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I POSITION OF THE PROBLEM 1

1 Position of the problem

We want to transmit at a rate of 6 bits per symbol using a constellation which
is in fact the so-called p-law.

Recall that the pu-law is the set of signal values used in voice coding in the
analog loop of the telephone network. (In some countries, it is made use of
the A-law rather than the y-law. This does not change anything). The u-law
consists of 8 “segments” and of their symmetrical counterparts. Each segment
contains 16 values. In table 1, we indicate respectively the first value, the
range between two successive values and the last value of each segment.

segment | first value : range : last value
1 0 : 2 30
2 33 : 4 93
3 99 : 8 ¢ 219
1 231 : 16 @ 471
3 495 r 32 975
6 1023 : 64 : 1983
7 2079 : 128 : 3999
8 4191 : 256 : 8031

Table 1: signal values of the u-law.

We want to evaluate the performances of coding with a trellis using bidi-
mensional signals, i.e. the constellation is made up by the cartesian square of
the p-law.

2 Principles of coding

We consider a trellis on this constellation with four states and rate 1/2. The
constellation is then divided in four subsets which may overlap.

The sets A and D, respectively B and C, may have points in common.
Overlapping has the advantage of reducing the average energy and the draw-
back of permitting quasi-catastrophic encoding. We want to evaluate its effect
precisely.

Subsets are made so as to respect Ungerboeck’s rules :

e parallel transitions are associated with signal with maximum distance
between them;

e transitions originating from or merging in one state are associated with
the next larger distance.
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3 ERROR PROBABILITY

Figure 1: trellis with four states and rate 1/2

Therefore points are assigned to subsets according to the “checkerboard
principle” represented hereafter.

sl gy i N
- 0
Sy e N

Given a set, each second point in both directions belongs to this set, and
the other one does not belong to it.

3 Error probability

In a first step, we think it worth deriving the formula in the simplified case of
unbounded QAM modulation. That is, the distance profile does not depend
on the point chosen.

We use the formula

Plerror) <Y 3 P(O)Y_ Y b w(e, f)P(c|C)Q (%) (1)
k CEE 4 €C (¢, f) € C x Fe
dle,f)=d




3 ERROR PROBABILITY 3

where

o k is the length of the error event;

e P is the set of all length k sequences of subsets of the constellation;

d is a distance;

e [ is the set all incorrect subset sequences starting from the same state
as (' and ending in the same state;

e d(c, f) is the distance between ¢ and f.

The upper bound is generally considered as a good approximation.

We make the assumption that all the states and all the transitions are
equiprobable. Then the different subset sequences have the same probability
and the sum over C' € P, disappears.

We now discuss on the distance. Since the error function Q(.) decreases
very quickly, we only have to evaluate the first terms. The very first distance
to arise, do say, is the minimum distance in every subset and corresponds to
parallel transitions or, in other words, to length 1 error events. For such an
error event, an error on the symbol is four ways (the so-called error coefficient)
yielding four times the same term in the error probability, with w = 1 and
P(c|C) = 1.

The second distance to arise, d; say, corresponds to an error event which
typically starts in the first state, has correct set path A ... A and incorrect path
BDADA...B. The first symbol is not the same in each path, all intermediate
symbols are the same (thus symbols in D belong precisely to AND) and the last
symbol differs again. Finally the total distance accumulated is 2d( A, B)? = d?.
Remark that :

e such error events necessarily have an even length;

e in QAM with the Z? lattice as constellation, dy = d;.

For a typical error event of distance d;, an error on the first A symbol is
four ways and similarly for the last symbol. For such a term, w = 2.

A particular instance for a typical correct path is a sequence of symbols
c=c¢1Cz...c, wherecy € Ay € ANDes €Ay € AND...cp € A, all those
symbols being independent. Then

AND\F .
P(c]C) = (##—2) = pi

where we set P = %g.
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3 ERROR PROBABILITY 4

Summing over all £ provides a term

P dy
4 x: —
4 % ><2><1_PQ(20)

The third distance, d, say, correspond to typical error events with the same
set path as above but where one of the intermediate symbols differs in each
path. Then & = d? + A with A = d(D — A,A— D)?, w = 3, the error on
the first symbol is four ways, the one on the intermediate symbol, two ways
and the one on the final symbol, four ways. There are (k —1)/2 places for the
intermediate symbol hence

P(c|o) = *=Lpt(1 - p).

When summing over all the k& > 3, we get

d 1 1
1 = _P ‘Pﬂ—l = = P — = y
( )gln =P 1= p=1-p
Hence in the error probability a term
docBadind ds
L2 ixSo(z). )

More generally, we define a family of distances d,41 such that d2,, =
d?*+nA, w = 2+4n, the first and the last errors are four ways, the n intermediate
k=1
5

errors are two ways and may be at ( ) places then

n

k—1

Pmm:(ﬁ)ﬁ%u—mw

n

For example, for n = 2, this yields in the error probability a term

2r ds
2 ey | S8
4><2><H><4><4(1_P)3Q(20). (4)

The distance ds corresponds also to error events with typical correct path
AAAA and incorrect path BCC B. Indeed,

& = (A, B) + *(A4,C) + #(A,C) + d*(A, B)

For such a path, the error coefficients are succesively 4,2,2,4, w = 4 and
Pldeh= 1L

We do not think it worth evaluating the contribution of greater distances.




4 SIMULATIONS 5

Hence finally

o = (8] 0(E) (8

20 1—P¥\3 1—P
2P d- ; d
i 256mQ (23) + 2560 (i) (5)

Coding is indeed catastrophic if overlapping is too pronounced that is,
P =~ 1. If so, the upper bound is no more an approximation of the error
probability since it can exceeds 1.

Consider the effective error distance d.g defined by

Q (c;f) = P(error). (6)

[t is now possible to evaluate the error coding gain by

2
G =10log (‘f;f) — 101log (E—)

u

(7)

where the subscript u and ¢ mean uncoded and coded respectively and E
denotes the average energy of the constellation.

When using the p law rather than QAM, the distance profile depends on
the point chosen. For a given distance d, the error coefficient becomes the
mean value of the discrete random law “number of neighbours of the current
symbol at distance d”

w

IT(pe(1) + 2pe(2) + 3pe(3) + 4pc(4)). (8)
e=1
pe(1) is the proportion of points with i neighbours in the set of the current
symbol. The last terms may be null.

4 Simulations

4.1 Algorithm

We construct a wide family of codes on the constellation x? and investigate
their properties.

The input of the main program is the square minimum distance. In the fol-
lowing, we will omit to precise “square”. The outputs are the average energy of
the constellation, the probability P, an approximation of the error probability
(the first two terms of equation 5 with dy = d;), the effective minimum dis-
tance, the coding gain for various bit rates and maximal energies. The outputs
are put together into files whose name is on the model d32_rate_9.res.
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About the approximation of the error probability, note that an exact for-
mula, taking into account equation 8, would yield a lower value than the one
which is computed. Therefore, it would enhance the coding gain. Second,
setting do = d; is right if and only if subsets overlap. Otherwise, any path of
length greater than 1 would yield a distance greater than the internal distance.

The program generates other interesting results like the intersection of the
subsets which can become readable with a few modifications.

The main program is as follows (program coding.m):

Algorithm 1

1. enter the minimum distance;
2. checkerboard;
3. for various bit rates :

(a) shaping for uncoded transmission;
(b) shaping;
(¢c) overlapping;

Let us now precise the contents of every subroutine.

Checkerboard (subroutine checkerboard_*.m where * denotes the mini-
mum distance).

Extract a subconstellation with the desired distance and label the points.

We erase some points in g? in order to increase the minimum distance.
Our choice is dictated by the region where the points are the tightest i.e. the
square of the first segment of the y law. In this region, the points are arranged
like in the lattice Z2. We retain the points of the sublattice belonging to the
chain

2 RZ¥ 5982 5 9RZE. ..

which has the desired minimum distance. (R is the matrix

(1 4)

Remark that R? = 21, RZ? = D, and that the distance increases of a factor
2 between two successive lattices).

Practically, we must number the signal levels of the y law in a first step
and work on their number.
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Many variants are possible. We can extend more or less the region on
which we perform the algorithm, we can combine the two algorithms and so
on....

Then we label the points chosen (in other words, we assign each point to
some subset), according to the checkerboard principle explained in section 2.

Whichever lattice is chosen, it is similar to Z? and the subsets appear to
be (similar to) the four cosets of 2Z% in Z2. They may be represented as 272,
27%4(1,0),22Z%+(0,1), 2Z? +(1,1) that we label A, C. D and B respectively.

For example, when the lattice is D, we proceed as follows: consider (z,y) €
D, consider the mapping from D, to Z2 (z,y) — ((z+y)/2, (z —y)/2). Label
(z,y) according to the coset of its image in 272

We give on figure 2 an example of labelling yielding a distance of d? = 32.
We have used the lattice D; in the cross whose branches meet eachother in
the square of the first segment and the lattice Z? otherwise.

50
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+=A, .=B, 0=C, x=D

Figure 2: example of labelling with d? = 32.

Shaping for uncoded transmission (subroutine shap_uncoded.m). We
are given a bit rate, for example, 6 bits/linear symbol. The rate is of 12 bits
per planar symbol. The shaping for uncoded transmission consists in taking
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out 2!2 of the innermost point from the constellation. Practically, we remove
the outermost points until we reach the desired number. We compute the
average energy F, of the resulting constellation.

Shaping (subroutine shapingl.m). Among the 12 bits, one bit is for coding,
for the choice of the set, the remaining 11 bits are for the choice of the symbol
in the set. The shaping consists in taking out 2'! of the innermost point from
each subset of the constellation. Practically, we remove the outermost points
until we reach the desired number.

Overlapping (subroutine shaping2_*.m where * denotes the minimum dis-
tance).

The sets A and D, on one hand, and B and C on the other hand may
overlap. We construct the intersection so as to retain the intrasets and intersets
minimum distances. Practically, we are given an energy, we remove the points
in A (resp. B) which exceed this energy, we declare the same number of points
in D (resp. C) as common to both the sets, and conversely. We do so for a
decreasing sequence of energies while the distance constraints are met.

4.2 Results

We have made simulations for the (square) distances 16, 32 and 64 (of course,
our program is able to run for many other distances). We have taken respec-
tively ¢ = 0.7, 1, 1.5. The value of o (the signal to noise ratio) is chosen so
as to yield error probabilities between 106 and 1072

Figure 3 represents the bit rate, in bits/symbol, versus the average energy,
in dBm0. There are two curves per distance : the dashed one is for the case
of partitionning, the solid one for the case of maximal attainable overlapping.
We remark that the gain in enrgy provided by overlapping is very light.The
curves for d®> = 32 and d?> = 64 coincide for bit rates greater than 12 bits per
planar symbol. This suggests that increasing the distance makes no cost in
terms of energy. This however should be confirmed by other simulations.

Figure 4 represents the coding gain, in dB, versus the overlapping, which
is measured by the means of the probability P. The minimum distance is of
16 and we show different curves corresponding to different bit rates.

The higher the bit rate, the lower the coding gain. At the desired bit rate
of 12 bits/symbol, the coding gain becomes null. Since the real coding gain is
greater, we can conclude that the desired bit rate is attained with some gain.

For greater bit rates, we obtain negative coding gains. The number of
symbols per set required is to high, one must use very high levels of energy.

This is not compensated by overlapping. Overlapping has a negligible
influence on the coding gain. Curves are nearly horizontal, slowly decreasing
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Figure 3: bit rate versus average energy
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5 CONCLUSION 10

in the beginning and slowly increasing in the second part. This is confirmed
by the simulations performed for d*> = 32 (see figure 5).

Coding gain

_1 0 1 1 1 1 1 1 1 ] 1 J
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Overlapping (probability P)

Figure 4: coding gain versus overlapping, d* = 16

5 Conclusion

The effect of coding depends strongly on the bit rate : the higher the bit rate,
the lower the coding gain. For high bit rates, the coding gain is null or even
negative. However, the desired bit rate of 12 bits/symbol is attained with gain.
If we want to get positive gains at higher rates, it is necessary to investigate
codes with more numerous states.

Finally, arrange that the subsets overlapp does not bring much.
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Figure 5: coding gain versus overlapping, d* = 32
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