
1

Digital Identity and Access Management: Technologies and Frameworks

Automatic Security Analysis of SAML-based Single Sign-On Protocols

Automatic Security Analysis of SAML-based Single Sign-On Protocols

Alessandro Armando

University of Genova, Italy & Fondazione Bruno Kessler, Italy

Roberto Carbone

Fondazione Bruno Kessler, Italy

Luca Compagna

SAP Research Sophia-Antipolis, France

Giancarlo Pellegrino

SAP Research Sophia-Antipolis, France & Eurécom, France

ABSTRACT

Single-Sign-On (SSO) protocols enable companies to establish a federated environment in which clients

sign in the system once and yet are able to access to services offered by different companies. The OASIS

Security Assertion Markup Language (SAML) 2.0 Web Browser SSO Profile is the emerging standard in

this context. In previous work a severe security flaw in the SAML-based SSO for Google Apps was

discovered. By leveraging this experience, this chapter will show that model checking techniques for

security protocols can support the development and analysis of SSO solutions helping the designer not

only to detect serious security flaws early in the development life-cycle but also to provide assurance on

the security of the solutions identified.

INTRODUCTION

Single Sign-On (SSO) protocols are the cornerstones of Identity and Access Management systems as they

enable companies to establish a federated environment in which users sign in once and yet are able to

access to services offered by different organizations.

The Security Assertion Markup Language (SAML) 2.0 Web Browser SSO Profile (SAML SSO, for short)

(OASIS, 2005a) is the emerging standard in this context: it defines an XML-based format for encoding

security assertions as well as a number of protocols and bindings that prescribe how assertions should be

exchanged in a wide variety of applications and/or deployment scenarios. This is done to the minimum

extent necessary to guarantee the interoperability among different implementations. As a consequence,

SAML SSO features many configuration options ranging from optional fields in messages, usage of SSL

3.0 or TLS 1.0 channels (SSL channels from here on) at the transport layer, application of encryption

and/or digital signature on specific sensitive message elements which need to be instantiated according to

the requirements posed by the application scenario and the available security mechanisms.

The security recommendations that are available throughout the bulky SAML specifications (OASIS,

2005a, 2005b) are useful in avoiding the most common security pitfalls but are of little help in ensuring

their absence in specific instances of the protocol. Indeed the designer of a SAML-based SSO solution,

while striving to meet the requirements posed by the application scenario, may overlook the security

implications associated with the choice of some optional elements or may even decide to deviate from the

SAML standard. Needless to say, this may have dramatic consequences on the security of the SSO

solution.

2

The situation is exemplified by the SAML-based SSO for Google Apps. The protocol is inspired by the

SAML standard but the version in operation until June 2008 deviated from it in a few, seemingly minor

aspects (see Section «The SAML Web Browser SSO Profile» for the details). In May 2008 a severe

security flaw was discovered and reported to Google and US-CERT (Armando, Carbone, Compagna,

Cuéllar, & Tobarra, 2008, US-CERT, 2008). The vulnerability allowed a dishonest service provider to

impersonate a user at another service provider. In reaction to the finding, Google immediately asked their

customers to implement counter-measures to mitigate potential exploits and then to migrate to a new,

patched solution of their SSO solution. Interestingly, the vulnerability was found by using a model

checker for security protocols.

By leveraging this experience, this chapter will show that model checking techniques for security

protocols can support the development and analysis of SSO solutions helping designers not only to detect

serious security flaws early in the development life-cycle but also to provide assurance on the security of

the solutions identified. By using SAML-based SSO protocols as running examples it will be illustrated

how the design space can be iteratively explored with the aid of a model checker leading to the

identification of vulnerabilities and hence to more secure solutions.

This work is part of a wider project aimed at the development of automated verification technologies for

security protocols and, more generally, for security-sensitive, distributed applications (Armando et al.,

2005, The AVANTSSAR Team).

Structure of the chapter.
In the next section the scene is set by briefly describing the state-of-the-art in model checking of security

protocols. In Section «The SAML Web Browser SSO Profile» a brief introduction of the SAML SSO is

given. In Section «Formal Modeling of the SAML Web Browser SSO Profile» the specification formalism

is given in order to model security protocols, the properties of the transport protocols as well as those that

the protocols are expected to meet. Section «Security Analysis of SAML-based SSO Protocols» presents

the results of the analysis of SAML-based SSO protocols. In Section «Future Research Directions» the

future research direction is discussed and Section «Conclusion» concludes the chapter with some final

remarks.

BACKGROUND

SSO protocols belong to the wider family of security protocols, i.e. communication protocols that, by

means of cryptographic primitives, aim to provide security guarantees such as (mutual) authentication of

the agents taking part in the protocol or secrecy of some information (e.g. a session key). In spite of their

apparent simplicity, security protocols are notoriously error-prone. Many published protocols have been

implemented and deployed in real applications only to be found flawed years later. For instance, the

Needham-Schroeder authentication protocol (Needham & Schroeder, 1978) was found vulnerable to a

serious attack 17 years after its publication (Lowe, 1996). Quite interestingly, many attacks can be carried

out without breaking cryptography. These attacks exploit weaknesses in the protocol that are due to the

complex and unexpected interleavings of different protocol sessions as well as to the possible interference

of malicious agents. (The attack on the SAML-based SSO for Google Apps reported in (Armando et al.,

2008) is of this kind.)

This is even more so for browser-based security protocols like the SAML SSO since, as pointed out in

(Groß, Pfitzmann, & Sadeghi, 2005), browsers—unlike normal protocol principals—cannot be assumed to

do nothing but execute the given security protocol. Moreover, browser-based security protocols normally

assume for their proper functioning that communication between the browser and the server is carried

over a unilateral SSL channel established through the exchange of a valid certificate. SSL channels

provide a powerful mechanism for secure exchange of data in web-based applications, but the security

guarantees they offer must not be overestimated. As it will be shown in the sequel, serious vulnerabilities

are possible even when communication takes place of SSL channels. Indeed the security of a SAML SSO

solution critically depends on several assumptions (e.g. the trust relationships among the involved parties)

and security mechanisms (e.g. the secure transport protocols used to exchange messages) as well as on the

3

options and decisions taken during the design, development and deployment of such a solution.

For this reason, SAML-based SSO protocols and, more in general, security protocols are considered a

challenging and promising application domain for formal methods and model checking techniques in

particular. Unlike traditional verification techniques (e.g. testing), model checking allows for the

exhaustive exploration of the behaviors of the protocol when communication between honest principals is

controlled by a Dolev-Yao intruder (Dolev & Yao, 1983), a malicious agent capable to overhear, divert,

and fake messages. Notice that the problem of determining whether a security protocol meets the expected

security properties is undecidable in the general case (Durgin, Lincoln, Mitchell, & Scedrov, 1999).

However, a number of decidable subclasses of this general problem have been identified (Durgin et al.,

1999, Rusinowitch & Turuani, 2001, Chevalier, Küsters, Rusinowitch, & Turuani, 2003). Moreover, even

semi-decision techniques have proved very helpful in detecting flaws in security protocols. Thus, during

the last decade it has been witnessed to the development of a new generation of model checking

techniques specifically tailored for security protocols (Meadows, 1996, Basin, 1999, Jacquemard,

Rusinowitch, & Vigneron, 2000, Millen & Shmatikov, 2001). As a result of this endeavor, a wide range of

industrial strength security protocols can now be analyzed automatically by state-of-the-art tools

(Armando et al., 2005, The AVANTSSAR Team).

The experiments reported in this chapter (see Section «Security Analysis of SAML-based SSO

Protocols») have been conducted with the AVANTSSAR Validation Platform for security protocols

(hereafter in the sequel referred to as the AVANTSSAR Platform). An architectural view of the platform

is depicted in Figure 1.

Figure 1. The AVANTSSAR platform

The AVANTSSAR Platform takes as input a high-level specification of a security protocol, the expected

security goals, as well as the scenario in which the protocol is employed and automatically evaluates its

security. (A scenario is the parallel execution of a finite number of protocol sessions, where a protocol

session is a run of the protocol played by a given set of agents.) A key feature of the AVANTSSAR

Platform is the support of several types of communication channels. This is a fundamental feature in the

case study addressed, as—as Section «Introduction» has anticipated—SSO protocols heavily rely on the

services offered by the transport protocols, namely SSL. The high-level specification is then translated by

a connector into a security problem expressed in an intermediate specification language. The resulting

specification, which is amenable to formal analysis, is fed to the validator which automatically checks—

through the available back-ends—whether the protocol achieves its security goals. If this is not the case,

then an attack trace is returned by the back-end and it is translated back into a user-friendly format.

Currently the AVANTSSAR Platform supports three state-of-the-art model checker for security protocols

as back-ends, namely CL-AtSe (Turuani, 2006), OFMC (Mödersheim & Viganò, 2009), and SATMC

4

(Armando, Carbone, & Compagna, 2007). In the experiments reported in this chapter, the HLPSL++

connector and the SATMC back-end have been used.

The HLPSL++ connector takes as input a high-level specification written in HLPSL++ (see Section

«Formal Modeling of the SAML Web Browser SSO Profile») and properly translates it so to instrument

the formal analysis through the SATMC back-end. In addition, the HLPSL++ connector features a front-

end that displays attacks (if any) as message sequence charts (MSC), a standardized notation commonly

used in the protocol domain for the description of message exchanges between entities.

SATMC takes as input a formal specification of the protocol, a scenario to be considered for the analysis,

a specification of the expected security property, and an integer max and tries to determine whether the

protocol enjoys the expected security property in the scenario by considering up to max execution steps.

At the core of SATMC lies a procedure that automatically generates a propositional formula whose

satisfying assignments (if any) correspond to attack of length bounded by some integer k≤max. Finding

attacks (of length k) on the protocol therefore boils down to solving propositional satisfiability problems.

SATMC relies on state-of-the-art SAT solvers for this task which can handle propositional satisfiability

problems with hundreds of thousands variables and clauses and even more. SATMC can also be instructed

to perform iterative deepening on k. By setting max to infinite (max=−1), SATMC is a semi-decision

procedure that it is guarantee to terminate if there is an attack, but may not terminate if the protocol is

secure. SATMC is a decision procedure for protocols without loops, i.e. it is guaranteed to terminate with

a definitive sound answer. The security protocols considered in this chapter do not have loops and thus fall

in this decidable class. When run against them, SATMC is thus guaranteed to either report an attack (if

any) or to reach a termination condition that ensures that enough execution steps, say k
safe

, have been

explored proving the safety of the protocol (i.e., absence of attacks). More details on SATMC can be

found in (Armando & Compagna, 2008, Armando et al., 2007).

AUTOMATED SECURITY ANALYSIS OF SAML-BASED SSO PROTOCOLS

The SAML Web Browser SSO Profile

The SAML specifications are based on the notions of assertions, protocols, bindings and profiles: A

SAML assertion is an XML expression encoding a statement about a principal (also called subject). This

chapter will consider a special type of assertions, called authentication assertions. Authentication assertion

states, among other things, that a given subject was authenticated by a particular means at a particular time

for the purpose to get access to the service provider. Protocols prescribe how assertions should be

exchanged and bindings detail how assertions can be mapped into transport protocols, e.g. SOAP or

HTTP. Finally, profiles define the use of SAML assertions, protocols and bindings so to meet some

specific use case requirements (e.g. SSO).

The purpose of the Web Browser SAML 2.0 SSO profile is to enable a client to obtain authenticated

access to a restricted resource on a service provider. Three roles take part in the protocol: a client (C), an

identity provider (IdP) and a service provider (SP). C, typically a web browser guided by a user, aims at

getting access to a service or a resource provided by SP. IdP authenticates C and issues corresponding

authentication assertions. Finally, SP uses the assertions generated by IdP to give C access to the

requested service. The standard allows the protocol to be initiated either by the SP or by the IdP. In the

SP-initiated SSO, any non-authenticated client trying to access a resource on SP is automatically

redirected to the IdP for authentication. In the IdP-initiated SSO, C starts the protocol by directly

contacting to and authenticating at the IdP. This chapter focuses on the SP-initiated SSO using a Redirect

Binding for the SP-to-IdP <AuthnRequest> message and a POST Binding for the IdP-to-SP

<Response>. The protocol is depicted in Figure 2.

5

Figure 2. SP-initiated SSO with redirect/POST bindings

In step S1, C asks SP to provide the resource located at the address URI. SP then initiates the SAML

Authentication Protocol by sending C a redirect response directed to IdP containing an authentication

request of the form AuthReq(ID,SP)—where ID is a string uniquely identifying the request—and the

address URI of the resource. IdP then challenges C to provide valid credentials and—if the authentication

succeeds—IdP builds an authentication assertion AA=AuthAssert(SP,C,IdP,ID) and places it into a

response message Resp=Response(ID,SP,IdP,{AA}
K−1,IdP), where {AA}

K−1,IdP is the assertion digitally

signed with K−1,IdP, the private key of IdP. (As unnecessary for the analysis, it will not be modeled how

the authentication between C and IdP is performed, but it is assumed it is successful.) IdP then places Resp

into an HTML form as a hidden form control and sends it back to C. For ease of use purposes, the HTML

form is typically accompanied by script code that automatically posts the form to SP. This completes the

protocol and SP can deliver the requested resource to C.

The security of the SAML SSO protocol relies on a number of assumptions about the trustworthiness of

the principals involved as well as the security of the transport protocols employed. Below they are

summarized.

Trust Assumptions

The protocol assumes that IdP is trustworthy for both C and SP, but SP is not assumed to be trustworthy.

Indeed service providers do not necessarily trust each other e.g., a SP could have been compromised or

simply act maliciously driven by own interests. In accordance with this the analysis will consider protocol

sessions in which C and SP might be played by the intruder, while it is assumed that IdP is played by an

honest agent. It is worth noticing that in the analysis of the SAML SSO v1.0 reported in (Hansen, Skriver,

& Nielson, 2005) it is assumed that the SP is trustworthy. This assumption is not realistic as service

providers do not necessarily trust each other and it would prevent the detection of the attack on the

SAML-based SSO for Google Apps reported in (Armando et al., 2008).

Assumptions on the communication channels. Communications between the parties are subject to the

following assumptions:

(A1) the communication between C and SP is carried over a unilateral SSL channel, established

through the exchange of a valid certificate (from SP to C); and

(A2) the communication between C and IdP is carried over a unilateral SSL channel that becomes

bilateral once C authenticates itself on IdP. This is established through the exchange of a valid

certificate (from IdP to C) and of valid credentials (from C to IdP).

Under the above assumptions the protocol is expected to meet the following security properties:

(P1) SP authenticates C, i.e., at the end of its protocol run SP believes it has been talking with C;

6

and

(P2) Resource must be kept secret between C and SP.

The SAML-based Single Sign-On for Google Apps used by Google until June 2008 shared the above

assumptions and expected properties, but deviated from the SAML SSO protocol for a few, seemingly

minor simplifications in the messages exchanged:

(G1) ID and SP are not included in the authentication assertion, i.e. AA is AuthAssert(C,IdP)

instead of AuthAssert(SP,C,IdP,ID); and

(G2) ID, SP and IdP are not included in the response, i.e. Resp is Response({AA}
K−1,IdP) instead of

Resp=Response(ID,SP,IdP,{AA}
K−1,IdP).

Formal Modeling of the SAML Web Browser SSO Profile

To formally specify SAML-based SSO protocols it has been used HLPSL++, a role-based specification

language for security protocols developed in the context of the AVANTSSAR Project (The

AVANTSSAR Team). Unlike its predecessor HLPSL (High-Level Protocol Specification Language)

(Chevalier et al., 2004), HLPSL++ supports the specification of communication channels beyond the

Dolev-Yao model. This includes confidential and authentic channels that are building blocks for capturing

real world transport-level communications such as SSL. In HLPSL++, actions carried out by a protocol

participant are grouped and specified in a basic role. Basic roles are then instantiated and glued together

into composed roles. This section provides a brief introduction to the language through its application to

the SAML SSO.

1 role client(

2 C, IdP, SP : agent, KIdP : public_key,

3 C2SP, SP2C, C2IdP, IdP2C : channel,

4 URI : text

5) played_by C def=

6 local

7 State : nat,

8 ID, Resource : text

9 init

10 State:=0

11 transition

12 %% C asks for a resource to SP

13 S1. State = 0 =|>

14 State’:=2 /\ snd(C2SP, SP, URI) /\ witness(C, SP,

sp_c_uri,URI)

15 %% C receives an AuthnReq(ID, SP) to be forwarded to IdP

16 A1_A2. State = 2 /\ rcv(SP2C, SP, C.IdP.(ID’.SP).URI) =|>

17 State’:=4 /\ snd(C2IdP, IdP, C.IdP.(ID’.SP).URI)

18 %% C receives a Response(SP, C, IdP, ID) for SP

19 A3_A4. State = 4 /\ rcv(IdP2C, IdP,

SP.{SP.C.IdP.ID’}_inv(KIdP).URI) =|>

20 State’:=6 /\ snd(C2SP, SP,

SP.{SP.C.IdP.ID’}_inv(KIdP).URI)

21 %% C receives a resource from SP

22 A4_S2. State = 6 /\ rcv(SP2C, SP, Resource’) =|>

23 State’:=8

24 end role

Figure 3. HLPSL++ specification of the SAML SSO protocol: Role C

7

1 role serviceProvider (

2 C, IdP, SP : agent, KIdP : public_key,

3 SP2C, C2SP : channel, URI : text

4) played_by SP def=

5 local

6 State : nat,

7 ID, Resource : text

8 init

9 State:=1

10 transition

11 %% SP receives a request for a resource and issues an

12 %% AuthReq(ID, SP)

13 S1_A1. State = 1 /\ rcv(C2SP, C, URI) =|>

14 State’:=3 /\ ID’ := new()

15 /\ snd(SP2C, C, C.IdP.(ID’.SP).URI)

16 %% SP receives a Response(SP, C, IdP, ID) and serves the

17 %% resource to C

18 A4_S2. State = 3 /\ rcv(C2SP, C,

SP.{SP.C.IdP.ID}_inv(KIdP).URI) =|>

19 State’:=5 /\ Resource’ := new()

20 /\ snd(SP2C, C, Resource’)

21 /\ request(SP, C, sp_c_uri, URI)

Figure 4. HLPSL++ specification of the SAML SSO protocol: Role SP

1 role identityProvider (

2 C, IdP, SP : agent, KIdP : public_key,

3 IdP2C, C2IdP : channel

4) played_by IdP def=

5 Local

6 ID, URI : text,

7 State : nat

8 init

9 State:=7

10 transition

11 %% IdP receives an AuthReq(ID, SP) from C and issues a

12 %% Response(SP, C, IdP, ID)

13 A2_A3. State = 7 /\ rcv(C2IdP, C, C.IdP.(ID’.SP).URI’) =|>

14 State’:=9 /\ snd(IdP2C, C,

SP.{SP.C.IdP.ID’}_inv(KIdP).URI’)

15 end role

Figure 5. HLPSL++ specification of the SAML SSO protocol: Role IdP

The definitions of the three basic roles participating in the SAML SSO, namely client,

serviceProvider, and identityProvider, are given in the figures 3, 4, and 5 respectively. The

specification of a role includes a list of parameters and the agent playing that role. A basic role with

parameters therefore corresponds to many possible instances of same role obtained by instantiating the

parameters with terms of the appropriate type. For instance , the role serviceProvider—cf. lines 2-3

8

of Figure 4—has the following parameters: C, SP, and IdP of type agent, KIdP of type public_key,

SP2C and C2SP of type channel (used by SP to communicate with the client), and URI of type text.

In addition, this role will be played by agent SP (cf. line 4). Roles (both basic and composed) can also

contain the definition of local variables and constants within the section local. For instance,

serviceProvider uses the local variable State of type nat and the local variables ID and

Resource of type text (cf. lines 5-7). Local variables can be assigned to initial values in the section

init. For instance, State is initially assigned to the value 1 in the serviceProvider role (cf. line

9).

The behavior of roles is specified in the transition section. This comprises a collection of transitions

of the form Pre =|>Post, where Pre is the conjunction (denoted by the /\ symbol) of preconditions for

the applicability of the transition and Post is the conjunction of effects that result by the execution of the

transition. For example, the first transition in Figure 4 (cf. lines 13-15) occurs only if State=1 and a

message URI is received on channel C2SP from agent C—this is represented by rcv(C2SP, C,

URI)—and its execution sets the value of State to 3, generates a fresh value for ID (cf. second

conjunct in line 14), and makes SP (the player of the role) sending the message

C.IdP.(ID’.SP).URI to C over channel SP2C. The primed variable ID’ denotes the new value of

ID. In general when a primed variable occurs in a received message, it means that the variable will be

assigned to a new value, the one specified in the corresponding part of the message received. If the primed

variable occurs in an outgoing message, then the value just assigned to that variable will be included in the

message. In summary, unprimed variables denote message elements that the role is checking while

receiving that message (as they are already stored somewhere in its state), while primed variables model

those elements that are unknown to the receiver. For instance, the transition of identityProvider

(see Figure 5, lines 13-14) states that IdP checks whether the first two and the fourth element of the

message received correspond to the (known) values of C, IdP and SP respectively, while it will not check

the last and the third elements, namely ID’ and URI’.

1 role session (

2 C, IdP, SP : agent, KIdP : public_key,

3 C2SP, SP2C, C2IdP, IdP2C : channel,

4 URI : text

5) def=

6 init

7 %% Assumption (A1): C <-> SP

8 confidential(SP, C2SP)

9 /\ weakly_authentic(C2SP)

10 /\ weakly_confidential(SP2C)

11 /\ authentic(SP, SP2C)

12 /\ link(C2SP, SP2C)

13 %% Assumption (A2): C <-> IdP

14 /\ confidential(IdP, C2IdP)

15 /\ weakly_authentic(C2IdP)

16 /\ confidential(C, IdP2C)

17 /\ authentic(IdP, IdP2C)

18 /\ link(C2IdP, IdP2C)

19 composition

20 client(C, IdP, SP, KIdP, C2SP, SP2C, C2IdP, IdP2C,

URI)

21 /\ serviceProvider(C, IdP, SP, KIdP, SP2C, C2SP, URI)

22 /\ identityProvider(C, IdP, SP, KIdP, IdP2C, C2IdP)

9

23 end role

Figure 6. HLPSL++ specification of the SAML SSO protocol: Session

Once the basic roles are defined, their parallel composition is defined by means of the composed role

session as shown in Figure 6. The parameters of the composed role can be related to those of the

component roles so that when the composed role is instantiated its component roles are properly

instantiated too. Parameters include the channels used by component basic roles to exchange messages.

Each SSL channel (cf. assumptions (A1) and (A2)) is modeled by two unidirectional channels (see part (a)

of Figure 7). C2SP and SP2C model the SSL channel between C and SP: the former carries messages

from C to SP, the latter carries messages flowing in the opposite direction. They are assumed to enjoy the

following properties (cf. lines 8-12):

 confidential(SP, C2SP), i.e. the output of C2SP is accessible to SP only, and

weakly_authentic(C2SP), i.e. the input of C2SP is exclusively accessible to a single, yet

unknown, sender;

 weakly_confidential(SP2C), i.e. the output of SP2C is exclusively accessible to a single,

yet unknown, receiver and authentic(SP, SP2C), i.e. the input of SP2C is accessible to SP

only; and

 link(C2SP, SP2C), i.e. the principal sending messages on C2SP is the same principal that

receives messages from SP2C.

Channel C2IdP and IdP2C model the SSL channel between C and IdP. The former carries messages

from C to IdP, the latter carries the messages flowing in the opposite direction. The properties enjoyed by

C2IdP (IdP2C) are similar to those of C2SP (resp. SP2C), the only difference being that IdP2C is

confidential to C and not simply weakly confidential thanks to the authentication of C on IdP (cf. lines

14-18). A precise definition of the properties of channels supported by HLPSL++ can be found in

(Armando et al., 2008).

Figure 7. (a) Communication channels among basic roles; (b) Communication channels instantiated

within the environment role

The HLPSL++ specification is concluded by the top-level role environment (see Figure 8). This role

includes a const section (cf. lines 4-8) containing the declaration of global constants, the definition of

the knowledge initially possessed by the intruder (cf. lines 9-11), and a composition section (cf. lines

13-14) that defines the parallel composition of the sessions. This specification contains a session in which

c and idp play the protocol with i (playing the role of SP) and a session in which c and idp play the

10

protocol with sp by using proper communication channels to communicate (see part (b) of Figure 7).

Notice that a constant i of type agent is implicitly declared and associated with the intruder.

1 role environment()

2 def=

3 Const

4 sp_c_uri, c_sp_resource, uri_i, uri_sp : protocol_id,

5 c, idp, sp : agent,

6 c2idp_s1,idp2c_s1,c2idp_s2,idp2c_s2,c2i,i2c,c2sp,sp2c:

channel,

7 n : text,

8 kidp, ki : public_key,

9 intruder_knowledge={c, sp, idp, kidp, ki, inv(ki), uri_i,

uri_sp, n,

10 c2i, i2c, c2sp, sp2c, c2idp_s1, idp2c_s1,

11 c2idp_s2, idp2c_s2}

12 Composition

13 session(c, idp, i, kidp, c2i, i2c, c2idp_s1, idp2c_s1,

uri_i)

14 /\ session(c, idp, sp, kidp, c2sp, sp2c, c2idp_s2,

idp2c_s2,uri_sp)

15 end role

16

17 Goal

18 %% property (P1)

19 authentication_on sp_c_uri

20 %% property (P2)

21 secrecy_of c_sp_resource

22 end goal

23

24 environment()

Figure 8. HLPSL++ specification of the SAML SSO protocol: Environment and goals

The security properties that the protocol is expected to meet are stated in the goal section (cf. lines 17-

22). These are the authentication property (P1) and the secrecy property (P2) described in Section «The

SAML Web Browser SSO Profile». Hereafter more details will be provided about how these properties

are modeled.

Authentication

The authentication property supported by the HLPSL++ language corresponds to the notion of agreement

as defined in (Lowe, 1997). Thus, SP authenticates C on URI amounts to saying that whenever SP

completes a run of the protocol apparently with C, then (i) C has previously been running the protocol

apparently with SP, and (ii) the two agents agree on the value of URI (Lowe, 1997). To specify this

property in HLPSL++ it suffices for SP to assert the fact request(SP, C, sp_c_uri, URI) in its

last transition (cf. line 21 of Figure 4), and for C to assert the fact witness(C, SP, sp_c_uri,

URI) as soon as it sends URI (cf. line 14 of Figure 3). The statement authentication_on

sp_c_uri in the goal section (cf. line 19) states that if request(SP, C, sp_c_uri, URI) is

11

asserted, then sometime in the past a corresponding witness(C, SP, sp_c_uri, URI) must have

been asserted for the authentication property to hold. In fact, if a request is not matched by a

corresponding witness, then the intruder must have been playing the protocol run pretending to be the one

that otherwise would have asserted the witness expression.

Secrecy

The secrecy property (P2) holds if and only if the resource at URI provided by SP to C is not learned by

the intruder when the intruder is neither playing SP nor C in that protocol session. To specify this property

in HLPSL++ it suffices for SP to assert the fact secret(Resource’,c_sp_resource,{C,SP})

when sending the last message (cf. line 22 of Figure 4). (The identifier c_sp_resource serves as a

label for this fact.) The statement secrecy_of c_sp_resource in the goal section (cf. line 21 in

Figure 8) states that if secret(Resource’,c_sp_resource,{C,SP}) is asserted, then i should

not learn the secret value stored in Resource’ unless i is the value of either C or SP.

Security Analysis of SAML-Based SSO Protocols

This section illustrates how the AVANTSSAR Platform can be used by software vendors and adopters of

SAML SSO to evaluate the impact of their decisions (e.g., selected SAML SSO options and/or deviations

from the SAML SSO standard) on the security of their SSO solutions. In doing so it focuses on a set of

SAML-based SSO protocols ranging from that proposed by the OASIS standardization body (hereafter

referred to as SAMLSSO) to the one currently in use by Google (GoogleSSO-Post) and considering in-

between variants of the two, including the flawed version used by Google until June 2008 (GoogleSSO-

Pre).

Table 1 presents an excerpt of the results obtained by running the AVANTSSAR Platform against all

these SAML-based SSO variants that differ from each other for the decisions taken in their design,

development, and/or deployment:

 Sign(AuthReq): it indicates whether the authentication request AuthReq is signed or not by the

SP. (The SAML standard leaves this as optional.)

 SP∈AA: it indicates that the SP field is within the authentication assertion AA as required by the

SAML standard.

 ID∈AA: it indicates that the ID field is within the authentication assertion AA as required by the

SAML standard.

 ID checked: it indicates that SP checks that the ID value received in the authentication assertion is

identical to the one it generated for the authentication request. (Stateless SPs may not be able to

perform this check despite this is required by the SAML standard.)

For each variant, the table indicates the results of the analysis for the authentication property (P1): if there

is an attack (Attack column), the time spent by the tool (Time column), and the number of steps required

by SATMC to perform the analysis i.e., the number of steps necessary to either find the attack or prove the

safety of the protocol (Steps column). (Experiments have been carried out on a laptop PC with an Intel

Core 2 Duo 2.53 GHz CPU and 4 GB of RAM.) The results for the secrecy property (P2) are similar:

when no attack is found on (P1), no attack is discovered on (P2) and whenever an attack is found on (P1),

an attack on (P2) is found which contains an additional step in which the intruder receives the resource.

 Decisions Property (P1)

Variant Sign(AuthRe

q) SP∈AA ID∈AA ID checked Attack
Time

(sec) Steps
SAMLSSO n y Y y n 15,2 21

12

GoogleSSO−Pre n n N - y 3,7 13

SSOVariant1 y n N - y 3,3 13

SSOVariant2 n n Y n y 4,9 13

SSOVariant3 n n Y y y 11,3 17

SSOVariant4 n y N - n 3,7 15

GoogleSSO−Post n y Y n n 8,4 18

Table 1. Results of the experiments

As shown in Table 1 the AVANTSSAR Platform does not find any attack on SAMLSSO. This means that

the protocol is safe in the scenario considered.

GoogleSSO-Pre differs from SAMLSSO for the missing ID and SP fields in the authentication

assertion. The reasons for not having used those fields are unknown. Maybe they were the consequence of

internal requirements. For instance, a vendor may decide to not use ID as the advantages of handling it—

from its generation in the authentication request to its check in the authentication response—are not

evident when compared to potential drawbacks (e.g., additional communication between the server at the

SP that generates the authentication request and the server at the SP that provides the final resources). To

assess the implications of these decisions on the security of the protocol, the HLPSL++ specification for

SAMLSSO has been modified by removing ID and SP from the authentication assertion. This amounts to

carrying out the following changes in specification of the basic roles:

 change for IdP: Figure 5, line 14 becomes:

14 State’:=9 /\ snd(IdP2C, C,

SP.{C.IdP}_inv(KIdP).URI’)

 change for C: Figure 3, lines 19-20 become:
19 A3_A4. State = 4 /\ rcv(IdP2C, IdP, SP.{C.IdP}_inv(KIdP).URI) =|>

20 State’:=6 /\ snd(C2SP, SP, SP.{C.IdP}_inv(KIdP).URI)

 change for SP: Figure 4, lines 18 becomes:

18 A4_S2. State = 3 /\ rcv(C2SP, C, SP.{C.IdP}_inv(KIdP).URI)

=|>

By analyzing the resulting specification, the AVANTSSAR Platform reports violations on both

authentication and secrecy in accordance with the discoveries outlined in (Armando et al., 2008). The

attack shows that a compromised SP is able to impersonate a client at another SP. Figure 9 depicts the

MSC returned by the AVANTSSAR Platform for the attack on the authentication property. The attack

relies on the execution of two parallel protocol sessions where the intruder plays the man-in-the-middle by

exploiting a weakness in the authentication assertion. In fact the authentication assertion no longer states

that C is authenticated at IdP for the request ID made at SP as prescribed by the standard, but it simply

states that C is authenticated to IdP. This allows the intruder to misuse the assertion to get access to a

different SP. More in detail:

 in message (m1) c initiates a session of the protocol to access a resource provided by the

(malicious or compromised) service provider i. Notice that it is not necessary that the message is

actually received by i because i already knows the content of the first message (uri_i).

 i sends to c a redirect response directed to idp containing an authentication request and the

address uri_i of the resource (see messages (m2) and (m3)).

 The idp generates the authentication assertion which is posted by c to i (see messages (m5) and

(m7)).

 In parallel i starts a new session of the protocol with sp pretending to be c (thus indicated as

i(c)). This session is interleaved with the previous one. In message (m4) i sends the first

message to sp, and in message (m6) this message is received by sp.

13

 The authentication request sent by sp to the official recipient c (see message (m8)) is neglected

by i.

 The intruder mischievously reuses the assertion received by c (see message (m7)) to trick sp into

believing he is c (see message (m9)).

In the MSC, different arrows are used to indicate if a particular message has been sent or received. The

notation (i) indicates that the message M has been sent by A over the channel ch to the agent B

that has not received yet (pointed by the dotted arrow). With reference to the specification in Section

«Formal Modeling of the SAML Web Browser SSO Profile», this corresponds to the execution of a

transition of the basic role A, having as effect snd(ch,B,M). Notice that M will not be necessarily

received by B. If this is the case, the notation (ii) indicates that the message M sent by the

sender A has been received by B (pointed by the solid arrow). With reference to the specification in

Section «Formal Modeling of the SAML Web Browser SSO Profile», this corresponds to the execution of

a transition of the basic role B, having as precondition rcv(ch,B,M). In order to increase the readability

of the MSC, when the same message is sent and received by the same couple of agents in two contiguous

steps, then (i) and (ii) are replaced by a single solid arrow, thus the resulting notation is as follows:

 .

In the MSC, a bullet notation is used to display the properties of the channels defined in the HLPSL++

specification. For instance, the notation indicates that the channel ch is weakly authentic and

confidential to B, while indicates that ch is authentic for A and confidential to B. A complete

definition of these symbols is detailed in the legend of Figure 9.

Note that though SATMC is able to discover the shortest attack (if any), still this attack can comprise

some spurious messages. This is the case for messages (m10), (m11), and (m12) that are not relevant for

the attack.

14

Figure 9. Attack on the SAML-based SSO for Google Apps

As a possible countermeasure against this man-in-the-middle attack one may think to ask the SP to sign

the authentication request. The corresponding HLPSL++ specification (SSOVariant1) is obtained by

carrying out a few minor changes similarly to what it has been done above. By running the AVANTSSAR

Platform against SSOVariant1, it has been discovered that the signature on the authentication assertion

does not prevent the man-in-the-middle attack. The MSC of Figure 10 depicts the first four messages of

this attack as the rest of the attack proceeds as in Figure 9, the only difference being the presence of the

digitally signed authentication assertion in (m3) and (m4).

15

Figure 10: Attack on the SAML-based SSO for Google Apps despite signature on the authentication

request

As shown above the lack of the SP field in the authentication assertion seems an insurmountable cause of

the attack, but one may wonder whether the presence of the ID field in the authentication assertion could

make the protocol secure. Two variants of the SAMLSSO protocol have been taken into account. Both of

them do not contain the SP field in the authentication assertion but contain the ID field: SSOVariant2

and SSOVariant3. In the latter SP checks that the ID in the authentication assertion is identical to the

one included in the authentication request, while in the former this check is omitted. Both variants are still

vulnerable to the attack. Notice that the attack on SSOVariant3 requires a few more steps (cf. Table 1).

In fact, differently from the previous attacks, the intruder cannot start the two sessions in parallel, because

he needs to know the ID generated by sp before starting the session with c. The MSC of Figure 11

depicts the first messages of the attack, in which i starts a session of the protocol with sp in order to

obtain the ID (cf. messages (m1) and (m2)). When i receives the request by c (cf. message (m3)), she

sends to c message (m4) which contains the ID obtained in (m2). Thus, the authentication assertion

produced by idp for i contains the ID expected by sp. The analysis of SSOVariant2 and

SSOVariant3 thus confirms that the SP field is indeed necessary to prevent the man-in-the-middle

attack of Figure 9.

Figure 11. Excerpt of the attack on SSOVariant3

One may now wonder whether the ID field, which is mandated by the standard, is necessary to achieve the

16

expected security property. The specification SSOVariant4 models the variant of the protocol where

the ID field is dropped from both the authentication request and the authentication assertion. No attack is

found by the AVANTSSAR Platform in this case. This result questions the importance and need of the ID

field: though this field is useful to link the authentication response with the corresponding authentication

request (which seems a good practice to proceed with), it seems irrelevant for the authentication and

secrecy properties that have been considered.

Finally it has been built a HLPSL++ specification of the current version of the SAML-based SSO for

Google Apps which is in operation since August 2008. This specification (GoogleSSO-Post)

comprises the ID field in both the authentication request and the authentication assertion but the

correspondence of these values is not checked by the Google SP. As expected, by running the

AVANTSSAR Platform on GoogleSSO-Post no attack is found.

FUTURE RESEARCH DIRECTIONS

As shown in the previous section, model checking is effective to automatically detect subtle flaws in the

logic of distributed applications. Yet, it must be noted that the analysis is carried out on a formal model of

the system (as opposed to the actual system) and therefore the applicability of model checking techniques

is usually confined to the design phase.

Security testing, unlike model checking, can be used to check the behavior of the actual system. It has

been successfully applied to authorization and similar application-level policies. A special form of

security testing, namely penetration testing, is effective in finding low-level vulnerabilities in on-line

applications (e.g., cross-site scripting), but heavily relies on the guidance and expertise of the user.

Security testing is normally applied in later stages of the service life-cycle, i.e., during the deployment or

even the consumption phase.

Both model checking and security testing are already routinely used to unveil serious vulnerabilities and

are therefore going to play a central role in improving the security of SSO solutions, and more generally

of web-based applications. However, there is an enormous potential in using these technologies in

combination rather than in isolation. In fact, state-of-the-art security verification technologies, if used in

isolation, do not provide automated support to the discovery of important vulnerabilities and of the

associated exploits that are already plaguing complex, web-based, security-sensitive applications. On the

one hand, while model checking is key to the discovery of subtle vulnerabilities due to unexpected

interleavings of service executions, it provides no support to testing the actual services. On the other hand,

penetration testing tools—by supporting the analysis of a single service at a time—lack the global view

and the automated reasoning capabilities necessary to discover the kind of vulnerabilities found by model

checkers, but provide both infrastructure and repertoires of testing techniques that are very useful to find

exploits related to the high-level vulnerabilities found by model checkers.

The integration of model checking for security protocols and security testing can be achieved by

automatically deriving test cases from counter-examples found through model checking. Preliminary work

in this direction is proposed in (Armando, Carbone, Compagna, Li, & Pellegrino, 2010), where the

feasibility of the approach is illustrated via its application to the SAML SSO.

CONCLUSION

Model checking is a verification technique that helps finding flaws in security-sensitive, distributed

applications at the different phases of the service life-cycle. This chapter shows that model checking can

be used by software vendors and adopters of SAML SSO to automatically assess the impact of their

decisions (e.g., choice of options and/or deviations from the standard) on the security of their SSO

solutions. The practical viability of the approach has been demonstrated through the application of a state-

of-the-art model checker to support the security analysis of several variants of the SAML SSO. The

analysis confirms the attack on the SAML-based SSO for Google Apps in operation until June 2008 as

well as on variants thereof. The analysis also confirms the security of the SAML SSO 2.0 as well as of the

17

SAML-based SSO for Google Apps in operation since August 2008, since no attack has been detected

despite the several protocol scenarios considered. The analysis seems also to indicate that the presence of

the ID field in authentication assertion—which is mandated by the standard—does not affect the security

of the protocol.

ACKNOWLEDGMENTS

This work was partially supported by the FP7-ICT-2009-5 Project no. 257876, ―SPaCIoS: Secure

Provision and Consumption in the Internet of Services‖ (www.spacios.eu) and by the ―Automated

Security Analysis of Identity and Access Management Systems (SIAM)‖ project funded by Provincia

Autonoma di Trento in the context of the ―Team 2009 – Incoming‖ COFUND action of the European

Commission (FP7).

REFERENCES

Armando, A., Basin, D., Boichut, Y., Chevalier, Y., Compagna, L., Cuellar, J., et al. (2005). The AVISPA

tool for the automated validation of internet security protocols and applications. In Proceedings of the

17th International Conference on Computer Aided Verification (CAV’05). Springer-Verlag. Retrieved

from www.avispa-project.org

Armando, A., Carbone, R., & Compagna, L. (2007, July). LTL model checking for security protocols. In

20th IEEE Computer Security Foundations Symposium (CSF20). Venice (Italy).

Armando, A., Carbone, R., Compagna, L., Cuéllar, J., & Tobarra, M. L. (2008, October). Formal analysis

of SAML 2.0 Web browser single sign-on: Breaking the SAML-based single sign-on for Google Apps.

In V. Shmatikov (Ed.), Proceedings of the 6th ACM Workshop on Formal Methods in Security

Engineering, FMSE 2008 (pp. 1–10). ACM.

Armando, A., Carbone, R., Compagna, L., Li, K., & Pellegrino, G. (2010, 6-10). Model-checking driven

security testing of web-based applications. In 2010 Third International Conference on Software

Testing, Verification, and Validation Workshops (ICSTW) (pp. 361 -370).

Armando, A., & Compagna, L. (2008, January). SAT-based model-checking for security protocols

analysis. International Journal of Information Security, 7(1), 3-32.

Basin, D. (1999). Lazy infinite-state analysis of security protocols. In R. Baumgart (Ed.), Secure

networking — CQRE (Secure)’99 (pp. 30–42). Springer-Verlag.

Chevalier, Y., Compagna, L., Cuellar, J., Hankes Drielsma, P., Mantovani, J., Mödersheim, S., et al.

(2004). A high level protocol specification language for industrial security-sensitive protocols. In Proc.

SAPS’04. Austrian Computer Society.

Chevalier, Y., Küsters, R., Rusinowitch, M., & Turuani, M. (2003). An NP decision procedure for

protocol insecurity with XOR. In P. Kolaitis (Ed.), Proceedings of LICS’2003. IEEE.

Dolev, D., & Yao, A. (1983). On the security of public-key protocols. IEEE Transactions on Information

Theory, 2(29).

Durgin, N., Lincoln, P. D., Mitchell, J. C., & Scedrov, A. (1999). Undecidability of bounded security

protocols. In Proceedings of the FLOC’99 Workshop on Formal Methods and Security Protocols

(FMSP’99).

Groß, T., Pfitzmann, B., & Sadeghi, A.-R. (2005). Browser model for security analysis of browser-based

protocols. In S. D. C. di Vimercati, P. F. Syverson, & D. Gollmann (Eds.), ESORICS (vol. 3679, pp.

489-508). Springer.

Hansen, S. M., Skriver, J., & Nielson, H. R. (2005). Using static analysis to validate the SAML single

sign-on protocol. In WITS ’05: Proceedings of the 2005 Workshop on Issues in the Theory of sEcurity

(pp. 27–40). New York, NY: ACM Press.

Jacquemard, F., Rusinowitch, M., & Vigneron, L. (2000). Compiling and verifying security protocols. In

M. Parigot & A. Voronkov (Eds.), Proceedings of LPAR 2000 (pp. 131–160). Springer-Verlag.

Lowe, G. (1996). Breaking and fixing the Needham-Schroeder public-key protocol using FDR. In T.

18

Margaria & B. Steffen (Eds.), Proceedings of TACAS’96 (pp. 147–166). Springer-Verlag.

Lowe, G. (1997). A hierarchy of authentication specifications. In Proceedings of the 10th IEEE Computer

Security Foundations Workshop (CSFW’97) (pp. 31–43). IEEE Computer Society Press.

Meadows, C. (1996). The NRL protocol analyzer: An overview. Journal of Logic Programming, 26(2),

113–131. Retrieved from http://chacs.nrl.navy.mil/projects/crypto.html

Millen, J. K., & Shmatikov, V. (2001). Constraint solving for bounded-process cryptographic protocol

analysis. In Proceedings of the ACM Conference on Computer and Communications Security CCS’01

(p. 166-175).

Mödersheim, S., & Viganò, L. (2009). The open-source fixed-point model checker for symbolic analysis

of security protocols. In Fosad 2007-2008-2009 (vol. 5705, pp. 166–194). Springer-Verlag.

Needham, R. M., & Schroeder, M. D. (1978). Using encryption for authentication in large networks of

computers (Tech. Rep. No. CSL-78-4). Palo Alto, CA: Xerox Palo Alto Research Center.

OASIS. (2005a, April). Security assertion markup language (SAML) v2.0. Retrieved from

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security

OASIS. (2005b, July). SSTC response to security analysis of the SAML single sign-on browser/artifact

profile. Retrieved from http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security

Rusinowitch, M., & Turuani, M. (2001). Protocol insecurity with finite number of sessions is NP-

complete. In Proceedings of the 14th IEEE Computer Security Foundations Workshop. IEEE

Computer Society Press.

The AVANTSSAR Team. (n.d.). The AVANTSSAR project. Retrieved from http://www.avantssar.eu/

Turuani, M. (2006). The CL-Atse protocol analyser. In Term Rewriting and Applications (Proceedings of

RTA’06) (pp. 277-286).

US-CERT. (2008, Sep 2). Vulnerability note VU#612636 - Google SAML single sign on vulnerability.

Retrieved from http://www.kb.cert.org/vuls/id/612636

