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ABSTRACT
Bag of Words (BOW) models are nowadays one of the most
effective methods for visual categorization. They use vi-
sual dictionaries to aggregate the set of local descriptors
extracted from a given image. Despite their high discrimi-
native ability, one of the major drawbacks of BOW still re-
mains the computational cost of the visual dictionary, built
by clustering in the high dimensional feature space.
In this paper we introduce a fast, effective method for lo-
cal image descriptors aggregation that is based on marginal
approximations, i.e. the approximation of each descriptor
component distribution. We quantize each dimension of the
feature space, obtaining a visual alphabet that we use to map
the image descriptors in a fixed-length visual signature. Ex-
perimental results show that our new method outperforms
the traditional BOW model in both accuracy and efficiency
for the scene recognition task. Moreover, we discover that
the marginal-based aggregation provides complementary in-
formation with respect to BOW, by combining the two mod-
els in a video retrieval system based on TRECVID 2010 [9].

Categories and Subject Descriptors
I.4.7 [Artificial Intelligence]: Scene Analysis

General Terms
Algorithms

Keywords
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1. INTRODUCTION
Effective techniques for automatic image categorization

are essential to manage large collections of digital images
and video. The general approach is to model the redun-
dant image information with a low-dimensional description,
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Figure 1: MEDA: a histogram representing the com-
ponent distribution over unidimensional bins.

namely an image signature, and then classify such signa-
tures with supervised learning techniques. Visual descrip-
tions based on quantized local invariant features (e.g. [4])
have been extensively used for image categorization and re-
trieval. Among these approaches, the Bag-Of-Visual-Words
[1] model has been proven to be a very successful method to
aggregate discriminative local image properties. The image
is first represented with a set of independent local patches
encoded by robust local descriptors. The resulting represen-
tation is a high-dimensional, variable length description of
the image. Visual dictionaries are then used to map each im-
age to a fixed length feature vector that can be used as input
for traditional classifiers (e.g. Support Vector Machines).
Many methods have been proposed to generate such dictio-
naries. Generally, they use clustering techniques on the local
descriptors of a set of training images to define visual words.
K-means [1] clustering is nowadays the most common tech-
nique for creating BOW, but recently more efficient methods
based on mean-shift [2], hierarchical clustering [5], or fixed
quantization based on lattices [10] have been proposed to
improve the model performances.
Despite their good performances in image recognition and
retrieval, one of the major drawbacks of all these approaches
is their computational cost, for both clustering in the high
dimensional feature space (determined by the descriptors
distribution) and visual words assignment.
In this paper we present a simple, fast and effective algo-
rithm for local feature quantization that we name MEDA
(Marginal Estimation for Descriptors Aggregation). This
approach provides a different way of aggregating local de-
scriptors that does not involve any clustering or operation
in the high-dimensional space, leading to an image signature
that requires much less computation and provides better ac-
curacy compared to traditional BOW models.



Similar to the BOW model, a k-dimensional local invariant
descriptor (LID) is used to describe a set of interest points
in the image. While generally the quantization is performed
in a k-dimensional space determined by the LID length, the
basic idea of our approach is to model the k-dimensional
space by the k marginal distributions approximations. This
is obtained with an aggregation process that involves (see
Fig. 1 for a visual explanation) two steps: (a) we quantize
the range of each dimension of the LID into n bins, defining a
reduced set of possible values that each of the k components
of a described point can take; (b) given an image and its
set of descriptors, we count the frequencies of the computed
bin values, and we collect them in a k × n histogram, i.e.
the MEDA image signature. Therefore, the marginal, i.e.
the probability distribution of each component of the LID
is approximated by a histogram representing its frequency
over unidimensional bins.
Following the textual metaphor of the BOW, our method
defines, for each component of the LID, a set of possible
1-d visual letters, namely the bin values; the collection of
such letters is a visual alphabet that allows the mapping of
an image to a fixed-length attribute vector. In this paper,
we present and compare three different methods that define
the values in the visual alphabet, based on different types of
range quantization, namely uniform quantization, quantile-
based quantization and an entropy-based quantization we
perform using a decision tree.
In order to test the effectiveness of MEDA for image rep-
resentation we first choose the indoor (67 classes) [7] and
outdoor (8 classes) [6] scene recognition task. Results show
that, in both databases, our technique outperforms in accu-
racy and efficiency the classical BOW model for the same
feature size. We also evaluate the performances of our tech-
nique for the Trecvid 2010 [9] Semantic Indexing Task. We
show that BOW and MEDA model achieve the same results
for concept detection. Moreover, when combining MEDA
with the BOW, we also discover that our new technique
brings a new, complementary source of discriminative in-
formation in the local image analysis, improving the final
retrieval precision by 25 %.
The remainder of this paper is organized as follows: Sec. 2
presents a detailed implementation of the MEDA model for
local features quantization; we then explain, in Sec. 3, a
variety of methods to approximate the range of the compo-
nents; finally, in Sec. 4 we evaluate the performances of our
model comparing it with traditional BOW.

2. MARGINALS ESTIMATION
FOR DESCRIPTORS AGGREGATION

We propose an image representation that collects in a his-
togram the frequency of each component of the locally ex-
tracted vectors. While the BOW model quantizes the local
features in a multi-dimensional space (words) determined by
the descriptor length, here the quantization is performed in
a 1-d space, for each component (letter) of the LID.
Given an image I, a set of w salient points is automatically
detected in the image. Then, local descriptors x1, x2, . . . , xw

of length k are computed over the surrounding regions; we
therefore obtain a set of normalized vectors xi = (x1

i , . . . , x
k
i )

, where each element xj
i represents the value of the descrip-

tor xi at position j, j = 1, . . . , k.
After normalization, each element xj

i can take a value in the

Figure 2: Three versions of the MEDA alphabet

finite interval R = [−1, 1], which covers a very large set of
possible discrete values a1, a2, . . . , am. The idea here is to
quantize R by mapping it into a smaller set of discrete val-
ues βj ∈ R, corresponding to a set of bins binj

1, . . . , bin
j
n,

i.e. our alphabet, defined for each dimension of the LID:

binj
b =[βj

b , βj
b+1[, b=0, . . . , n−1, n<m (1)

(+1 is added to the last bin). By doing so, each element in
the image can be represented by the index of corresponding
bin binj

b : βj
b ≤xj

i <βj
b+1 . The choice of the bin boundaries

values will be discussed in the next Section.
We have therefore defined a set of shared visual letters that
can be used to approximate the marginal distribution of the
jth element of the descriptors in the image. We can now
represent the image as the collection of the number of ele-
ments xj

i , ∀i, j that fall into each of the identified bins.
The resulting signature for the image I is a vector

v = (v1
1 , v1

2 , . . . , v1
n, v2

1 , . . . , vk
n)

with vj
b = #{xi : xj

i ∈ binj
b}, ∀i, j,1 The dimension of the

MEDA signature is therefore n × k.2

3. ALPHABET CONSTRUCTION
How to define the boundaries of such bins, our letters,

so that the marginal of the jth component, ∀j is properly
estimated? In this section we tackle this issue using three
different approaches, namely: (1) uniform quantization:
the range is divided into n equally spaced bins (2) quantile-
based quantization: the range is divided so that the prob-
ability of a sample to fall into a bin is equal for all the n bins
in the quantized space (3) tree-based quantization: for
each bin, the boundaries are learnt by minimizing the over-
all entropy given a progressively smaller interval of R. Each
of these methods leads to a different version of the MEDA
histogram, that will be evaluated in Sec 4.

3.1 Uniform Bins
The most simple approach to define the bin boundaries

over the data range is the uniform quantization. The ad-
vantage of such a simple approach is that it does not require
prior knowledge of the marginal distribution of the compo-
nents. As every component of the LID can take values in the
same interval [-1,1], the resulting alphabet is an identical set
of letters for every j. The range R is divided into n equal
intervals of length 2/n, and the set of bins valid for every
component (see Fig. 2(a)) is defined as:

1#{·} is a function that counts the number of the elements that
satisfy the condition in brackets.
2Intuitively, if we define a matrix M whose rows are the descrip-
tors xi, v represents the concatenation of the n-dimensional his-
tograms of the set of points stored in each column of a M



binb = [−1 + 2b
n

,−1 + 2(b+1)
n

[

3.2 Quantile-Based Bins
Here we try to adapt the width of each bin to the prob-

ability distribution of the component over the data range.
This process requires a learning phase in which we iden-
tify the probability of the jth component of the descrip-
tors to take the value ar, r = 1, . . . , m in the range R, i.e.
the marginal distribution of xj

i (see Fig. 2(b)). We need
a dataset of N images over which we collect W described
points xl, l = 1, . . . , W ; we can then define the marginal:

p(aj
r) = #{xl : xj

l = ar}

and the cumulative probability P (xj
l ≤ ar) =

∑r
s=1 p(aj

s).

We want each component xj
l to be equally probable for all

the bins in the range: we need therefore to find those values
in the interval for which p(xj

l ∈ binj
b) = W/n for all b, being∑

p(aj
r) = W . The final set of bins is defined as:

binj
b =[aj

r : P (xj
l≤ar) = bW

n
, aj

r : P (xj
l≤ar) = (b+1)W

n
[

3.3 Entropy-Based Bins
We propose a partition of the data range into a set of

unbalanced bins, selected based on the minimization of the
overall entropy. Here again we need a learning phase on a
training set of N images and a total of W keypoints xl. We
build, for each position j of the LID, a decision tree T j ,
with n splits built in n iterations, that progressively learns
the boundaries of each binj

b.

Each node T j(t), at depth T j
d (t) of the tree considers the set

of xj
l that take values between T j

0 (t) and T j
end(t). The tree

growing starts from the root node T j(0), corresponding to

the whole set of xj
l ∈ R and, at each step, finds the value

θj
t in R for which the resulting partition of the data has the

minimum entropy, i.e. the optimum bin boundary.
If we assume the dataset is categorized in c classes y1, .., yc,
the general entropy of the data for a split ar ∈ R is:

H(y|ak) = −p(xj
l<ar)

c∑

p=1

p(yp|xj
l<ar)log(p(yp|xj

l<ar))

−p(xj
l≥ar)

c∑

p=1

p(yp|xj
l≥ar)log(p(yp|xj

l≥ar))

with p(yp|xj
l <ar) and p(yp|xj

l≥ar) being the probability of
a component belonging to an image labeled with category
yp to fall into the low/high bin generated by the split.3 The
following is the pseudo-code that summarizes how to grow
a decision tree to learn the alphabet for the jth component:
Grow Tree

T j(0) = {root}
repeat

choose unmarked leaf T j(t)

find θj
t = arg min

ar

Ht(y|ar), T j
0 (t)≤xj

l <T j
e nd(t)

if T (t)j
d < max depth then

T j
0 (t + 1) ← T j

0 (t), T j
end(t + 1) ← θj

t {left child}
T j

0 (t + 2) ← θj
t , T j

end(t + 2) ← T j
end(t) {right child}

else
mark T j(t)

end if
until all leaves are marked
βj

b ← in order tree walk on θj
t

3

p(yp|xj
l <ar) =

#{x
j
l
:x

j
l
<a∈yp}

#{x
j
l
:x

j
l
<ar}

; p(yp|xj
l ≥ar) =

#{x
j
l
:x

j
l
≥a∈yp}

#{x
j
l
:x

j
l
≥ar}

Two child nodes T j(1) and T j(2) are created as the result of
the split at the first iteration (see Fig. 2 (c)); at the second
iteration, T j(1) will find the best split for the set of elements
for which holds −1≤xj

l <θ0, while T j(2) will consider those

xj
l that lie between θj

0 and 1. The process is iterated until
the maximum depth (max depth) required to identify n bins
is reached. Finally, the set of boundaries θj

t found is sorted
and the bin values are assigned according to Eq. (1).

4. EXPERIMENTAL VALIDATION
This section presents an evaluation of the different ver-

sions of MEDA on a variety of challenging datasets. We
compare accuracy and computational efficiency of MEDA
and BOW on two datasets built for the scene recognition
task. We then test the effectiveness of the two approaches
for a video retrieval system built for the TRECVID 2010 [9]
database.

4.1 Scene Recognition Task
We evaluate the performances of our model for image

recognition in two challenging datasets, for indoor and out-
door scene categorization. First, we extract the image local
descriptors using the PCA-SIFT method described in [3],
which reduces the dimensionality (d = 36) of the original
SIFT (as proposed in [4], with d = 128) by applying PCA
on the gradient image around the salient point. Once the lo-
cal descriptors are extracted, we aggregate them using both
BOW, by clustering a subset of training images using a stan-
dard k-means algorithm, and MEDA models (we implement
the three different versions of the MEDA model according
to the methods in Sec. 3). A one vs all SVM is indeed built
to separate each class from the others, using a chi-square
kernel of degree 2. As evaluation measure, we use the aver-
age multiclass prediction accuracy.
Experimental Setup
The Outdoor Scenes Dataset, first introduced in [6], is
composed of 2600 color images organized in 8 categories of
natural scenes. We split such dataset using 100 images per
class for training and the rest for testing. For evaluation,
we compute: MEDA uniform quantization, 20 bins (uni-
form 20 × 36), quantile-based, 20 bins (quantile 20 × 36).
entropy-based, 16 bins (tree 16 × 36). In order to compare
the performances with MEDA, we create a set of visual dic-
tionaries with 500/720 visual words (BOW 500/BOW 720).
The Indoor Scenes Dataset,with 67 categories and 15620
images, was proposed in [7] as a new, unique database for
indoor scene recognition, . For this second group of experi-
ments, we follow the experimental setup in [7]: 20 images for
testing and the rest for training. We define for this experi-
ment: uniform 10 × 36, MEDA with uniform quantization,
10 bins ; quantile 10 × 36, quantile-based, 10 bins and tree
8 × 36, tree-based, 8 bins. Moreover, we build dictionaries
of 360/500 visual words (BOW 360, BOW 500).
Results
As we can see from Table 1, the most complex version (tree
·×36) of the MEDA model is more than 150 times less com-
putationally expensive compared to the BOW model corre-
sponding to the same feature size. Moreover, we show in Fig
3(a-b) that MEDA is not only efficient, but it outperforms
in accuracy the BOW model by 10% for the Indoor Scenes
Dataset and 3% for the Outdoor Scenes.

4.2 Video Retrieval Task



18.5
19

19.5
20

20.5
21

21.5
22

22.5
23

23.5
A

ve
ra

ge
 P

re
di

ct
io

n 
A

cc
ur

ac
y

70

70.5

71

71.5

72

72.5

73

BOW 
500

BOW 
720

uniform 
20x36

quantile  
20x36

tree 
16x36

A
ve

ra
ge

 P
re

di
ct

io
n 

A
cc

ur
ac

y

0

0.05

0.1

0.15

0.2

0.25

M
ea

n 
A

ve
ra

ge
 P

re
ci

si
on BOW 500 uniform Fusion

Indoor Scenes Dataset Outdoor Scenes Dataset Trecvid 2010 Semantic Indexing Task

(a) (b) (c)

Figure 3: Comparing BOW with MEDA: (a-b) scene recognition (c) video retrieval

Table 1: Training Set Processing Times (s) for BOW vs MEDA models
Indoor 67 Dataset Outdoor 8 Dataset

BOW
360 62503

BOW
500 10027

500 86685 720 14429

MEDA
uniform (10 × 36) 135

MEDA
uniform (20 × 36) 55

quantile (10 × 36) 163 quantile (20 × 36) 23
tree (8 × 36) 401 tree (16 × 36) 87

For the Light Semantic Indexing Task of TRECVID (SIN),
participants are required to build a retrieval system that pro-
duces a ranked list of relevant shots ten semantic concepts.
Experimental setup
The training set of TRECVID 2010 contains 3200 videos
that we split in 1617 for training and 1616 for test. For our
experiments, we extract SIFT [4] descriptors from the video
keyframes and quantize them using BOW with 500 words
(BOW 500 ), as in [8], and MEDA with uniform quantiza-
tion (uniform)4. A set of SVM-based classifiers is trained to
detect the concept presence, for each concept. The concepts
score of MEDA and BOW are then linearly fused (fusion)
to evaluate the effectiveness of the combination of the two
approaches. As evaluation measure, we use the mean aver-
age precision.
Results
Despite its simplicity and efficiency, MEDA achieves re-
trieval results comparable with the BOW model, as shown
in Fig.3(c). The most interesting result here is the improve-
ment we obtain on the BOW-based retrieval (+25% on the
final MAP) by combining it with the MEDA-based retrieval.
Our technique for descriptor aggregation brings new, com-
plementary information to a traditional BOW model. As a
matter of fact, MEDA calculates the frequency of each com-
ponent (visual letter), while BOW calculate the frequency
for the whole vector (visual word). Similar explanation can
justify the poor results we obtain with MEDA for some con-
cepts e.g. Airplane Flying.

5. CONCLUSIONS
Bag of Words is an effective method for image descrip-

tion. Despite its accuracy, one of the major drawbacks of
such model is its high computational cost. In this paper
we introduced a new model for local descriptor aggrega-
tion based on descriptor marginal distribution approxima-
tion, namely the MEDA model, and demonstrated that it
represents a fast and reliable approach for image categoriza-
tion. Moreover, we showed that its combination with BOW
improve the performances of a video retrieval system by 25

4The number of bins is optimeized per concept in the training
phase

%, making MEDA a promising cue for content based multi-
media retrieval. Possible tracks for future work include the
usage of base LIDs other than SIFT, and the addition spa-
tial information in the MEDA model. Moreover, a possible
solution against the high dimensionality of the final image
signature could be the use of techniques such as PCA. Fi-
nally, given the good performances of our 1-d quantization
technique when combined with k-d quantization, we could
explore the possibility of 2 or 3-d quantization and build
multi-dimensional visual dictionaries.
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