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Abstract—In recent years, the Kalman filter (KF) has encoun-
tered renewed interest, due to an increasing range of applications.
Even though in many cases the state-space model may be linear,
it is often only known up to the values of some parameters,
usually related to the vector autoregressive process of the state
evolution equation. In this paper, after finding motivation in some
applications, we review a number of approaches for adaptive
Kalman filtering (AKF), in which state and parameters get esti-
mated jointly. We propose an improved version of the Extended
KF (EKF) in which the estimation error covariance matrix is
computed exactly assuming overall joint Gaussianity. We also
compare the performance and Cramer Rao bounds (CRBs) of
joint Maximum A Posteriori Maximum Likelihood (MAP-ML)
estimation of Bayesian state and deterministic parameters, and
marginalized ML estimation of the parameters, and relate this
to the Expectation-Maximization KF (EM-KF). The perspectives
involve also the Variational Bayesian KF (VB-KF).

I. INTRODUCTION

Since Rudolf E. Kalman published his famous paper in
1960, the Kalman filter has become the work horse of
many estimation processes in different application areas. The
Kalman filter (KF) considers the estimation of a first-order
vector autoregressive (AR(1)) (Markov) process from linear
measurements in white noise. The KF performs this estima-
tion recursively by alternating between filtering (measurement
update) and (one step ahead) prediction (time update). An
alternative viewpoint is that the Kalman filter recursively
generates the innovations of the measurement signal (by
a structured Gram-Schmidt approach that decorrelates the
consecutive measurements). The KF corresponds to optimal
(Minimum Mean Squared Error (MMSE) or Maximum A
Posteriori (MAP)) Bayesian estimation of the state sequence if
all random sources involved (measurement noise, state noise
and state initial conditions) are Gaussian. In the non-Gaussian
case, the KF performs Linear MMSE (LMMSE) estimation.
The linear state-space model can be written as

state update equation:

xk+1 = Fk(θ) xk +Gk(θ) wk

measurement equation:

yk = Hk(θ) xk + vk

(1)

for discrete time k = 1, 2, . . ., where the initial state x0 ∼
N (x̂0,P0(θ)), the measurement noise vk ∼ N (0,Rk(θ)),

EURECOMs research is partially supported by its industrial members: OR-
ANGE, BMW Group, Swisscom, Cisco, SFR, ST Ericsson, Thales, Symantec,
SAP, Monaco Telecom, and also by the EU FP7 project WHERE2.

and the state noise wk ∼ N (0,Qk(θ)) and all these random
quantities are mutually uncorrelated. As indicated, the state-
space model is often specified up to the value of some
parameters θ. Often the Fk(θ), Gk(θ), Hk(θ) are linear in
θ, which would correspond to the bilinear case. Although
this signal model seems very simple, the applications are
numerous. We will cite here three examples:

• Bayesian adaptive filtering [18] (or wireless channel
estimation [9], [12]):
in this case, xk = FIR filter response, and θ contains e.g.
the Power Delay Profile (diagonal of a diagonal filter
coefficient covariance matrix P0 = Pk, and the AR(1)
dynamics in e.g. diagonal F and Q.

• Position tracking (GPS) (see [5] and references therein):

the state contains position, velocity and possible
acceleration and θ contains acceleration model
parameters (e.g. white noise, AR(1))

• Blind Audio Source Separation (BASS) [4]: xk = source
signals, θ: (short+long term) AR parameters, reverb filters

In the literature, variations on the KF theme have been derived
to handle the joint filtering and parameter estimation problem,
such as e.g. the widely used EM-KF algorithm ( [6], [8], [9])
which uses the famous Expectation Maximization technique
(EM), and alternating optimization technique for ML esti-
mation. Another well-known variation is the EKF algorithm,
which can handle general nonlinear state space models. In
this case, the state is extended with the unknown parameters,
rendering the new state update equation nonlinear. A third
derivation is the truncated Second-Order EKF (SOEKF) in-
troduced by [3], [11] in which nonlinearities are expanded
up to second order, third and higher order statistics being
neglected. A corrected derivation of this filter is presented
in [10]. In ( [2], [11]), the Gaussian SOEKF is derived in
which fourth-order terms in the Taylor series expansions are
retained and approximated by assuming that the underlying
joint probability distribution is Gaussian. In [21], Villares at
al. introduced the Quadratic Extended Kalman Filter (QEKF)
where they extend the EKF to a new algorithm using quadratic
processing and incorporating fourth order statistics of the input
signal. The problem of uncertainty about the process noise



and measurement noise covariance matrices was also tackled
in [16] where a test of Kalman filter optimality is used in
order to estimate the unknown noise covariance matrices. The
performance of some of these Adaptive KF (AKF) approaches
was studied in the literature. In [7], the EM approach is proved
to converge to the ML performance. The asymptotic behavior
of the EKF for AKF has been treated in [13] where it is proved
that no global convergence is garanteed. The performance
analysis of linear and nonlinear KF has also been treated in
terms of Cramer Rao Bound (CRB) computations. In [19],
the Posterior CRB (PCRB) is developed for the discrete non-
linear KF. Recursive Bayesian CRBs were also developed for
continuous and discrete nonlinear filtering for many problems.
We can refer to [20] for an overview. This paper is organized
as follows: a review of some AKF approaches is proposed
in section II. An improved version of the EKF algorithm is
developed in section III and some performance orderings are
provided in section IV.

II. ADAPTIVE KALMAN FILTERING APPROACHES

A. Basic Kalman Filter (KF)
In the following, we introduce the notation y1:k =

{y1, . . . ,yk}. The KF performs Gram-Schmidt orthogonaliza-
tion (decorrelation) of the measurement variables yk. This is
done by computing the LMMSE predictor ŷk|k−1 of yk on
the basis of y1:k−1, leading to the orthogonalized prediction
error (or innovation) ỹk = ỹk|k−1 = yk − ŷk|k−1. We
introduce the correlation matrix notation Rxy = ExyT

(correlation matrices will usually also be covariance matrices
here since the processes yk and xk have zero mean and also
various estimation errors will have (conditional) zero mean).
We denote the covariance matrix R

ỹkỹk
= Sk. The idea of

the innovations approach is that (linear) estimation in terms of
y1:k is equivalent to estimation in terms of ỹ1:k since one set is
obtained from the other by an invertible linear transformation.
Now, since the ỹk are decorrelated, estimation in terms of ỹ1:k

simplifies:

x̂|k =
k∑
i=1

R
xỹi

R−1

ỹiỹi

ỹi = x|k−1 +R
xỹk

S−1
k ỹk .

This will be used to obtain predicted estimates x̂k|k−1 with
estimation error x̃k|k−1 = xk−x̂k|k−1 with covariance matrix
Pk|k−1 = R

x̃k|k−1x̃k|k−1
and also filtered estimates x̂k|k with

estimation error x̃k|k = xk − x̂k|k with covariance matrix
Pk|k = R

x̃k|kx̃k|k
.

Now exploiting the correlation structure in the signal model,
this leads to the following two-step recursive procedure to go
from |k−1 to |k:

Measurement Update

ŷk|k−1 = Hk x̂k|k−1

ỹk = yk − ŷk|k−1

Sk = Hk Pk|k−1H
T
k +Rk

Kk = Pk|k−1H
T
k S

−1
k

x̂k|k = x̂k|k−1 +Kk ỹk
Pk|k = Pk|k−1 −KkHk Pk|k−1

(2)

Time Update (prediction)

x̂k+1|k = Fk x̂k|k
Pk+1|k = Fk Pk|k F

T
k +GkQkG

T
k

(3)

In the usual case of total absence of prior information on the
initial state, one can choose x̂0 = 0, P0 = p0 I with p0 a
(very) large number.

B. Extended Kalman Filter (EKF)
For the case of a nonlinear state-space model, the idea of

the EKF is to apply the KF to a linearized version of the state-
space model, via a first-order Taylor series expansion. So we
get

state update equation:

xk+1 = f(xk,wk) ≈ Fk xk +Gk wk

measurement equation:

yk = h(xk) + vk ≈ Hk xk + vk

(4)

where

Fk=
∂ f(x,w)
∂ xT

∣∣∣∣
(x,w)=(xk,wk)

Gk=
∂ f(x,w)
∂wT

∣∣∣∣
(x,w)=(xk,wk)

Hk=
∂ h(x)
∂ xT

∣∣∣∣
x=xk

.

(5)
So, at this point, the basic KF can be applied to the thus
obtained approximate linear state-space model. The EKF ap-
proach can be used to adapt some parameters in an otherwise
linear state-space model x

′

k+1 = F
′
x
′

k+G
′
wk. For instance,

consider the case in which one wants to adapt parameters
appearing (e.g.) linearly in the matrix F

′
= F

′
(θ). One can

jointly estimate the unknown constant parameter vector θ by
considering the following state update for them: θk+1 = θk.
Then one can introduce the augmented state and system
matrices

xk =
[
x
′

k

θk

]
, Fk =

[
F
′
(θk) C(x

′

k)
0 I

]
, Gk =

[
G
′

0

]
(6)

where C(x
′

k) =
∂ F

′
(θ)x

′

k

∂ θT
. When running the EKF, the

state-dependent system matrices have to be filled with the
latest state estimates, so in this case

Fk =

[
F
′
(θ̂k|k) C(x̂

′

k|k)
0 I

]
. (7)

The parameters θ are often not really constant and hence need
to be tracked adaptively. This can be done either by introduc-
ing some process noise in θk+1 = θk (ramdom walk time
evolution) or by introducing exponential weighting (at least
for the θ portion) into the KF updates [1]. The EKF approach
allows fairly straightforwardly to estimate parameters in Fk,
Hk, or Gk, but much less so in Qk, Rk.
For adapting (parameters in) Q and R, one needs to con-
sider the innovations representation x̂k+1|k = Fk x̂k|k−1 +
FkKk ỹk and consider gradients of the Kalman gain Kk w.r.t.
these matrices.



C. Recursive Prediction Error Method (RPEM-KF)

The RPEM [15], [14] is an adaptive implementation of Max-
imum Likelihood (ML) parameter estimation. The negative
loglikelihood becomes a least-squares criterion in the predic-
tion errors (innovations) and RPEM performs one iteration
per new sample. Applied to KF, the RPEM can be seen as a
more rigorous version of EKF and computes gradients more
precisely [23]. Indeed, for the case of a state transition matrix
Fk = Fk(θ), the EKF would consider the gradient

∂xk+1

∂θT
=
∂Fk(θ)xk
∂θT

(8)

where only the explicit dependence of F on θ would be
considered, whereas the RPEM would consider more correctly

∂xk+1

∂θT
=
∂Fk(θ)xk
∂θT

+ Fk(θ)
∂xk
∂θT

. (9)

RPEM for KF can be found in the references above, but will
not be pursued here further. One characteristic of the RPEM
is a higher complexity.

D. Expectation-Maximization (EM-KF)

In EM [7], the parameters are estimated by minimizing
expected values of negative loglikelihoods, see e.g. [22] for
an application involving KF. For the state update, since Gk

is typically a tall matrix, Gkwk has a singular covariance
matrix. The state update equation can be rewritten as

G+
k xk+1 = G+

k Fk xk +wk (10)

where G+
k = (GT

kGk)−1GT
k is the pseudo-inverse of Gk. For

the parameters involved in the state update equation, hence the
following negative loglikelihood is applicable:∑
k

{ln det(Qk)+(xk+1−Fk xk)TG+T
k Q

−1
k G

+
k (xk+1−Fk xk)}

(11)
For the parameters involved in the measurement equation, the
appropriate loglikelihood is∑
k

{ln det(Rk)+(yk−Hk xk)TR−1
k (yk−Hk xk)} . (12)

Now the expectation is taken, in principle with the conditional
distribution given all data. Hence E|n involving all data yk up
to the last sample n. This leads to an iterative algorithm with in
each iteration a whole fixed-interval smoothing operation. An
adaptive version [22], [9] can be obtained by replacing fixed-
interval smoothing by fixed-lag smoothing and performing one
iteration per time sample. Since the state update equation cor-
responds to a vector AR(1) model, one may expect (as in [9])
that a lag of 1 should be enough (to guarantee convergence). In
[22], complexity is reduced further by suggesting that filtering
might be enough. In that case, the (presumably) slowly varying
Q̂k+1, F̂k+1 (for use in the KF at time k+1) get determined
by minimizing

∑k
i=1 λ

k−i E|i{Terms in (11)} w.r.t. Q, F
(G is known) where we introduced an exponential forgetting
factor λ

≈
< 1. This is equivalent to

γ−1
k ln det(Q̂)+

k∑
i=1

λk−i tr{G+T
i Q̂−1G+

i E|i(xi+1 − F̂ xi)(xi+1 − F̂ xi)T }

(13)

where we introduced γ−1
k =

∑k
i=1 λ

k−i = λ γ−1
k−1 + 1. γ−1

k

behaves initially as 1/k but saturates eventually at γ−1
∞ =

1−λ. We shall need

E|i xixTi = x̂i|ix̂
T
i|i + Pi|i

E|i xi+1x
T
i = Fi x̂i|ix̂

T
i|i + FiPi|i

E|i xixTi+1 = x̂i|ix̂
T
i|iF

T
i + Pi|i F Ti

E|i xi+1x
T
i+1 = Fi x̂i|ix̂

T
i|iF

T
i + Pi+1|i

= Fi (x̂i|ix̂Ti|i + Pi|i)F Ti +GiQiG
T
i

(14)

In case of time-invariant Gk ≡ G, we can rewrite (13) as

ln det(Q̂) + tr{G+T Q̂−1G+(M11
k − F̂ M01

k −M10
k F̂ T

+ F̂ M00
k F̂ T )} where (15)

M00
k = (1− γk)M00

k−1+γk (x̂k|kx̂Tk|k + Pk|k)
M10

k = (1− γk)M10
k−1+γk Fk (x̂k|kx̂Tk|k + Pk|k)

M01
k = (1− γk)M01

k−1+γk (x̂k|kx̂Tk|k + Pk|k)F Tk
M11

k =(1− γk)M11
k−1+γk(x̂k+1|kx̂

T
k+1|k+Pk+1|k)

In case of furthermore time-invariant Fk ≡ F , Qk ≡ Q, then

M10
k = F M00

k

M01
k = M00

k F T

M11
k = F M00

k F T +GGGT
(16)

As a result, (15) can be rewritten as ln det(Q̂)+ tr{Q̂−1Q}+
tr{G+T Q̂−1G+

i (F − F̂ )M00
k (F − F̂ )T )}, the optimization

of which now clearly leads to F̂ = F , Q̂ = Q. So we just
get back the quantities that we use in the KF, without any
additional information. Hence, just Kalman filtering in the
EM-KF is not enough to adapt the state update parameters.

E. Fixed-Lag Smoothing

Using the innovations approach, we have

x̂k−1|k = x̂k−1|k−1 +R
xk−1ỹk

S−1
k ỹk . (17)

After a few steps, we get the following lag-1 smoothing
equations that need to be added to the basic Kalman Filter
equations (to be inserted between the Measurement Update
and the Time Update)

Kk;1 = Pk−1|k−1 F
T
k−1H

T
k

x̂k−1|k = x̂k−1|k−1 +Kk;1 S
−1
k ỹk

Pk−1|k = Pk−1|k−1 −Kk;1 S
−1
k KT

k;1 .
(18)

F. Adaptive EM-KF with Fixed-Lag Smoothing

Consider now the case in which the state-space model is
essentially time-invariant (or slowly time-varying). In that case
the time index of the system matrices Fk etc. just reflects at



which time the (unknown) system matrices have been adapted.
The resulting KF equations with lag-1 smoothing become

ŷk|k−1 = Hk−1 x̂k|k−1

ỹk = yk − ŷk|k−1

Sk = Hk−1Pk|k−1H
T
k−1 +Rk−1

Kk;1 = Pk−1|k−1 F
T
k−1H

T
k−1

x̂k−1|k = x̂k−1|k−1 +Kk;1 S
−1
k ỹk

Pk−1|k = Pk−1|k−1 −Kk;1 S
−1
k KT

k;1

Kk = Pk|k−1H
T
k−1 S

−1
k

x̂k|k = x̂k|k−1 +Kk ỹk
Pk|k = Pk|k−1 −KkHk−1Pk|k−1

parameter update
x̂k+1|k = Fk x̂k|k
Pk+1|k = Fk Pk|k F

T
k +GkQkG

T
k

(19)

So, the system matrices (F , G, Q) should be adapted after
the smoothing step and before the filtering and prediction
steps. We now adapt the system matrices F , G, Q from the
equivalent of (13) with E|i replaced by E|i+1. This leads to
the matrix updates

M00
k = (1− γk)M00

k−1 + γk (x̂k−1|kx̂
T
k−1|k + Pk−1|k)

M10
k = (M01

k )T = (1− γk)M10
k−1 + γk (x̂k|kx̂Tk−1|k

+Fk−1Pk−1|k −Gk−1Qk−1G
T
k−1H

T
k−1S

−1
k KT

k,1)
M11

k = (1− γk)M11
k−1 + γk(x̂k|kx̂Tk|k + Pk|k) .

If for example G would be fixed and invertible, minimization
of the expected loglikelihood w.r.t. F̂ , Q̂ would lead to the
following minimizers

Fk = M10
k (M00

k )−1

Qk = G+(M11
k −M10

k (M00
k )−1M01

k )G+T .
(20)

For adapting the parameters in the measurement equation on
the other hand, Kalman filtering should be sufficient. A similar
derivation from the expected measurement logliklihood leads
to

Ĥk = R̂yx,kR̂
−1
xx,k

R̂k = R̂yy,k − R̂yx,kR̂
−1
xx,kR̂xy,k where

(21)

R̂yy,k = (1− γk)R̂yy,k−1 + γkyky
T
k

R̂xy,k = (1− γk)R̂xy,k−1 + γkx̂k|ky
T
k

R̂yx,k = R̂Txy,k

R̂xx,k = (1− γk)R̂xx,k−1 + γk(x̂k|kx̂Tk|k + Pk|k)

(22)

For the initialization, in absence of any side information, one
can take M00

0 = 1/p0I , M10
0 = 0, M11

0 = 0, R̂xx,0 =
1/p0I , R̂xy,0 = 0, R̂yy,0 = 0 where again p0 is a very large
number.

Adaptive processing means one iteration per new sample.
Now, esp. in BASS, the parameters to be adapted repre-
sent filters. For short+long term AR processes with narrow
bandwidths (well separable signals), these filters have a long
memory, hence convergence transients are long and estimation
efficiency is low.

G. Alternating MAP-ML KF (AMAPMLKF)

Joint MAP estimate for the state sequence xk and ML
estimate for the parameters θ, which is typically solved by
alternating optimization between the two parts. The ML esti-
mate of θ is then obtained by performing least-squares (LS)
estimation, given the state sequence, which is replaced by its
estimate. The resulting algorithm is similar to the EM-KF with
only the x̂ terms kept in the matrices M ij

k .

H. Variational Bayes KF (VB-KF)

This is again an application of alternating optimization, but
this time applied to the Kullback-Leibler distance between
the true joint posterior pdf of state and parameters, and an
approximate product form using Gaussian pdfs for both state
and parameters. In this case, not only does the estimation of the
parameters account for the estimation errors in the state, but
symmetrically the state estimation now also accounts for the
estimation errors in the parameters, so the state estimation now
uses a modified form of the KF. The fixed-interval vs. fixed-lag
smoothing issue also applies to VB-KF (and AMAPMLKF).

I. Gaussian SOEKF for bilinear system

For a discussion of the Gaussian SOEKF, consider the
bilinear state update equation xk+1 = f(xk) + Gkwk =
Fkxk+Gkwk. where Fk depends on the (augmented) M ×1
state vector xk linearly. We get for the SOEKF time update
equations:

x̂k+1|k = f(x̂k|k) + 1
2

M∑
i=1

φi tr
{

Hi,kPk|k
}

Pk+1|k = DkPk|kDTk +GkQkG
T
k

+ 1
2

M∑
i,j=1

φiφ
T
j tr

{
Hi,kPk|kHj,kPk|k

}
Hi,k = ∂2fi

∂xk∂xT
k

|
xk=x̂k|k

, Dk = ∂ fi

∂xT
k

|
xk=x̂k|k

(23)

where fi is the ith component of the vector f and φi is the
M × 1 vector with all zeros except for 1 in the ith element.
The terms involving the φ’s represent correction terms w.r.t.
the EKF.

III. IMPROVED EKF (IEKF)

The EKF performs AKF by using the parameter estimate θ̂
without accounting for its estimation error θ̃. We can correct
that. With the extended state update equation being of the
form xk+1 = Fk xk + Gwk, the predicted state x̂k+1|k is
computed as x̂k+1|k = F (x̂k|k) x̂k|k. Hence, we get for the
state prediction error x̃k+1|k = xk+1 − x̂k+1|k the following
evolution:

x̃k+1|k = (F (x̂k|k) + F (x̃k|k))xk − F (x̂k|k) x̂k|k +Gwk
= F (x̂k|k) x̃k|k +Gwk + F (x̃k|k)xk

(24)
The last term in the second line is not considered in the classic
EKF. Considering the independence of the predicted state and
the state error estimation (assuming Gaussian signals), the
prediction error covariance gets updated as follows

Pk+1|k = F (x̂k|k)Pk|kF (x̂k|k)T +GkQkG
T
k +Ok (25)



where F (x̂k|k) equals Dk in (23) and Ok is the covariance
matrix of F (x̃k|k)xk and is a correction term w.r.t. the basic
EKF. Since F (x̃k|k)xk is linear in x̃k|k, we can find a matrix
function D such that

F (x̃k|k)xk = D(xk) x̃k|k = D(x̂k|k) x̃k|k +D(x̃k|k) x̃k|k.

Consequently, Ok can be computed as

Ok = D(x̂k|k)Pk|kD(x̂k|k)T +Nk

where Nk is the covariance of D(x̃k|k) x̃k|k which is a fourth
order moment that can be computed assuming a Gaussian
distribution for x̃k|k. Ok represents increased (awareness of)
estimation error covariance which tends to dampen the filters
(rendering them less frequency-selective), hence potentially
allowing faster convergence transients.

IV. PERFORMANCE ANALYSIS: BACK TO BASICS

The y are the measurements, the state sequence x are
random (Gaussian) parameters (in some applications they
are nuisance parameters, in others parameters of interest),
and θ are the deterministic parameters. In a joint estimation
approach, we maximize the likelihood

f(y,x|θ) (26)

which means MAP for x and ML for θ, with (joint) ML
error covariance matrix CJ

θ̃θ̃
and CRBJθ . In a marginalized

estimation approach, we maximize the likelihood

f(y|θ) (27)

which means ML for θ, with (marginalized) ML error co-
variance matrix CM

θ̃θ̃
and associated CRBMθ . Indeed, since the

state x is random, it can be eliminated from the likelihood.
Asymptotically (in the amount of data y), we get

CJ
θ̃θ̃

(i)

≥ CM
θ̃θ̃

(ii)
= CRBMθ

(iii)

≥ CRBJθ (28)

where (ii) is due to θ̂MML being consistent, (i) is due to the
inconsistency of x̂MAP which prevents θ̂JML from reaching
its CRB. (iii) on the other hand follows from

CRB−Mθ = CRB−Jθ − Ey|θCovx|y,θ

(
∂

∂θ
ln f(y|x, θ)

)
.

(vectorized [17]) where CRB−Mθ = −Ey|θ
∂2

∂θ∂θT ln f(y|θ),
CRB−Jθ = −Ey|θ Ex|y,θ

∂2

∂θ∂θT ln f(y|x, θ). In other words,
even though the CRBs would indicate otherwise, in terms
of actual performance, joint estimation of the state and the
parameters leads to worse parameter estimates than when the
parameters are estimated in a marginalized fashion. So we get
• AMAPMLKF: θ̂ from x̂ only, x̂ from θ̂.

Converges to joint MAP-ML (ML-KF).
• EM-KF: θ̂ from x̂ and x̃, x̂ from θ̂.

Now, it is known that the EM approach converges to the
marginalized ML approach, so the EM-KF would be one
approach to get this optimal performance.

• VB-KF: θ̂ from x̂ and x̃, x̂ from θ̂ and θ̃.

Open issues: Can VB-KF do better than EM-KF? In VB-KF,
the state estimate is improved, but the question is whether
this allows an improved estimation of the parameters. Relative
performance of EKF, RPEM-KF etc? And finally, relation of
the IEKF to SOEKF, which also handles the bias due to the
bilinearity.
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