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Abstract—Modern VLSI decoders for low-density parity-
check (LDPC) codes require high throughput performance while
achieving high energy efficiency on the smallest possible foot-
print. In this paper, we present two optimizations to enhance
the throughput and reduce the power consumption for these
decoders. As a first optimization, we seek to speedup the decoding
task by modifying the processing step known as syndrome check.
We partition this task and perform it in on-the-fly fashion. As a
second optimization, we address the topic of iteration control in
order to save energy and time on unnecessary decoder operation
when processing undecodable blocks. We propose an iteration
control policy that is driven by the combination of two decision
metrics. Furthermore, we show empirically how stopping criteria
should be tuned as a function of false alarm and missed detection
rates. Throughout this paper we use the codes defined in the IEEE
802.11n standard to show performance results of the proposed
optimizations.

Keywords—LDPC codes; iterative decoding; syndrome cal-
culation; throughput enhancement; stopping criteria; iteration
control; low power.

I. INTRODUCTION

Low-density parity-check (LDPC) codes have gained a

lot of interest because of their outstanding error-correction

performance. Originally proposed by Gallager in 1962 [3] and

rediscovered by Mackay [4] in the 1990s, these codes exhibit

a performance that comes very close to the limits imposed by

Shannon.

Several communication standards have already adopted

these codes, ranging from Wireless Local/Metropolitan Area

Networks (IEEE 802.11n [5] and 802.16e [6]) and high-

speed wireless personal area networks (IEEE 802.15.3c [7])

to Digital Video Broadcast (DVB-S2 [8] and DTMB [9]) and

10Gbit Ethernet (10GBASE-T [10]). Furthermore, these codes

are currently being proposed for next generation cellular and

mobile broadband systems as defined by the ITU-R to comply

with the IMT-Advanced radio interface requirements: IEEE

802.16m [11] and 3GPP LTE-Advanced [12].

In the case of mobile wireless terminals high throughput and

low power operation are required. Nevertheless, these goals

are often contradictory due mainly to the iterative nature of

the decoding algorithms used. For a successful decoding task

the fulfillment of all parity-check constraints is verified, but

usually for an unsuccessful task a preset maximum number of

iterations is completed.

In this paper, we propose to optimize one recurrent task

that is performed within each decoding iteration. Syndrome

check or verification is performed in order to confirm the

validity of the obtained codeblock and hence decide whether

to continue or halt the decoding process. This task corresponds

to the evaluation of all the parity-check constraints imposed by

the parity-check matrix. We propose to perform this task on-

the-fly so that a partially unsatisfied parity-check constraint

can disable a potential useless syndrome verification on the

entire matrix. We identify as benefits from this technique the

elimination of several hardware elements, a reduction on the

overall task latency and an increase on system throughput.

One form of the proposed technique has been identified in

[13] for the purpose of improving the energy-efficiency of a

decoder. This technique, nevertheless, is sub-optimal in the

error-correction sense as it introduces undetected codeblock

errors. In this work, we show the assumptions for this tech-

nique and a performance analysis, along with a proposal to

recover the performance loss.

As a second topic, we consider iteration control for avoiding

unnecessary decoder operation. Early detection of an undeco-

dable block not only saves energy on unnecessary iterations

but may improve the overall latency when an automatic repeat-

request (ARQ) strategy is also in use. Previously proposed

iteration control policies [14][15][16][17] differ on the deci-

sion metrics used. These decision metrics are characterized by

their dependence or not upon extraneous variables that must be

estimated. The parameters used within the decision rule must

be tuned to particular scenarios. In the previous art it has been

shown how this tuning essentially trades off error-correction

performance and the average number of iterations.

In this work, we identify a decision metric provided by

a specific decoding algorithm, the Self-Corrected Min-Sum

algorithm [18]. This algorithm has been shown to provide

quasi-optimal error-correction performance at very low com-

plexity. We propose to combine two decision metrics in order

to control the iterative decoding task. We perform comparisons

among the previous art and the proposed hybrid control policy

in terms of error-correction performance, average number

of iterations and false alarm rate. The main advantage our

work shows is the energy efficiency of the proposed policy

as it exhibits empirically very low missed detection rates.

Furthermore, we argue that the tuning of parameters of a
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Fig. 1. LDPC code matrix and graph example.

stopping rule should be done based upon the false alarm and

missed detection rates performance.

This paper merges and extends our previous work in [1][2].

The remainder of this paper is organized as follows. Section

II presents LDPC codes and their iterative decoding. Section

III outlines the proposed syndrome check method and its

performance while Section IV shows the system level impact

along with results for a VLSI architecture. In Section V, we

show prior stopping criteria and the proposed iteration control

policy while Section VI shows simulation results and the

tuning of stopping criteria. Section VII concludes the paper.

II. BACKGROUND

In this section, we introduce the target error-correction

codes along with their iterative decoding algorithm and the

type of messages used in the computation kernels.

A. LDPC Codes

Binary LDPC codes are linear block codes defined by a

sparse parity-check matrix HM×N over GF(2). This matrix

defines M parity-check constraints among N code symbols.

The number of non-zero elements in H is relatively small

compared to the dimensions M ×N of H .

A codeword c corresponds to the null space of H:

H · cT = S = 0 , (1)

where S is referred to as the syndrome. Indeed, the con-

dition S = 0 suggests that no further decoding iterations are

necessary. Typically, a maximum number of iterations is set

to define an unsuccessful decoding operation.

A quasi-cyclic (QC) LDPC code is obtained if H is formed

by an array of sparse circulants of the same size, [19]. If H

is a single sparse circulant or a column of sparse circulants

this results in a cyclic LDPC code. Architecture-aware [20]

and QC-LDPC codes are composed of several layers of non-

overlapping rows, this enables the concurrent processing of

subsets of rows without conflicts.

The code can also be represented by a bipartite graph in

which rows of H are mapped to check nodes and columns

to variable nodes. The non-zero elements in H define the

connectivity between the nodes. Figure 1 shows an example

matrix (non-sparse) and the corresponding code graph repre-

sentation.

The rows in H establish the parity constraints of the code

as a function of the code symbols with the location of the

non-zero elements of the matrix. Figure 2 shows an example
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Fig. 2. Example parity-check constraints.

correspondance between the code symbols Cn, the parity-

check matrix and the parity-check constraints.

The parity-check constraints are of even parity and the ⊕

operation corresponds to the modulo-2 addition.

B. Decoding Algorithm

LDPC codes are typically decoded iteratively using a two-

phase message-passing algorithm commonly known as sum-

product [21] or belief propagation. This algorithm exchanges

code symbol extrinsic reliability values between check and

variable nodes. Each decoding iteration consists of two phases:

variable nodes update and send messages to the neighboring

check nodes, and check nodes update and send back their

corresponding messages. Node operations are in general in-

dependent and may be executed in parallel. This allows the

possibility to use different scheduling techniques that may

impact the convergence speed of the code and the storage

elements requirements. The algorithm initializes with intrinsic

channel reliability values and iterates until hard-decisions upon

the accumulated resulting posterior messages satisfy equation

(1). Otherwise, a maximum number of iterations is completed.

The computational complexity of the decoding task resides

in the operation performed at the check nodes of the code

graph, indeed it is in here where the tradeoff between error-

correction performance and complexity takes place. Optimal

message computation is performed by the Sum-Product algo-

rithm [21] at the expense of high complexity. The Min-Sum

(MS) algorithm [22] performs a sub-optimal message com-

putation at reduced complexity. Several correction methods

have been proposed to recover the performance loss of the

MS algorithm by downscaling the messages computed using

a normalization or an offset value, [22].

It has been argued in [18] that the sub-optimality of MS

decoding is not due to the overestimation of the check node

messages, but instead to the loss of the symmetric Gaus-

sian distribution of these messages. This symmetry can be

recovered by eliminating unreliable variable node messages

or cleaning the inputs of the check node operation. In [18]

the Self-Corrected MS (SCMS) decoding is introduced, which

exhibits quasi-optimal error-correction performance. An input

to the check node operation is identified as unreliable if it

has changed its sign with respect to the previous iteration.

Unreliable messages are erased and are no longer propagated

along the code graph. In [23] a comparison is performed in

terms of energy efficiency among the most prominent message

computation kernels.
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Motivated by the outstanding error-correction performance

and low complexity of the SCMS kernel, in Section V we

look closely at the behavior of this kernel in order to assist

the early detection of undecodable blocks.

The general structure of an LDPC decoder is shown in

Figure 3. Intrinsic channel values δs are initially used to

generate extrinsic messages, these are messages generated

after processing each row in H . The sum of all extrinsic

messages generated constitutes the posterior messages that are

used to perform a hard-decision and obtain the final decoded

message. The posterior messages are distributed to and from

P processing units by interleaving units (π and π−1) that

correspond to the code graph connectivity.

Log-likelihood (LLR) messages are commonly used since

their arithmetic [24] exhibits very low complexity (e.g., ad-

ditions instead of multiplications). For every received code

symbol x the corresponding LLR is given by:

L(x) = log
P (x = 0)

P (x = 1)
, (2)

where P (A = y) defines the probability that A takes the

value y. LLR values with a positive sign would imply the

presence of a logic 0 whereas a negative sign would imply

a logic 1. The magnitude of the LLR provides a measure of

reliability for the hypothesis regarding the presence of a logic

0 or 1. Considering the messages involved in the decoding

process, the LLR of an information bit x is given by:

L(x) = Lc(x) + La(x) + Le(x) , (3)

where Lc(x) is the intrinsic message received from the

channel, La(x) is the a-priori value and Le(x) is the extrinsic

value estimated using the code characteristics and constraints.

L(x) is the a posteriori value and a hard-decision upon it

(extraction of the mathematical sign) is used to deduce the

binary decoded value. Figure 4 shows the evolution of the

posterior messages LLRs for both a converging and a non-

converging codeblock. These figures correspond to instances

of decoding the LDPC code defined in [5] with block length of

648 and code rate 1/2 over the additive white Gaussian noise

(AWGN) channel with quadrature phase-shift keying (QPSK)

modulation at a signal-to-noise ratio (SNR) of Eb/N0 = 1dB
with 60 maximum iterations. Works in [25][26] have shown

how the LLR values evolve within the decoding process.

Depending upon the operating signal-to-noise ratio (SNR)

regime these values will initially fluctuate or enter right away

a strictly monotonic behavior.

III. ON-THE-FLY SYNDROME CHECK

A hard-decision vector upon the posterior messages is

required after each decoding iteration in order to calculate

the syndrome. Syndrome calculation involves the product in

equation (1), but this is equivalent to the evaluation of each

parity constraint with the corresponding code symbols.

The arguments of each constraint correspond to the hard-

decision of each LLR. A non-zero syndrome would correspond

to any parity-check constraint resulting in odd parity. This

condition suggests that a new decoding iteration must be

triggered. The calculation of the syndrome in this way is

synonymous to the verification of all parity-check constraints

and we refer to this as syndrome check.

The typical syndrome check requires a separate memory for

the hard-decision symbols and a separate unit for the syndrome

calculation (or verification of parity-check constraints), this

consumes time in which no decoding is involved. In this

context, we use the word typical in two senses: one referring

to the calculation of the syndrome with stable values and the

other referring to the evaluation of the syndrome after the end

of a decoding iteration.

A. Proposed Method

Based upon the behavior of the LLRs illustrated in Figure 4,

we propose to perform the syndrome check on-the-fly in the

following way: each parity-check constraint is verified right

after each row is processed. Algorithm 1 outlines the proposed

syndrome check within one decoding iteration for a parity-

check matrix with M rows.

Algorithm 1 On-the-fly syndrome check

1. Decode each row i (or a plurality thereof for parallel

architectures)

2. Evaluate each parity-check constraint PCi by performing

the ⊕ operation on the hard-decision values

3. Verification:

if (PCi = 1) then

Disable further parity-checks verification

else

if (i = M) then

Halt decoding: valid codeblock found

end if

end if

For the proposed syndrome check there are two extreme

cases regarding the latency between iterations. The worst-

case scenario corresponds to the case when all individual

parity-checks are satisfied but at least one from the last batch

to process fails, in which case a new decoding iteration is

triggered. The best-case scenario is when at least one of the

first rows’ parity-check fails, this disables further rows’ parity-

check verification and the next decoding iteration starts right

after the end of the current one. The difference with the

typical syndrome check is that it is always performed and

it necessarily consumes more time as it involves the check of
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Fig. 4. Posterior messages LLRs magnitude evolution.

the entire H . Figure 5 shows the timing visualization of these

scenarios and the evident source for latency reduction of the

decoding task.

The notion of typical syndrome check that we use might

appear rather naive at first glance, but notice that among

all the published works on decoder architectures the way

the syndrome is verified is consistently neglected. It could

be argued that the syndrome of an iteration can be verified

concurrently with the decoding of the following iteration. This

indeed would belittle our claim on task speedup (refer to

Section IV) but nevertheless the on-the-fly syndrome check

hardware would still be of considerable lower complexity than

said alternative mainly due to the lack of memories to save

the hard decisions of the previous iteration.

B. Performance Analysis

A closer examination of the proposed syndrome check re-

veals the possibility for special scenarios. Indeed, the proposed

syndrome check does not correspond to equation (1) since the

parity-check constraints are evaluated sequentially and their

arguments (LLR sign) could change during the processing of

the rows. Consequently, there is a possibility that the decision

taken by the on-the-fly strategy might not be the correct one

at the end of the decoding process. Table I shows the possible

outcomes of the decision taken by the proposed strategy

in contrast to the typical syndrome check. A Pass event is

synonymous to the condition S = 0. A false alarm outcome

corresponds to the case when all parity-check constraints were

satisfied, indeed halting the decoding task during any iteration

as a valid codeblock has been identified (when in fact a final

typical syndrome check would fail). On the other hand, a miss

outcome takes place when during the last iteration (maximum

iteration limit) a single parity-check constraint fails rendering

the codeblock as invalid (when in fact the typical syndrome

check would pass). Both outcomes are the result of at least

one LLR sign change right before the last row processing.

From this set of possible outcomes the probability PH for

TABLE I
DECISION OUTCOMES OF THE PROPOSED SYNDROME CHECK

On-the-fly Typical Outcome
syndrome check syndrome check decision

Pass Pass Hit

Pass Fail False Alarm

Fail Pass Miss

Fail Fail Hit

the proposed syndrome check to be correct can be expressed

by:

PH = 1− (PFA + PM )

= 1− (PP PCBE + (1− PP )(1− PCBE)) , (4)

where PFA is the probability of a false alarm, PM is the

probability of a miss , PCBE is the probability of a codeblock

error and PP is the probability of the proposed syndrome

check to pass.

Based upon the analysis and observations in [25][26] the

LLRs monotonic behavior is guaranteed for the high SNR

regime, in this regime the outcome decision would be a hit

with probability 1. Nevertheless, as the SNR degrades the

inherent fluctuations of the LLRs at the beginning of the

decoding process may cause the decision to be a miss or a

false alarm with non-zero probability. In Figure 6, we show

the outcome of the decoding of 105 codeblocks using the same

simulation scenario as in Figure 4 with code length 1944 and

two code rates in order to observe the rate at which a miss

and a false alarm may occur on the low SNR regime.

Even though the hit rate is shown to be empirically greater

than a miss or a false alarm it is important to address the

occurrence of such anomalies. A miss result would trigger

an unnecessary retransmission in the presence of an ARQ

protocol, while a false alarm result would introduce undetected

codeblock errors. This indeed represents some concerns that

must be analyzed on an application-specific context, as for
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Fig. 6. Decision outcome rates from the proposed syndrome check for N=1944.

example a wireless modem for [5] is not likely to operate at

such low SNR because of the required minimum packet-error

rate performance.

The error-correction performance is affected by the false

alarm outcomes. In Figure 7, we compare the simulated bit-

error rate (BER, in solid lines) and frame-error rate (FER, in

dashed lines) of the typical syndrome check and the proposed

method, this corresponds to the same simulation scenario from

Figure 6a. The performance loss is such that an error-floor

becomes evident, therefore we address the ways in which this

situation can be circumvented.

Detection of the miss and false alarm outcomes can be

performed in two ways:

1) Validating the result provided by on-the-fly syndrome

check by calculating the typical syndrome check.

2) Allowing an outer coding scheme to detect such con-

ditions: e.g., a cyclic redundancy check (CRC) that

typically follows a codeblock decoding.

We propose to detect both miss and false alarm outcomes by

validating the final calculated syndrome (in on-the-fly fashion)

while executing the first iteration of the following codeblock

(CB). Figure 8 depicts both situations. In this way an ARQ

protocol can react to a false alarm outcome and also avoid

an unnecessary retransmission under the presence of a miss

outcome. The performance is fully recovered, shown in Figure

7 as validated on-the-fly syndrome check.
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IV. DECODING TASK SPEEDUP

In Figure 9, we show an LDPC decoder with the modules

used to perform the typical syndrome check. From this it is

evident that the proposed strategy does not require dedicated

elements for the syndrome verification. In fact, in order to

implement the syndrome check in on-the-fly fashion each

processing unit is augmented by a marginal set of components.

Figure 10 shows a serial processing unit driven by a SISO

kernel and the added syndrome check capability. Synthesis

results on CMOS 65nm technology showed that the area

overhead due to the syndrome check capability is only 0.65%

for a BCJR-based processing unit (the SISO kernel is the

modified BCJR algorithm described in [27]).

If the false alarm and miss outcomes are to be detected

by the proposed method in Section III-B, then the syndrome

check circuitry must be replicated and the hard-decision

memory in Figure 9 must be kept. Notice that the imple-

mentation of on-the-fly syndrome check must be evaluated

on an application-specific context: decoder operating range,

DeInterleaver
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values
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Posterior messages

memory Interleaver Processing units

memory

Extrinsic messages

Control
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Fig. 9. Canonical decoder architecture.

sign

SISO unit
extrinsic
message

posterior
message

extrinsic
message

posterior
message

Processing unit

Check enable

OUTPUTINPUT

Parity
result

Added syndrome check circuit

Fig. 10. Processing unit with syndrome check option.

outer multilevel coding schemes and ARQ protocols, logic

and memory overheads.

The main benefit of the proposed syndrome check is the

speedup of the overall decoding task. The processing latency

per decoding iteration for P processing units is given in

number of cycles by:

τc = mb ×
Z

P
× Lc , (5)

where a QC-LDPC code defines H as an array of mb

block-rows of Z rows. In this case P rows are processed

concurrently. Lc is the number of cycles consumed during

the decoding task where decoding and syndrome verification

take place. This value depends upon the number of arguments

to process per row, memory access latencies and syndrome

verification duration. It is in the latter time duration where our
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Fig. 11. Average latency reduction for the syndrome check process and overall decoding task speedup.

proposal exhibits advantages in terms of speedup. A reduction

in the overall task latency improves as well the decoder

throughput assuming the arrival time of frames is high enough

to provide a 100% decoder utilization:

Γ =
N ×R× fclk

I × τc

, (6)

where I is the total number of iterations, R the coding rate

of the N code symbols and fclk the operating frequency.

The main benefit from the proposed strategy is the reduction

in the time consumed during the syndrome check when the

decoding process is far from reaching convergence. It could

be argued that the syndrome check may very well be disabled

during a preset number of initial iterations, but still this tuning

must be done offline or shall depend upon extraneous variables

like the SNR. Estimating these variables provides sensible

overheads. Figure 11 shows the obtained average latency

reduction of the syndrome check process compared to the

typical one as a function of operating SNR. A total of three use

cases with different code lengths L are shown, for a code rate

of 1/2 in Figure 11a and code rate of 5/6 in Figure 11b. The

low SNR region provides the best opportunities for syndrome

check latency reduction since LLRs fluctuate quite often in

this region, i.e., a higher decoding effort renders useless the

initial syndrome verification.

Indeed, what this strategy is doing is speeding up a portion

of the decoding task. With the use of Amdahl’s law [28] it is

possible to observe the overall speedup of the decoding task

based upon the obtained latency reduction of the syndrome

check. The overall speedup is a function of the fraction

Penhanced of the task that is enhanced and the speedup

Senhanced of such fraction of the task:

Soverall =
1

(1− Penhanced) + Penhanced

Senhanced

. (7)

Figure 11 shows as well the average speedup obtained as

a function of operating SNR for the same test cases, these

results consider that the syndrome check process corresponds

to 35% of the overall decoding task per iteration. Amdahl’s law

provides an upper bound for the achievable overall speedup,

1.53 for this setup. The average speedup is higher for the

code rate 1/2 case since the parity-check matrix contains more

rows than the code rate 5/6. For the former case the achieved

speedup ranged from 84% to 96% of the maximum achievable

bound, this corresponds to enhancing the decoder throughput

by a factor of 1.28 and 1.48, respectively.

V. ITERATION CONTROL

Iterative decoding algorithms are inherently dynamic since

the number of iterations depends upon several factors. Proper

iteration control policies should identify decodable and unde-

codable blocks in order to improve on energy expenditure and

overall task latency. Convergence of a codeword is detected

by verifying equation (1) while non-convergence is usually de-

tected by completing a preset maximum number of iterations.

A. Prior Art

Iteration control techniques (also known as stopping crite-

ria) attempt to detect or predict the convergence or not of a

codeblock1and decide whether to halt the decoding task. This

decision is aided by so-called hard or soft decisions. Hard-

decision aided (HDA) criteria are obtained as a function of

binary-decision values from the decoding process; on the other

hand, the soft-decision aided (SDA) criteria use a non-binary-

decision parameter from the decoding process that is compared

against threshold values.

The authors in [29] proposed a termination criterion that de-

tects so-called soft-word cycles, where the decoder is trapped

in a continuous repetition without concluding in a codeblock.

1We use the general term codeblock instead of codeword in order to address
decodable and undecodable instances.



This is achieved by storing and comparing the soft-words

generated after each decoding iteration. This is carried out by

means of content-addressable memories. This criterion saves

on average iterations but clearly introduces storage elements.

In [14] a stopping criterion was proposed based upon the

monitoring of the variable node reliability (VNR), defined as

the sum of the magnitudes of the variable node messages.

This decision rule stops the decoding process if the VNR

does not change or decreases within two successive iterations.

This comes from the observation that a monotonic increasing

behavior is expected from the VNR of a block achieving

convergence. The criterion is switched off once the VNR

passes a threshold value that is channel dependent.

The criterion proposed in [30] is similar to the one in

[14], it monitors the convergence of the mean magnitude of

the variable node reliabilities. The decision rule uses two

parameters tuned by simulations that are claimed to be channel

independent.

The authors in [15] proposed a criterion that uses the num-

ber of satisfied parity-check constraints as the decision metric.

Given the syndrome S = [s1, s2, . . . , sM ]T , the number of

satisfied constraints at iteration l is:

N l
spc = M −

M
∑

m=1

sm . (8)

The decision rule monitors the behavior of this metric

tracking the increments and their magnitudes as well as the

persistence of such behavior. In this rule three threshold values

are used, all claimed to be channel independent.

A similar scheme was presented in [16]. This criterion

monitors the summation of the checksums of all parity-checks

given by:

Sp =

M
∑

m=1

Pm , (9)

where Pm is the checksum of row m as follows:

Pm =
⊕

n∈Im

c(n) , with c(n) =

{

0 if sign(n) > 0
1 otherwise

(10)

where c(n) is the hard-decision mapping of a soft-input of

a row and Im is the set of non-zero elements in the mth row.

This is indeed the complement of the decision metric used

in [15]. The decision rule monitors this metric and uses two

threshold values that are dependent upon signal-to-noise ratio

to make a decision.

In [17] a channel-adaptive criterion was proposed by moni-

toring the sign-changing rate of the LLRs per iteration. The

control rule uses two threshold values that are claimed to be

channel independent.

The above control policies have been derived based upon

the observation of the characteristic behavior shown by a par-

ticular decision metric within the decoding task. The decision

metrics used by these control policies are characterized by
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Fig. 12. Percentage of erased messages.

their dependence or not upon extraneous variables. Estimating

these variables (e.g., SNR) raises the implementation effort.

In Section VI, we show empirically how the tuning of the

parameters used for a decision rule essentially trades off the

false alarm rate and missed detection rate of undecodable

blocks.

B. Proposed Control Policy

SCMS decoding introduces the concept of erased messages,

messages which are deemed useless and are discarded after

each decoding iteration. A formal treatment behind the concept

of erased messages can be found in [18], but intuitively

the number of messages erased per iteration provides some

measure of the reliability (convergence) of the decoding task.

For example, the fewer messages erased, the more reliable

the decoding task is. Through simulations we observed the

total number of erased messages per iteration to identify the

possibility to detect earlier an unsuccesful decoding task and

also convergence. In the case of an undecodable block the

number of erased messages fluctuates around a mean value

(dependent upon the SNR), whereas for a decodable block

this metric approaches zero relatively fast. In Figure 12, we

show how the percentage of erased messages evolves with

each decoding iteration for an instance of a decodable and an

undecodable block. This corresponds to the decoding of the

code defined in [5] with block length 1944 and coding rate

1/2 over the AWGN channel with QPSK modulation, with a

maximum of 60 decoding iterations at Eb/N0 = 1dB.

By detecting the characteristic monotonic decreasing beha-

vior of the total number of erased messages when the decoder

enters a convergence state, it is possible to save energy on

potential undecodable blocks. The erased messages metric

follows the cumulative quality of the arguments for the parity-

check constraints, allowing in fact to observe the dynamics and

evolution of the decoding process with fine granularity.

In Figure 13, we show the average number of decoding

iterations as a function of SNR for the same simulation

scenario of Figure 12 for several stopping rules:
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1) Syndrome check verification, this corresponds to equa-

tion (1).

2) Erased messages metric. Decoding is halted when either

the number of erased messages equals zero or a non-

convergence condition is satisfied. For non-convergence

detection we allow only a fixed number of increments

of this metric.

3) Genie. An ideal stopping rule with foreknowledge of the

transmitted block, in this case decoding would not even

start on an undecodable block.

The syndrome check and the genie criteria correspond to

the empirical bounds of any valid stopping rule. From Figure

13 it is clear that the number of erased messages may be used

as a decision metric to detect earlier undecodable blocks, but

indeed it is not suitable for detecting early convergence since

the absence of erased messages within an iteration is not a

necessary condition for convergence.

From these observations we use the erased messages metric

to detect an undecodable block and the syndrome check for

decodable blocks. We devise a stopping rule that follows the

evolution of the total number of erased messages by counting

the increments of this metric and halting the decoding task

once the number of increments exceeds a given threshold T .

This threshold is a static parameter that essentially trades error-

correction performance and the average number of iterations.

Algorithm 2 outlines the proposed decision rule. After the

decoding of a row m the number of erased messages ǫm is

accumulated per iteration in Sl
ǫ. This sum is compared with the

one from the previous iteration in order to detect the behavior

of the metric as illustrated in Figure 12.

The objective of a stopping criterion can be formulated

as the detection of an undecodable block. Thus the possible

outcomes of such criterion may be a hit, a false alarm and

a missed detection. A false alarm corresponds to the halting

of the decoding task that would have been successful in

the absence of such stopping rule. This indeed generates

unnecessary retransmissions in ARQ protocols. On the other

hand, a missed detection represents useless energy expenditure

Algorithm 2 Stopping Criterion - SCMS

ǫm: number of erased messages in row m
M: set of check nodes

fs: boolean function for syndrome check, equation (1)

count← 0; Sl
ǫ ← 0

for all iterations 1 < l ≤ iterationsmax do

for all rows m ∈M do

Decode row m
Sl

ǫ ← Sl
ǫ + ǫm

end for

if (fs) then

Halt decoding (convergence)

end if

if (Sl
ǫ > Sl−1

ǫ ) then

count← count + 1
end if

if (count > T ) then

Halt decoding (non-convergence)

end if

end for

and an unnecessary delay to request a retransmission. Even

though any stopping criteria can be tuned to make arbitrarily

small the average number of iterations this has an impact on

the false alarm rate. In [15] the authors showed empirically

how the average number of iterations and the false alarm

rate are complementary. We investigated further by looking

at the missed detection rate since this indeed can provide

hints into a criterion’s efficiency. We compared the proposed

criterion in Algorithm 2 to the works in [15] (Shin) and [14]

(Kienle) along with the syndrome check and the genie rules.

In Figure 14, we show the performance comparison in terms

of average iterations, false alarm and missed detection rates.

We observed that when tuning the stopping criteria to have a

similar false alarm rate, as shown in Figure 14b, the missed

detection rates exhibit different behaviors. In fact, the proposed

criterion showed missed detection rates of several magnitudes

of order smaller than the other criteria. The curves for T = 10
and T = 12 of the proposed criterion are below the value of

10−6, not shown in the figure.

Since it is possible to monitor several decision metrics we

investigated how a particular combination may impact the

tuning and performance of the resulting hybrid control rule.

By assisting the decision process with several metrics it is

possible to tune the control policy to reach better performance

in terms of false alarms, missed detections and average number

of iterations. Nevertheless, it was possible to reduce the missed

detections only by adding the rule in Algorithm 2. For this

reason we propose to enhance the performance of the previous

art by adding the number of erased messages per iteration as

a second decision metric on an SCMS-based LDPC decoder.

Figure 15 shows the proposed hybrid iteration control system.

We selected the number of parity-check constraints metric

[15] as it offers less computational complexity than the VNR

metric [14]. In Table II, we compare the cited stopping rules
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Fig. 14. Performance of stopping criteria.

and the one proposed in [17] (Chen) along with Algorithm

2. The number of operations is given as a function of the

dimensions of the parity-check matrix. N is usually much

decoder

SCMS

messages
Erased

Iteration 

Control

Parity−check
constraints

Fig. 15. Hybrid iteration control system.

TABLE II
COMPLEXITY OF DECISION RULES

Criterion
Operations Tuning

Data Type
Compare Add Parameters

Shin [15] 3 M+3 3 Integer

Kienle [14] 1 N 1 Real

Chen [17] 3 N 2 Integer

Algorithm 2 2 M+2 1 Integer

larger than M (e.g., twice for a rate 1/2 code), this means that

on the number of calculations alone the criterion by Kienle

is the most complex one. Furthermore, the type of data used

by this criterion requires full resolution real quantities, this

indeed imposes a more complex datapath (within a VLSI

implementation) when compared to the other listed criteria.

Therefore, by observing the performance (error-correction,

average iterations, false alarm and missed detection rates) of

the mentioned stopping criteria we propose the hybrid iteration

control policy for SCMS-based LDPC decoders such that two

decision metrics are monitored in order to detect decodable

and undecodable blocks. Even though it is possible to monitor

all previously proposed decision metrics we found out that the

erased messages metric provides the most effective detection

for undecodable blocks (in the sense of exhibiting the lowest

missed detection rate). In the following, we provide results

when utilizing the hybrid technique by using both Algorithm

2 and the criterion in [15] embodied as shown in Figure 15.

VI. STOPPING CRITERIA COMPARISON

All stopping criteria can reduce the average number of ite-

rations depending upon the tuning of the decision parameters

used within their control policy. This has consequences of

different aspects that are worth investigating. In the following,

we tune the stopping criteria in [14][15][17] along with the

proposed hybrid control to be used in the SCMS decoding

within the simulation scenario described in the previous sec-

tion.

Figure 16 shows the simulated BER performance for the

tested criteria. The stopping criteria can be tuned to be close

in performance, for the case of the criterion in [15] (Shin) the

parameters used were θd = 6, θmax = 4 and θspc = 825; for

the criterion in [14] (Kienle) MB = 16 was used; and for the

criterion in [17] (Chen) lte = 6, thr = 9% were used. The

proposed hybrid criterion uses T = 22 and the same setup just

mentioned for [15].

Figure 17 shows the average number of iterations for the

stopping criteria. The syndrome check and the genie are once
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again provided to observe the achievable empirical bounds.

Here the tradeoff between average iterations and performance

loss is evident. From these figures the criterion by Kienle

shows an advantage for a fewer number of iterations in the

low SNR region with the smallest performance loss, but this

criterion shows the highest false alarm rate (FAR) on the same

SNR region.

In Figure 18, we show the FAR of the simulated stopping

criteria. This is a relevant figure of merit since the stopping

mechanism on its own can be responsible for unnecessary

retransmissions. We can observe how the criterion by Kienle

shows a smaller number of false alarms on the high SNR

region, this is due to the inherent threshold that is used within

this criterion to disable the stopping rule, but on the other hand

this criterion shows the highest false alarm rate for the low

SNR region. The comparison between the proposed criterion

and the one by Shin and Chen is much closer and indeed can

be tuned to have a similar performance.
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Fig. 18. False alarm rate of stopping criteria.
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So far we can observe that the criterion by Kienle in the low

SNR region exhibits the lowest average number of iterations

but leads to the highest number of retransmissions. In general,

the FAR of these criteria is relatively close, so we proceed

to investigate their missed detection performance. Indeed, the

missed detection rate (MDR) can provide further insights into

which criterion is actually saving energy without incurring into

any penalties. Figure 19 shows the MDR for the investigated

criteria. The criterion by Kienle performs better than Shin for

the low SNR region, but this no longer holds as the SNR

increases. The criterion by Chen follows similarly the criterion

by Shin. The most relevant result is that the proposed hybrid

criterion achieved a MDR at least one order of magnitude

below the best of the other ones.

Notice that on the high SNR regime all stopping criteria

are irrelevant. A proper receiver design should guarantee the

operation of the wireless modem to be within this regime

so that a target BER/FER is provided. Nevertheless, in the
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eventuality that a particular application involves a highly

fluctuating channel quality and battery-operated devices these

stopping criteria would become relevant. Because of this

reason we assert the importance of our study in order to assess

the performance of such criteria.

We validated as well the independence of the proposed

decision rule and the parameters in Algorithm 2 from the

channel characteristics. We applied the criteria in [14][15] to

the same LDPC code simulation scenario from Figure 14a on

a fading channel where all symbols have independent channel

gains that follow a Rayleigh distribution. Figure 20 shows the

obtained average number of iterations. For the proposed hybrid

policy two values of T were used. It can be observed how all

the criteria follow the same behavior as in the AWGN case

(refer to Figure 14a) but the criterion proposed by Kienle.

The performance for each stopping criterion depends upon

the tuning of the decision-making parameters. In Figure 21,

we show the FAR and MDR for different choices of tuning

parameters that result in different average number of itera-

tions. These results are from the same simulated scenario

for Eb/N0 = 1dB. From this we can observe the tradeoff

involving FAR and the average number of iterations for all

criteria. In general, the criteria can reduce the average number

of iterations but this would result in a higher FAR, this tradeoff

must be selected based upon the particular target application

(required throughput and allowable retransmissions). Further-

more, we can observe the relationship between MDR and

average number of iterations. In this respect the proposed

criterion exhibits the best performance. From this figure we

can see how a proper tuning of the parameters for a decision

rule must consider the relationship between FAR and MDR.

FAR refers to the penalty risk introduced by the stopping rule,

whereas MDR refers to how effective the stopping rule is for

detecting undecodable blocks.
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VII. CONCLUSION

In this paper, we presented two valuable optimizations to

enhance the decoding task from a speedup perspective along

with low power considerations. The overall speedup in the

task allows important throughput gains as well. As a first op-

timization we proposed an alternative method for performing

the syndrome check. By partitioning the calculation among

the rows of the parity-check matrix several advantages were

identified. On-the-fly syndrome check reduces the number

of hardware components on a VLSI architecture, offers a

speedup in the overall decoding task and improves accordingly

the decoding throughput. We analyzed the possible scenarios

in which this technique may potentially provide erroneous

outcomes regarding the validity of a codeblock and proposed

how to handle these cases such that there is no error-correction

performance loss. Results from a decoder for the codes defined

in IEEE 802.11n provided a speedup of up to a factor of 1.48

at a cost of less than 1% in logic area overhead for a 65nm
CMOS process.

The second proposed optimization considered the control

of iterations. Even though iteration control is relevant only

for the low SNR region of the performance curves it is

an important technique studied for the purpose of avoiding

useless decoder operation. We provided insights into the

performance of several control rules in terms of the detection

of undecodable blocks as false alarms and missed detections.

We proposed a stopping criterion whose control law relies

upon the combination of two decision metrics. Motivated by

the quasi-optimal error-correction performance of the SCMS

decoding kernel, we enhanced the performance of the previous

art by adding the number of erased messages per iteration

as a second decision metric for proper iteration control. We

achieved a notorious decrease in the average number of missed

detections for the iteration control policy, making it the best

choice in terms of energy efficiency. Furthermore, we showed

empirically how the proper tuning of stopping criteria should

consider both FAR and MDR in order to accurately assess

their performance.
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