
Enabling on-the-fly Video Shot Detection on YouTube

Thomas Steiner
Google Germany GmbH

ABC-Str. 19
20354 Hamburg, Germany
tomac@google.com

Ruben Verborgh
Ghent University – IBBT, ELIS

Multimedia Lab
9050 Ghent, Belgium

ruben.verborgh@ugent.be

Joaquim Gabarró Vallés
Universitat Politècnica

de Catalunya
08034 Barcelona, Spain
gabarro@lsi.upc.edu

Michael Hausenblas
DERI, NUI Galway
IDA Business Park

Lower Dangan Galway, Ireland
michael.hausenblas@deri.org

Raphaël Troncy
EURECOM

2229 route des crêtes, BP 193
Sophia Antipolis, France

raphael.troncy@eurecom.fr

Rik Van de Walle
Ghent University – IBBT, ELIS

Multimedia Lab
9050 Ghent, Belgium

rik.vandewalle@ugent.be

ABSTRACT
Video shot detection is the processor-intensive task of split-
ting a video into continuous shots, with hard or soft cuts as
the boundaries. In this paper, we present a client-side on-
the-fly approach to this challenge based on modern HTML5-
enabled Web APIs. We show how video shot detection can
be seamlessly embedded into video platforms like YouTube
using browser extensions. Once a video has been split into
shots, shot-based video navigation gets enabled and more
fine-grained playing statistics can be created.

Categories and Subject Descriptors
I.2.10 [Vision and Scene Understanding]: Video anal-
ysis; H.5.1 [Multimedia Information Systems]: Video
(e.g., tape, disk, DVI)

General Terms
Algorithms

Keywords
Shot detection, shot boundary detection, video processing

1. INTRODUCTION
Official press statistics [12] from YouTube, one of the

biggest online video platforms, state that more than 13 mil-
lion hours of video were uploaded during 2010, and that 48
hours of video are uploaded every single minute. Given this
huge amount of video content, it becomes evident that ad-
vanced search techniques are necessary in order to retrieve
the few needles from the giant haystack. Closed captions al-
low for keyword-based in-video search, a feature announced
in 2008 [4]. Searching YouTube for a phrase like “that’s

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright is held by the author/owner(s).
WWW2012 Developer Track, April 18–20, 2012, Lyon, France..

a tremendous gift”, a caption from Randy Pausch’s famous
last lecture Achieving Your Childhood Dreams1, reveals the
video of his lecture. If no closed captions are available, nor
can be automatically generated, keyword-based search is still
available over tags, video descriptions, and titles. Presented
with a potentially long list of results, preview thumbnails
based on video still frames help users decide on the most
promising result. YouTube uses an unpublished computer
vision-based algorithm for the generation of smart thumb-
nails on YouTube and lets video owners choose one out of
three automatically suggested thumbnails.

In this paper, we introduce on-the-fly shot detection for
YouTube videos as a third means besides keyword-based
search and thumbnail preview for deciding on a video from
the haystack. As a user starts watching a video, we detect
shots in the video by visually analyzing its content. We do
this with the help of a browser extension, i.e., the whole
process runs dynamically on the client-side, using modern
HTML5 JavaScript APIs of the <video> and <canvas> el-
ements [8]. As soon as the shots have been detected, we offer
the user the choice to quickly jump into a specific shot by
clicking on a representative still frame. Figure 1 shows the
seamless integration of the detected shots into the YouTube
website enabled by the browser extension. The main con-
tributions of this paper are the browser extension itself and
improved video navigability by shot navigation. A screen-
cast2 and demo3 of our approach are available.

2. RELATED WORK
Video fragments consist of shots, which are sequences

of consecutive frames from a single viewpoint, represent-
ing a continuous action in time and space. The topic of
shot boundary detection has already been described exten-
sively in literature. While some specific issues still remain
(notably gradual transitions and false positives due to large
movement or illumination changes), the problem is consid-
ered resolved for many cases [6, 13]. The contribution of
our approach is that it is entirely Web-based and on-the-fly,
which introduces interesting new challenges that traditional
approaches do not have to cope with. Highest shot detection

1Last Lecture: http://bit.ly/pausch-last-lecture
2Screencast: http://bit.ly/filmstrip
3Demo: http://bit.ly/filmstrip-debug

http://bit.ly/pausch-last-lecture
http://bit.ly/filmstrip
http://bit.ly/filmstrip-debug

Figure 1: Screenshot of the browser extension run-
ning on YouTube, showing different detected shots.

accuracy can be reached with special command line tools,
but therefore access to the hosting platform is needed, which
in the general case is not given on the Web. Our Web-based
approach abstracts away most of the low-level details like
the video codec, in favor for the high-level <video> API,
however, this also comes at a cost. A major issue is the un-
certain streaming speed, where traditional approaches have
immediate access to the video file on disk. An additional
challenge is the unknown key frame distribution of the tar-
get videos, which – together with streaming speed issues –
makes exact frame-wise video navigation impossible. Below,
we present an overview of several well-known categories of
shot detection techniques.

Pixel comparison methods [5, 15] construct a discontinuity
metric based on differences in color or intensity values of cor-
responding pixels in successive frames. This dependency on
spatial location makes this technique very sensitive to (even
global) motion. Various improvements have been suggested,
such as prefiltering frames [16], but pixel-by-pixel compar-
ison methods proved inferior in the end and have steered
research towards other directions.

A related method is histogram analysis [10], where changes
in frame histograms are used to justify shot boundaries.
Their insensitivity to spatial information within a frame
makes histograms less prone to partial and global move-
ments in a shot. We argue as a drawback that even visually
very dissimilar frames can have similar overall histograms.
For example, different shots in the same shot can be difficult
to distinguish because of similar color information.

As a compromise, a third group of methods consists of
a trade-off between the above two techniques [1]. Different
histograms of several, non-overlapping blocks are calculated
for each frame, thereby categorizing different regions of the
image with their own color-based, space-invariant finger-
print. The results are promising, while computational com-
plexity is kept to a minimum, which is why we have chosen

a variation on this approach in this paper.
Other approaches to shot boundary detection include the

comparison of mean and standard deviations of frame inten-
sities [9]. Detection using other features such as edges [14]
and motion [2] have also been proposed. However, Gargi
et al. have shown that these more complex methods do
not necessarily outperform histogram-based approaches [3].
A detailed comparison can be found in Yuan et al. [13]. At
time of writing, YouTube is about to roll out a similar na-
tive feature, however, frame-based and not shot-based as our
approach4.

3. SHOT DETECTION ALGORITHM
In this Section, we discuss our shot detection algorithm,

which falls in the category of histogram-based algorithms.
Since visually dissimilar video frames can have similar over-
all histograms, we also take local histograms into account.
We therefore split video frames in freely configurable rows
and columns, i.e., lay a grid of tiles over the frames. The
user interface (Figure 2) currently allows for anything from
a 1 × 1 grid to a 20 × 20 grid. For each step we examine
a frame f and its direct predecessor frame f − 1 .

Apart from the per-tile histogram average distance, the
frame distance function further considers a freely config-
urable number of most different and most similar tiles. This
is driven by the observation that different parts of a video
have different intensities of color changes, dependent on the
movements from frame to frame. The idea is thus to increase
the influence of movements in the frame distance function,
and to decrease the influence of permanence. In the debug
view of our approach (Figure 2), blue boxes indicate move-
ments, while red boxes indicate permanence. In the concrete
example, Steve Jobs’ head and shoulders move as he talks,
which can be clearly seen by the blue boxes in the particular
tiles. Additional movements come from a swaying flag on the
left, and a plant on the right. In contrast, the speaker desk,
the white background, and the upper part of his body re-
main static, resulting in red boxes. For this example, we use
a grid layout of 20 × 20 tiles (nTiles = 400), and a certain
number tileLimit of most different or similar tiles, i.e., we
treat one third of all tiles as most different tiles, one third as
normal tiles, and one third as most similar tiles, and apply
boosting and limiting factors to the most different and most
similar tiles respectively. This distribution was empirically
determined to reveal best results. We work with also empiri-
cally determined values of 1 .1 for the boostingFactor , which
slightly increases the impact of the most different tiles, and
0 .9 for the limitingFactor , which slightly decreases the im-
pact of the most similar tiles. The algorithm pseudo code
can be seen in Listing 1.

We define the average histogram distance between two
frames f and f − 1 as avgHistof . In a first step, we have
examined the histogram distance data statistically, and ex-
perimentally found out that while the overall average frame
distance avgDistf , defined as:

avgDistf =
1

nTiles

nTiles∑
t=1

avgHistof,t

is very intuitive to human beings, far more value lies in the
standard deviation stdDevf , based on the definition of the
4http://youtube-global.blogspot.com.au/2012/03/
looking-ahead-in-youtube-player.html

http://youtube-global.blogspot.com.au/2012/03/looking-ahead-in-youtube-player.html
http://youtube-global.blogspot.com.au/2012/03/looking-ahead-in-youtube-player.html

Figure 2: Debug view of the shot detection process.
Blue boxes highlight tiles with the most differences
to the previous frame, red boxes those with most
similarities.

for frame in frames
f = frame.index
for tile in tiles of frame

avgHisto[f][tile] = getTilewiseDiff()

mostDiffTiles = getMostDiffTiles(avgHisto[f])
mostSimTiles = getMostSimTiles(avgHisto[f])

for tile in tiles of frame
factor = 1
if tile in mostDiffTiles

factor = boostingFactor
else if tile in mostSimTiles

factor = limitingFactor
avgHisto[f][tile] = avgHisto[f][tile] * factor

avgDist[f] = avg(avgHisto[f])

Listing 1: Pseudocode of shot detection algorithm.

overall average frame distance avgDistf :

stdDevf =

√√√√ 1

nTiles

nTiles∑
t=1

(avgHistof,t − avgDistf)2

We use the value of the standard deviation as a value for the
shot splitting threshold [9] to come to very accurate shot
splitting results. We found the boosting and limiting fac-
tors to have overall a positive quality impact on more lively
videos, and a negative quality impact on more monotone
videos. Best results can be achieved if, after changing ei-
ther the boosting or the limiting factors for the most similar
or different tiles, the value of the shot splitting threshold is
adapted to the new resulting standard deviation. The user
interface optionally does this automatically.

4. IMPLEMENTATION DETAILS
Our shot detection algorithm is implemented in form of

an extension for the Google Chrome browser. Chrome ex-
tensions are small software programs written in a combina-
tion of HTML, JavaScript, and CSS, which users can install

to enrich their browsing experience. For this paper we fo-
cus on extensions based on so-called content scripts. Con-
tent scripts are JavaScript programs that run in the context
of Web pages via dynamic code injection. By using the
standard Document Object Model (DOM), they can read
or modify details of the Web pages a user visits. The ad-
vantage of this browser extension approach is that it is very
powerful and generalizable at the same time. Powerful in
the sense that it allows for significantly changing ones user
experience with a platform like YouTube and simply add
new features, and generalizable in the sense that in theory
it would be possible to simply add video shot boundary de-
tection to any HTML5-enabled video website.

The complete video analysis process happens fully on the
client side. We use HTML5 JavaScript APIs of the <video>
and <canvas> elements. The extension is activated as soon
as the user enters a YouTube video watch page. By default,
YouTube uses Flash-encoded videos that are not program-
matically accessible from a JavaScript context, however, via
an API used by the YouTube <iframe> embed code, we
can replace the Flash version with the HTML5 version of
a video. In order to obtain a video still frame from the
<video> element at the current video position, we use the
drawImage() function of the 2D context of the <canvas>
element, which as its first parameter accepts a <video> el-
ement. We then analyze the video frame’s pixels tile-wise
and calculate the histograms. In order to retrieve the tile-
wise pixel data from the 2D context of the <canvas>, we
use the getImageData() function. For processing speed
reasons, we currently limit our approach to a resolution of
one second, i.e., for each analysis step seek the video in 1s
steps. We then calculate the frame distances as outlined in
Section 3. For each frame, we generate an element
with a base64-encoded data URI representation of the video
frame’s data that later gets injected into the DOM tree of
YouTube, as can be seen in Figure 1. Each of the el-
ements has a registered JavaScript event handler that upon
click triggers two actions: first, the video seeks to the corre-
sponding time, and second, the shot is tracked as a hot spot
in the video. Clicks on hot spots can be tracked using stan-
dard Web analytics services, which allows for the suggestion
of more accurate entry points to videos in the longterm. In
prior work [11] we have shown how hot spots can be used to
detect different kinds of events in videos.

5. EVALUATION
Detecting shots on-the-fly in streaming video comes with

its very own challenges. First, it is a question of streaming
speed. We have to stream the same video twice in paral-
lel: on the one hand the user-visible foreground video, and
on the other hand the video used in the background for the
analysis process. Especially with high-definition (HD) video
this can be very demanding. We do not attach the back-
ground <video> element to the DOM tree to save some
CPU cycles, however, the background video still needs to
be seeked to each frame in second-steps and be processed,
while the foreground video is playing normally. Even on
a higher-end computer (our experiments ran on a MacBook
Pro, Intel Core 2 Duo 2,66 GHz, 8 GB RAM), the pro-
cess of analyzing and displaying in parallel a 1280 × 720
HD video of media type video/mp4; codecs=”avc1.64001F,
mp4a.40.2” causes an average CPU load of about 70%. The
HTML5 specification states that “[. . .] when the playback

rate is not exactly 1.0, hardware, software, or format limi-
tations can cause video frames to be dropped [. . .]” [7]. In
practice, this causes the analysis environment to be far from
optimal. In our experiments we differentiated between false
positives, i.e., shot changes that were detected, but not ex-
istent, and misses, i.e., shot changes that were existent, but
not detected. Compared to a set of videos with manually
annotated shot changes, our algorithm detected fewer false
positives than misses. The reasons were gradual transitions
and shots shorter than one second (below our detection res-
olution) for misses, and large movements in several tiles for
false positives. Overall, we reached an accuracy of about
86%, which is not optimal, but given the challenges suf-
ficient for our use case of facilitating in-video navigation.
Performance potential resides in the usage of Web Workers,
JavaScript programs that run in the background, indepen-
dently of other user interface scripts.

6. FUTURE WORK AND CONCLUSION
In a first step, future work will consist in improving the

analysis speed by dynamically selecting lower quality anal-
ysis video files, given that videos are available in several
resolutions (both LD and HD). We will check in how far
analysis results differ for the various qualities. In a sec-
ond step, we will work on more advanced heuristics for the
various user-definable options in the analysis process (Fig-
ure 2). While there is no optimal configuration for all types
of videos, there are some key indicators that can help cat-
egorize videos into classes and propose predefined known
working settings based on the standard deviation stdDevf
and the overall average frame distance avgDistf . Both are
dependent on the values of boostingFactor , limitingFactor ,
rows, and columns. Interpreting our results so far, there is
evidence that low complexity settings are sufficient in most
cases, i.e., a number of rows and columns higher than 2
does not necessarily lead to more accurate shot detection
results. The same applies to the number of to-be-considered
most different or similar tiles tileLimit . We even had cases
where not treating those tiles differently at all, i.e., setting
boostingFactor = limitingFactor = 1 , led to better results.
We plan to use an adapted version of the algorithm for event
summarization based on user-generated video content.

Concluding, we have promising results, especially in com-
bination with hot spot identification from prior work [11],
which in future can provide for more accurate entry point
suggestions in long videos, or enable skip marks in videos
with intros. For video shot detection, some challenges re-
main, especially with the observed streaming speed-related
issues and predefined parameter settings to improve accu-
racy. Nonetheless, when searching for a certain point in
a video, the obtained results already allow for focused in-
video navigation and also facilitate exploratory shot-wise
video consumption.

7. ACKNOWLEDGMENTS
R. Verborgh is funded by Ghent University, the Interdisci-

plinary Institute for Broadband Technology, the Institute for the

Promotion of Innovation by Science and Technology in Flanders,

the Fund for Scientific Research Flanders, and the EU. T. Steiner

is partially supported by the EC under Grant No. 248296 FP7

I-SEARCH project. J. Gabarró is partially supported by TIN-

2007-66523 (FORMALISM), and SGR 2009-2015 (ALBCOM).

8. ADDITIONAL AUTHORS
Arnaud Brousseau (Google Germany intern, EURECOM

student, email: arnaud.brousseau@gmail.com).

9. REFERENCES
[1] M. Ahmed, A. Karmouch, and S. Abu-Hakima. Key

frame extraction and indexing for multimedia
databases. In Proc. of the Visual Interface Conf.,
pages 506–511, 1999.

[2] P. Bouthemy, M. Gelgon, and F. Ganansia. A unified
approach to shot change detection and camera motion
characterization. IEEE Transactions on Circuits and
Systems for Video Technology, 9:1030–1044, 1997.

[3] U. Gargi, R. Kasturi, and S. H. Strayer. Performance
Characterization of Video-Shot-Change Detection
Methods. IEEE Transactions on Circuits and Systems
for Video Technology, 10(1):1–13, 2000.

[4] Google Video Blog. Closed Captioning Search
Options, June 05, 2008. http://goo.gl/crmWZ.

[5] A. Hampapur, T. Weymouth, and R. Jain. Digital
video segmentation. In Proc. of the 2nd ACM Int.
Conf. on Multimedia, MULTIMEDIA ’94, pages
357–364, New York, NY, USA, 1994. ACM.

[6] A. Hanjalic. Shot-Boundary Detection: Unraveled and
Resolved? IEEE Transactions on Circuits and Systems
for Video Technology, 12(2):90–105, Feb. 2002.

[7] I. Hickson. HTML Living Standard – The Video
Element, July 29, 2011.
http://www.whatwg.org/specs/web-apps/current-
work/multipage/the-video-element.html.

[8] HTML5: A vocabulary and associated APIs for
HTML and XHTML. W3C Working Draft, November
2011. http://www.w3.org/TR/html5/.

[9] R. Lienhart. Comparison of automatic shot boundary
detection algorithms. In Storage and Retrieval for
Image and Video Databases, pages 290–301, Jan. 1999.

[10] A. Smeaton, N. Murphy, and S. Marlow. Evaluation of
automatic shot boundary detection on a large video
test suite. In Institute for Image Data Research, Univ.
of Northumbria at Newcastle, pages 25–26, 1999.

[11] T. Steiner, R. Verborgh, R. Van de Walle, et al.
Crowdsourcing Event Detection in YouTube Videos.
Workshop DeRiVE at the 10th Int. Semantic Web
Conf., Bonn, Germany, October 23-27, 2011.

[12] YouTube. Official Press Traffic Statistics, 2011.
http://www.youtube.com/t/press statistics.

[13] J. Yuan, H. Wang, L. Xiao, W. Zheng, J. Li, F. Lin,
and B. Zhang. A formal study of shot boundary
detection. In IEEE Transaction on Circuit and
Systems For Video Technology, pages 168–186, 2007.

[14] R. Zabih, J. Miller, and K. Mai. A feature-based
algorithm for detecting and classifying scene breaks.
In Proc. of the 3rd ACM Int. Conf. on Multimedia,
pages 189–200, New York, NY, USA, 1995. ACM.

[15] H. Zhang, A. Kankanhalli, and S. W. Smoliar.
Automatic partitioning of full-motion video.
Multimedia Systems, 1(1):10–28, 1993.

[16] H. Zhang, C. Y. Low, and S. W. Smoliar. Video
parsing and browsing using compressed data.
Multimedia Tools & Applications, 1:89–111, March
1995.

	Introduction
	Related Work
	Shot Detection Algorithm
	Implementation Details
	Evaluation
	Future Work and Conclusion
	Acknowledgments
	Additional Authors
	References

