefit of the union set U.

Known NP-Hard Problem

- Solved using a Greedy Formulation
 - Iterates over E to find e_x maximizing the benefit of U

Two Benefit Functions:

Connectivity

J. Härri, From Vehicular Connectivity to Infrastructure Deployment Workshop on Vehicular Communication, Halmstad University

Simulation Scenario

Parameters	Values
Map [in SUMO] Urban	Urban (Costa-Pasubio in Bologna)
Simulation Time	300 s (post initialization)
beacon frequency	2 Hz
beacon size	132 bytes
RSU transmission power	20 dBm
RSU height	6 m
Fading model [in ns3]	WINNER II B1
MAC [in ns3]	802.11p CCH

J. Härri, From Vehicular Connectivity to Infrastructure Deployment Workshop on Vehicular Communication, Halmstad University

Impact of the optimal RSU selection

17 RSU; 81% Benefit

55 RSU; 100% Benefit

31 RSUs; 95% Benefit

11/11/2011 -

J. Härri, From Vehicular Connectivity to Infrastructure Deployment Workshop on Vehicular Communication, Halmstad University

- p 22

Optimized Coverage

Coverage Optimization

User Utility

J. Härri, From Vehicular Connectivity to Infrastructure Deployment Workshop on Vehicular Communication, Halmstad University

Provider Satisfaction and Joint Optimization

11/11/2011 -

Future (Current) Work

Multi-hop Connectivity

- Multi-hop connectivity creates giant clusters and allows data percolations
 - Changes the objective of RSUs
 - Connectivity vs. Capacity

Heterogeneous Infrastructures (RSU, LTE Micro/Femto)

- The benefit of one extra infrastructure depends on its capacity
- > Their order in the optimization

Application-driven Optimization

The benefit depends on the requirements of the applications

Different Optima

Developed a framework for Infrastructure node deployment in vehicular networks

- Considers generic functions: extensible to heterogeneous networks and other metrics
- Non-convex polygon coverage representation
- Joint optimization of user and operator's satisfactions

In this talk:

- Considered deployment of RSU in calibrated urban area
- Illustrated the trade-off to be considered from deployment costs and locations
- Optimized satisfaction based on directional connectivity, rather circular constant coverage

Further Information:

P. Cataldi, J. Härri, User/Operator Utility-Based Infrastructure Deployment Strategies for Vehicular Networks, IEEE WiVEC 2011, San Francisco, 2011

Thank you for your attention...

But, do not leave...more to come...

Jerome.Haerri@eurecom.fr

