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Abstract—In this paper, we investigate user grouping for
cooperative scheduling in a two-cell network. When the number
of transmitters grows large, the complexity of the Hungarian
algorithm optimum for user pairing becomes unaffordable in
real-time systems. We consider user grouping algorithms maxi-
mizing the network sum rate in cells with a massive number of
terminals and/or sensors. We provide a suboptimal user group-
ing algorithm which substantially reduces complexity compared
to the optimum Hungarian algorithm with negligible capacity
degradation. Surprisingly, the proposed algorithm outperforms
the greedy algorithm with a considerable lower complexity.

I. INTRODUCTION

Cellular networks operating with universal frequency reuse,

such as the 3GPP UTRAN Long Term Evolution Advanced

(LTE-A), can potentially support very high throughput but

suffer from considerable inter-cell interference levels. Then,

interference management is fundamental in the design of

high throughput and energy efficient networks when operating

with universal frequency reuse. In the literature, cooperative

scheduling schemes have been proposed as a key approach

for inter-cell interference coordination (ICIC). The benefits

of joint scheduling and power control schemes for downlink

scenarios with multiple cells and single resource block (RB)

have been analyzed in [1]. Important properties, such as the

upper bound and lower bound of global system capacity have

been derived in the asymptotic conditions when the number

of users grows large and the system can widely benefit from

user diversity.

LTE-A adopts this scheduling policy and proposes three

regular scheduling schemes: persistent, semi-persistent, and

dynamic scheduling. The latter two approaches are cooperative

[2] and their scheduling procedures aim at optimizing a given

global metric, e.g. total capacity, jointly over all cells by

making use of a limited amount of exchanged information

among evolved nodeBs (eNBs). For uplink, eNBs exchange re-

ceived signal strengths (RSS) and interference signal strengths

(ISS) and the supported cooperative scheduling can achieve

better global capacity, fairness, and QoS than non-cooperative

scheduling. In [3], a multiuser multiple transmit multiple

receive antennas (MU-MIMO) single-cell system is consid-

ered and simultaneous two-user transmissions are optimally

scheduled based on the Hungarian algorithm [4]. In [5], [6], an

LTE single-cell frequency-selective fading channel in uplink

is considered. Two simultaneous SC-FDMA transmissions

are possible and equalization is performed at the receiver

side. Substantial gains are shown (e.g. by up to 6 dB) by

joint user grouping and frequency-domain resource allocation

compared to random user grouping and frequency-domain

resource allocation [6]. A user pairing algorithm satisfying

proportional fairness quality of service constraints and based

on the Edmond’s algorithm has been proposed in [7] for single-

cell system. A centralized proportional fair uplink scheduling

scheme for a multi-cell LTE network with single RB has

been proposed in [8]. Two frequency and power sub-optimal

allocation schemes for the scenario with multiple cells and

multiple RBs in LTE uplink are proposed in [9].

Optimization problems for cooperative scheduling are in

general discrete and often have non-polynomial (NP) complex-

ity. This makes cooperative scheduling not feasible on a real

system when the number of active UEs becomes very large

as in the case of sensors and machine-type communications

[10], shortly referred as user equipment (UE) communications.

In this contribution, we design algorithms for cooperative

scheduling in the uplink of a two-cell LTE-A system when

a massive number of UEs populates the cells and the UEs are

uniformly distributed in the cell. We utilize the knowledge of

the statistical distribution of the RSS and ISS at both eNBs

to reduce the complexity of the scheduling algorithm. We

propose two scheduling algorithms that achieve near-optimum

performance with a lower complexity than the Hungarian

algorithm. The key idea of the proposed algorithms consists in

partitioning the UEs of each cell in subsets and establishing a

bijective mapping between subsets of different cells. Then, an

assignment algorithm is applied to pair UEs belonging to the

subsystems generated by partitioning and bijection. The initial

partition step allows to keep the dimension of the assignment

problem reasonably low and reduce drastically the scheduling

complexity. The algorithm dubbed partitioning and greedy

grouping, surprisingly, achieves higher performance than the

greedy algorithm with a significantly lower complexity. Our

analysis shows that, for the proposed system model, coor-

dinated scheduling does not benefit from user diversity, the

average performance does not increase with the number of

UEs in the system, and the greedy algorithm does not appear to

be asymptotically optimum. Technically, this is due to the fact

that the random variables that define our problem are strongly

correlated.

The reminder of the paper is organized as follows. Section

II presents the system model and problem statement. In

section III, scheduling statistical patterns based on Hungarian

algorithms is derived and two heuristic cooperative scheduling

algorithms are proposed. Section VI presents the numerical

results of the proposed algorithms and compares them with
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exiting algorithms. Section V provides concluding remarks and

future directions.

II. SYSTEM MODEL AND PROBLEM DESCRIPTION

In this paper, we consider two adjacent eNBs with a massive

number of UEs in uplink communications. Each UE commu-

nicates only with the nearest eNB, forming a star topology

within hexagonal cells. When a UE transmits to its eNB,

the overhearing adjacent eNB receives this signal as inter-cell

interference.

We assume that each cell is populated by uniformly dis-

tributed UEs. The channel states for all UEs to both eNBs

are static. The two eNBs are denoted by eNBK and eNBL,

while the UEs in the two cells are denoted by UEi
K , for

i = 1, . . . , NK , and UE
j
L, for j = 1, . . . , NL, respectively.

The channel attenuation from UEi
K to eNBK and eNBL

are denoted by giK and hi
K . Similarly, channel attenuation

from UE
j
L to eNBL and eNBK are denoted by g

j
L and h

j
L.

The attenuation coefficients gix, h
i
x, with x ∈ {K,L}, follow

a log distance pathloss model with no fading, i.e., if d is

the distance between a UE and a eNB, the corresponding

attenuation coefficient is given by d−α, where α is the pathloss

exponent ranging typically from 2 to 4. Two UEs, one in

each cell, may transmit simultaneously to the respective eNBs.

If UEi
K and UE

j
L transmit simultaneously, their contributed

spectral efficiency is given by rKij = log(1 +
Pgi

K

Ph
j

L
+σ2

)

and rLji = log(1 +
Pg

j

L

Phi
K
+σ2 ), respectively, where P is the

transmitting power and σ2 is the variance of the additive white

Gaussian noise (AWGN).

Let N = min(NK , NL). We divide the available time

resource in max(NK , NL) equal time slots and consider a

cooperative scheduling that assigns a slot to each of |NK−NL|
UEs in the cell with higher number of transmitters. For the

remaining UEs, the scheduler assigns a single slot to two

UEs, one in each cell. We assume that the selection of the

|NK − NL| UEs transmitting alone is arbitrarily done by

the eNB according to priority or quality of service criteria.

Therefore, in the following, we focus on the user grouping

problem of two sets of N UEs over N time slots. Let us

denote by π a permutation of the set N = {1, ..., N} and by

πi its ith elements. Without loss of generality, a scheduling

can be represented by a permutation π and the time slot i

is assigned to UEK
i and UEL

πi
, simultaneously. The average

spectral efficiency of the two cell network corresponding to

permutation π is

γ(π) =
1

N

∑

i=1,...,N

rKi,πi
+ rLπi,i

. (1)

Let Π be the set of all possible permutations, an optimal

cooperative scheduling allocation maximizes the average spec-

tral efficiency of the system, i.e., it is the permutation π∗ that

maximizes γ(π).
This optimization problem reduces to the classical problem

of assignment that can be solved optimally by the Hungarian

algorithm [4] with polynomial complexity in the case of

two-cell system. More specifically, it can be solved with a

complexity order O(N3). A lower complexity algorithm is

provided by the greedy algorithm, which has a complexity in

the order of O(N2 logN). Although approaches with polyno-

mial complexities are available, their application to cells with

massive number of active UEs becomes rapidly unaffordable.

This motivates a design of low complexity algorithms tailored

to the peculiarities of the system at hand.

III. CELL PARTITIONING AND GROUPING SCHEME

To unveil statistical properties of optimum scheduling in

systems with a massive number of UEs we applied the

Hungarian method [4] to a two-cell system with a massive

number of UEs randomly generated. Fig. 1 shows the obtained

pairing for two-cell system, each of them populated by 1000

UEs, under the assumptions of a log distance pathloss model

without fading for the channel attenuations, and equal transmit

powers for all the UEs. A UE of a certain color in cell L is

paired with some user of the same color in cell K. Fig. 1 is

plotted such that UEs in cell L have gradually varying colors

from center to edge. It can be seen that users with higher RSS

in cell K, i.e. closer to eNBK and with greater gik, tend to be

paired with users with small ISS in cell L, i.e. farther from

eNBL and with lower h
j
L. A mirroring figure can be obtained

when the coloring is driven by users in cell K. This shows

that the statistical pattern is symmetric between the two cells.

Additionally, if we only consider the capacity of UEs in cell

L, the statistic pattern is close to the one shown in Fig. 1,

except some blur for edge UEs.
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Fig. 1: Statistical pattern using Hungarian algorithm.

These observations suggest a low complexity algorithm

based on the ordering of RSS and ISS within a cell. Before

detailing our cell partitioning and grouping schemes, we show

an interesting property of user grouping based on the ordering

of RSS and ISS within a cell. Let us focus on cell K. We call

quick pairing in cell K the algorithm that sorts UEs in cell K

in descending order of giK and UEs in cell L in ascending order

of h
j
L and, then, pairs UEs with identical ordering index. This

algorithm provides the optimum pairing when the objective

function to be maximized is the spectral efficiency of cell K

as shown in the following theorem.
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Theorem 1. The quick pairing algorithm maximizes the ob-

jective function
1

N

∑N

i=1 r
K
i,πi

over all possible permutations

π ∈ Π.
Proof: Let us observe that, for any two slots i and j, if giK ≥
g
j
K and hi

L ≤ h
j
L, it results

(Phi
L + σ2 + PgiK)(Ph

j
L + σ2 + Pg

j
K)

=(Phi
L + σ2 + Pg

j
K + PgiK − Pg

j
K)

× (Ph
j
L + σ2 + PgiK + Pg

j
K − PgiK)

=(Phi
L + σ2 + Pg

j
K)(Ph

j
L + σ2 + PgiK)

+ (Phi
L + σ2 + Pg

j
K)(Pg

j
K − PgiK)

+ (Ph
j
L + σ2 + PgiK)(PgiK − Pg

j
K)

+ (Pg
j
K − PgiK)(PgiK − Pg

j
K)

=(Phi
L + σ2 + Pg

j
K)(Ph

j
L + σ2 + PgiK)

+ P 2(giK − g
j
K)(hj

L − hi
L)

≥(Phi
L + σ2 + Pg

j
K)(Ph

j
L + σ2 + PgiK). (2)

Let us assume that the UEs in cell K are ordered in

decreasing order of giK . Let π be any permutation of UEs in

cell L. We focus on any arbitrary pair i, j of time slots with

i < j and hi
L ≤ h

j
L. Then, the total capacity corresponding

to the scheduling induced by permutation π and the total

capacity corresponding to the permutation π+ obtained from

π switching UEi
L and UE

j
L are related by

rπ =

N
∑

n=1

rKn,πn

=
N
∑

n=1

log(1 +
PgnK

Phπn

L + σ2
)

=
∑

n=1,...,N
n 6=i,j

log(1 +
PgnK

Phπn

L + σ2
)+

log

[

(Phπi

L + σ2 + PgiK)(Ph
πj

L + σ2 + Pg
j
K)

(Phπi

L + σ2)(Ph
πj

L + σ2)

]

≤
∑

n=1,...,N
n 6=i,j

log(1 +
PgnK

Phπn

L + σ2
)+

log

[

(Phπi

L + σ2 + Pg
j
K)(Ph

πj

L + σ2 + PgiK)

(Phπi

L + σ2)(Ph
πj

L + σ2)

]

=rπ+ ,

where rπ and rπ+ denote the total capacities of cell K

corresponding to the scheduling π and π+ respectively, and

the inequality is a straightforward consequence of (2).

Then, by applying repeatedly this swapping with the above

mentioned criterion, we obtain the quick pairing as optimum

scheduling policy.

Although the quick pairing is optimum when the objective

function to be optimized is the spectral efficiency of a single

cell, it is not an optimal solution for maximizing the total

capacity of the two cells. Therefore, based on Theorem 1, we

propose the following heuristic scheme to partition each cell

into n subsets of equal size and pair them:

• Sort the UEs in cell K in a descending order of RSS and

the UEs in cell L in an ascending order of ISS;

• Partition the N users in each cell into n subsets such that

the ith subset contains users in the order positions from
(i−1)N

n
+ 1 to

(i−1)N
n

+ N
n
;

• Consider the subsystem consisting of the ith subsets

of cell K and cell L, and apply any standard pairing

algorithm to it.

The proposed partitioning allows to keep the dimension of

the assignment problem reasonably low hence reduce drasti-

cally the scheduling complexity. We propose the application

of the Hungarian or the greedy algorithm to each subsystem.

Hence, we obtain two algorithms that we dub partitioning

and Hungarian grouping and partitioning and greedy group-

ing, respectively. The preliminary partitioning and subsequent

grouping decreases the time complexity of the algorithms from

O(N3) to O(N
3

n2 ) when Hungarian grouping is performed, and

from O(N2 logN) to O(N
2

n
log N

n
) when greedy grouping is

applied.

Other grouping algorithms can be applied within a subsys-

tem as long as their objective function is the total capacity of

the two-cell system.

IV. NUMERICAL PERFORMANCE ANALYSIS

In this section we assess the performance of the proposed

algorithms in terms of both attained average total capacity

and complexity by numerical simulations. The heuristic parti-

tioning and grouping algorithms are compared to cooperative

scheduling based on Hungarian algorithm and greedy algo-

rithm.

Since the class of “greedy/myopic” algorithms is a large

group of suboptimum approaches aiming at solving com-

binational optimization problems based on the idea to se-

lect the locally best choice in each decision stage without

considering overall global optimality we briefly describe the

greedy algorithm adopted in our simulations. Let us introduce

a matrix R
(N) with components R

(N)
ij = rKij + rLji. The

greedy algorithm consists of N steps. At step ℓ, it selects

the maximum entry from the matrix R
(N−ℓ+1) and constructs

a matrix R
(N−ℓ) obtained from R

(N−ℓ+1) by removing the

column and the row corresponding to the selected entries.

A first group of simulations is performed assuming α = 2,
generating randomly, according to a uniform distribution, a

number of users N varying from 100 to 500, and fixing the

number of subsets in the partition equal to 10. The results

are averaged over 100 experiments. Fig. 2 shows the average

capacity1 of the two-cell system as a function of UEs in

each cell for the Hungarian and greedy algorithms, for the

proposed algorithms and for the quick pairing. Random pairing

1Note that the optimization does not change if we consider average capacity
instead of total capacity. However, the former metrics enables an insightful
graphical comparison of systems with different number of UEs.
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Fig. 2: Comparison of optimal and suboptimal algorithms:

average system capacity versus number of UEs per cell.
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Fig. 3: Comparison of optimal and suboptimal algorithms:

processing time versus number of UEs per cell.

is adopted as benchmark to assess the benefits of pairing. In-

terestingly, the average capacity for a sufficiently large number

of UEs stays constant and the user diversity does not enable

any capacity gain. We will further discuss this aspect in some

conclusive remarks in this section. Fig. 3 shows the complexity

of the investigated algorithms in terms of processing time for

increasing number of users. The comparison among the ana-

lyzed algorithms shows that any pairing algorithm outperforms

significantly a random pairing. Additionally, the two proposed

algorithms attain almost the same average system capacity.

They outperform the greedy algorithm and the quick pairing

and achieve almost the same performance as the optimum

Hungarian algorithm. The comparison in terms of complexity

changes substantially: the partitioning and greedy grouping

algorithm has a complexity significantly lower than the greedy

algorithm and the partitioning and Hungarian grouping algo-

rithm while it attains substantially better performance than the

former and the same performance as the latter. As expected, it

has higher complexity than the significantly suboptimal quick

pairing.

Let us observe that the partitioning and greedy grouping

algorithm reduces to the greedy algorithm and to the quick

pairing as the subsets in the partition is equal to 1 and to N ,

respectively. Similarly, the partitioning and Hungarian group-

ing boils down to the Hungarian and quick pairing algorithms

in analogous situations. Then, it is interesting to investigate

performance and complexity of the proposed algorithms as

the number of partition subsets varies. The numerical analysis

is presented in Figures 4 and 5 in terms of average capacity

and processing time, respectively. In contrast to the fact that

performance and complexity of the partitioning and Hungarian

grouping algorithm decreases as the number of subsets in-

creases, the performance of the partitioning and greedy group-

ing algorithm has an optimum number of partition subsets both

for the average capacity and the time processing. The two

optima are very close each other and quite high: between 30

and 50 subsets. Surprisingly, there is a region where the time

processing decreases while the performance increases. Then,

for practical implementation the number of partition subsets

needs to be optimized. An analytical performance analysis

exceeds the scope of this contribution. In fact, the state of

art on the theoretical analysis of random assignment problems

is still at its infancy to be applied to the complex setting

of the problem at hand. However, some qualitative insights

on the system are still possible. Let us consider the random

variables rKi,πi
+ rLπi,i

. Their marginal distribution matches

very accurately a gamma distribution. Figure 6 shows this

matching for a probability density function (p.d.f) obtained

in a regular hexagonal cell with edge of length 1 and α = 2.
The marginal random variable fits a Gamma distribution with

Γ(k, θ) = Γ(10.8724, 0.6508). If all the random variables had

been independent and identically distributed, the performance

of the system could have been analytically determined by

applying the results in [11] with the following conclusions:

• The asymptotic performance of optimal grouping are

given by Nθ logN + Nkθ log logN + O(N), i.e. the

average utility scales as logN and increases with the

system size. As an example, the average performance of

a random assignment problem with Γ(10.8724, 0.6508)
is around 13.7 and 16.86 for N = 100 and N = 500.
This implies that the optimization enables pairing of users

with performance in the tail of the distribution.

• The greedy algorithm is asymptotically near-optimal, i.e.

it converges asymptotically to the optimal algorithm. The

same could have been shown for the proposed algorithms.

Due to a strong correlation of the random variables that

define the assignment problem, the average performance of

the system at hand does not scale with the number of UEs

and, also for large number of users, the average performance

is close to the mean of the marginal distribution with a

considerable performance loss compared with a hypothetical

system defined by i.i.d. random variables. Additionally, the

greedy algorithm is suboptimal also in asymptotic conditions.
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average system capacity versus number of partition subsets.
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V. CONCLUSION AND FUTURE EXPERIMENTS

Two heuristic cooperative scheduling algorithms for dense

cells are provided based on the statistical scheduling pattern

for cells with a massive number of UEs. The partitioning

and greedy grouping algorithm can significantly decrease the

processing time with negligible performance degradation in

terms of capacity. Surprisingly, the proposed algorithm has

complexity significantly lower than the greedy algorithm with

significantly higher performance.

In future studies, the optimal number of partition subsets for

a fixed number of UEs in the cell should also be investigated.

In this contribution, the analysis is based on the assumption

of log distance pathloss model for the channel. More complex

models should be considered to determine if partitioning and

greedy grouping is always efficient and applicable.

Finally, a theoretical performance analysis of the random

assignment problem for correlated utilities is highly desirable

for a deep understanding of the problem at hand.

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

p
ro

b
a
b
ili

ty

joint capacity 

Fig. 6: histogram and fitted probability density function of

joint capacity

ACKNOWLEDGEMENT

This work was developed in the context of the CONECT

project - Cooperative Networking for High Capacity Transport

Architectures (www.conect-ict.eu/) and partially funded by the

European Community’s Seventh Framework Programme under

grant agreement no257616. It was also partially supported by

Agence Nationale de la Recherche, with reference ANR-09-

VERS-001.

REFERENCES

[1] D. Gesbert, S. G. Kiani, A. Gjendemsjo and G. Oien, Adaptation,

coordination, and distributed resource allocation in interference-limited

wireless networks, Proceedings of the IEEE, vol. 95, no. 12, pp. 2393 –
2409, Dec. 2007.

[2] K. Ingemann, Petersen et al., An overview of downlink radio resource

management for UTRAN long-term evolution, IEEE Communication
Magazine, vol. 47, no. 7, pp, 86 – 93, July 2009

[3] Emanuele Viterbo and Ari Hottinen, Optimal user pairing for multiuser
MIMO, in Proc. ISSSTA, 2008, pp. 25-28.

[4] D. Jungnickel, The Hungarian algorithm, Chapter 14, Graphs, Networks
and Algorithms, Springer-Verlag Berlin Heidelberg, 2008.

[5] M. Ruder, U.L. Dang, and W. Gerstacker User Pairing for Multiuser SC-

FDMA Transmission over Virtual MIMO ISI Channels In Proceedings of
IEEE Global Communications Conference (Globecom 2009), Honolulu,
HI, November/December 2009

[6] M.A. Ruder, Daiyong Ding, Uyen Ly Dang, W.H. Gerstacker, Combined

User Pairing and Spectrum Allocation for Multiuser SC-FDMA Trans-

mission, 2011 IEEE International Conference on Communications (ICC),
5-9 June 2011 pp. 1-6.

[7] Nikunj Aggarwal, R. Saravana Manickam, and C. Siva Ram Murthy,
Cross-Layer User Pairing for CSM in IEEE 802.16 Networks, IEEE
Communications Letters, Vol. 15, n.5, pp. 515-517, May 2011.

[8] P. Frank, A. Muller, H. Droste and J. Speidel, Cooperative interference-

aware joint scheduling for the 3GPP LTE uplink, in Proc. PIMRC, Sept.
2010, pp. 2216-2221.

[9] M. Jalloul, A. M. El-Hajj and Z. Dawy, Uplink interference coordina-

tion/avoidance in LTE systems, in Proc. NGMAST, July 2010, pp. 125
-130.

[10] 3rd Generation Partnership Project; 3GPP TR 23.888 v1.6.1, System

improvements for Machine-Type Communications (MTC), Technical Spec-
ification Group Radio Access Network, Evolved Universal Terrestrial
Radio Access Network (E-UTRAN), Release 11, 2012.

[11] W. Szpankowski, Combinatorial optimization through order statistics,
Second Annual. International Symposium on Algorithms,Taiwan, 1991.


