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Abstract

Performance and reliability of content access in mobile networks is con-
ditioned by the number and location of content replicas deployed at the net-
work nodes. Location theory has been the traditional,centralized approach to
study content replication: computing the number and placement of replicas
in a static network can be cast as a facility location problem. The endeavor
of this work is to design a practical solution to the above joint optimization
problem that is suitable for mobile wireless environments.We thus seek a
replication algorithm that islightweight, distributed, andreactive to network
dynamics.

We devise a solution that lets nodes (i) share the burden of storing and
providing content, so as to achieve load balancing, and (ii)autonomously
decide whether to replicate or drop the information, so as toadapt the con-
tent availability to dynamic demands and time-varying network topologies.
We evaluate our mechanism through simulation, by exploringa wide range
of settings, including different node mobility models, content characteristics
and system scales. Furthermore, we compare our mechanism tostate-of-the-
art approaches to content delivery in static and mobile networks.

Results show that our mechanism, which useslocal measurements only,
is: (i) extremely precise in approximating an optimal solution to content
placement and replication; (ii) robust against network mobility; (iii) flexible
in accommodating various content access patterns. Moreover, our scheme
outperforms alternative approaches to content dissemination both in terms of
content access delay and access congestion.

Index Terms

content replication, mobile networks, facility location theory, distributed
algorithms
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1 Introduction

Academic and industrial research in the networking field is pursuing the idea
that networks should provide access to contents, rather than to hosts. Recently, this
goal has been extended to wireless networks as well, as witnessed by the tremen-
dous growth of services and applications offered to users equipped with advanced
mobile terminals.

The inexorable consequence of a steady increase in data traffic exerted by mo-
bile devices fetching content from the Internet is a drainage of network resources
of mobile operators [1–3]. A promising approach to solve this problem iscontent
replication, i.e., to create copies of information content at user devices so as to
exploit device-to-device communication for content delivery. This approach has
been shown to be effective especially in wireless networks with medium-high node
density, whereaccess congestion is the main limiting factor that determines the
performance of content delivery (see, e.g., [4] for a surveyon the topic).

been extensively side, and delay replication mechanisms paths with the
In this paper, we consider such a wireless network scenario and explore the

concept of content replication in a cooperative environment, when the content de-
mand and network topology dynamically change in time. In this context, nodes
can fetch content from the Internet using a cellular network, store it, and possi-
bly serve other users through device-to-device communication (e.g., using IEEE
802.11 or Bluetooth). Our scenario also accommodates the possibility for content
to exhibit variegate popularity patterns, as well as to be updated upon expiration of
a validity-time tag, so as to maintain consistency with copies stored by servers in
the Internet.

according to an epidemic approach the content to all users, might not be
The application scenario we target in this work introduces several problems

related to content replication.Optimal replica placement is one of those: selecting
the location that is better suited to store content is difficult, especially when the net-
work is dynamic. Another prominent issue ishow many content replicas should be
made available to mobile nodes. Clearly, decisions on the placement and number of
replicas to be deployed in the network are tightly related problems: intuitively, the
latter introduces a feedback loop to the former as every content replication triggers
a new instance of the placement problem.

studied through the lenses of classic Location [5]. Our endeavor is to build
upon the theoretic works that have flourished in the facilitylocation theory litera-
ture, and address the abovejoint problems, with the ultimate goal of designing a
lightweight, distributed mechanism to achieve content replication in mobile wire-
less networks. Thus, our work departs from previous approaches that either require
global (or extended) knowledge of the network [6,7] or are unpractical [8]. In par-
ticular, study realistic scenarios in simultaneously consumed by mobile nodes have
capacity constraints for the amount other nodes. we design acontent replication
scheme that requireslocal measurements only and that aims at evenly distributing
among nodes the demanding task of hosting a content replica and serve others.
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We show that optimality in both placement and replication can be approximated
through our simple practical solution.

The contributions of this paper are summarized as follows:

• we revisit traditional facility location theory in the light of the extremely
challenging settings that mobile wireless networks introduce. Leveraging
the insights provided by capacitated facility location approaches to content
replication, we propose a distributed mechanism inspired by local search
approximation algorithms. Our solution exploits a particular formulation
of a multi-commodity capacitated facility location problem to compute an
approximate solution based on local measurements only;

• we perform an extensive simulation study where we dissect the properties of
our distributed mechanism. As a result, we show that contentplacement and
replication achieved through our scheme well approximate an optimal solu-
tion when both network and content dynamics are considered.Furthermore,
our results prove that our mechanism (i) achieves load balancing among the
network nodes, in terms of both amount of served requests andstorage ca-
pacity required at each mobile user, and (ii) scales very well with the network
size and density, making it suitable for those scenarios in which access con-
gestion may appear;

• we compare through simulation our content replication scheme with existing
mechanisms, considering the realistic case where not all users are interested
in the available information items.

The remainder of the paper is organized as follows. In Sec. 2,we give a detailed
overview of the system model and we introduce the content replication problem,
pointing at the new problems introduced by the dynamic nature of wireless net-
works. In Sec. 3, we revisit traditional location theory andextend it to accommo-
date the constraints and requirements of our system. Based on the insights gained
from a theoretical ground, we move on to the design of our distributed mechanism
for content replication and replica placement in Sec. 4. In Secs. 5 and 6 we de-
scribe the simulation settings and methodology and presenta thorough discussion
on the results. We review prior works in the domain of contentdissemination in
mobile networks in Sec. 8, and finally draw our conclusions inSec. 9.

2 Network scenario and problem statement

Here, we first detail the system model we refer to, then we define the problem
of content replication and placement in mobile networks. Inparticular, we inherit
the problem of replication typical of the wired Internet andwe discuss the new
challenges introduced by the dynamic nature of wireless networks with respect to
their wireline counterpart. At last, we describe the steps we take in order to address
content replication and placement in our setting.
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2.1 System model

We investigate a scenario including mobile users (i.e., mobile nodes), equipped
with devices offering 3G/4G Internet connectivity as well as device-to-device com-
munication capabilities (e.g., through IEEE 802.11). Although we do not concern
ourselves with the provision of Internet access in ad hoc wireless networks, we re-
mark that broadband connectivity allows new content to be fetched and, possibly,
updated.

We denote the set of mobile nodes byV, with V = |V|, and we consider that
they may be interested in a set of information items. We referto such a set asI and
to its cardinality asI. Each itemi ∈ I, of sizes(i), is tagged with a validity time,
and originally hosted on a server in the Internet, which can be accessed by mobile
users through the broadband access we hinted at. We define asp(i) the content
popularity level of the generic itemi, i.e., the fraction of nodes interested in such
an item. Thus, we have0 ≤ p(i) ≤ 1, with p(i) = 1 corresponding to the highest
popularity level, i.e., when all nodes in the system are interested in contenti.

We focus on acooperative environment where a nodej ∈ V wishing to access
the content first tries to retrieve it from other devices. If its search fails, the node
downloads a fresh content replica from the Internet server and temporarily stores
it for a period of timeτj, termedstorage time. For simplicity of presentation, in
the following we assumeτj = τ, ∀j ∈ V. During the storage period,j serves
the content to other nodes upon receiving a request for it and, possibly, downloads
from the Internet server a fresh copy of the content if its validity time has expired.
We refer to the nodes hosting an information copy at a given time instant asreplica
nodes. We denote the set of nodes storing a copy of itemi at timet by Ri(t), and
defineR(t) = ∪i∈IRi(t), with R = |R|. Also, we associate to each replica node
j a capacity valuecj , which, as we shall see later, relates to the capability of the
node to serve content requests.

A node, which is interested in a generic information itemi and does not store
any copy of it, issues queries for such an item at a rateλ. Replica nodes, which
receive a query for an information item they currently store, will reply with a mes-
sage including the requested content.

Finally, in order to clearly define the problem we address, inthe following
we model the network topology at a given time instantt through a graphG(t) =
(V, E(t)), whose set of vertices coincides with the set of network nodesV and the
set of edgesE(t) represents the set of links existing between the network nodes at
time t.

2.2 Problem statement

Both content replication and caching have received significant attention in the
literature, due to their importance in enhancing performance, availability and reli-
ability of content access for Web-based applications. The two problems, however,
differ since content replication is an independent processaimed at creating copies
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of a content at the network nodes, regardless of whether theyasked for it or not.
Caching, instead, is a by-product of the content query mechanism as only nodes
that retrieved the content have the possibility to cache it [4].

Our claim (confirmed by simulation results) is that, in a network scenario as
the one we address in this work, content replication is to be preferred to caching.
Indeed, caching may lead to the creation of a large number of copies in the net-
work, especially for highly-popular content. In medium-high dense networks, this
raises the problems of (i) large overhead due to multiple replies to a single query,
(ii) energy depletion of a large fraction of nodes acting as content providers, (iii)
congestion in accessing the cellular network for fresher versions of the content in
order to avoid inconsistencies. We therefore deal with content replication, that is,
we design a mechanism to determine how many replicas should be created in the
network and where, under dynamic, realistic conditions.

Traditionally, a similar problem has been studied through the lenses of classic
Facility Location Theory [5], by considering replicas to becreated in the network
as facilities to open. Which new problems are then introduced in our work?
i) Content replication and placement can be cast as an optimization problem in
presence of static network conditions. However, node mobility leads to a dynamic
graphG(t), which would require the problem to be solved upon every network
topology or demand rate change.
ii) While addressing content replication, we also target load balancing among the
nodes. Even under static topology and constant demand, solving the facility loca-
tion problem does not yield load balancing.
iii) The input to the facility location problem is the content demand workload gen-
erated by users: both replica locations and the number of replicas to deploy in a
network depend on content consumption patterns. While the approach tradition-
ally adopted is to assume content demand to be directed to theclosest facility, the
wireless nature of our system yields unpredictable propagation paths for content
requests, potentially reaching multiple facilities (replica nodes).
iv) The traditional approach defines two separate sets, one for facilities (replica
nodes) and one for the users. In our context, instead, any node may store an infor-
mation replica as well as request an item which it does not currently own.

As a first step to address all of the above issues, in Sec. 3 we restrict our atten-
tion to a simplified network setting and revisit a centralized approach for facility
location problems. Our goal is to gain sufficient insights from such a problem
formulation, as well as from solutions to it proposed in the literature, to build a dis-
tributed approach that closely approximates the optimal solution to the problem.
Then, in Sec. 4 we consider a dynamic scenario (i.e., mobile nodes and time-
varying demand) and seek an algorithm that only requires local knowledge and a
distributed implementation.
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3 Getting insights: A centralized approach

The simplified network scenario we address here is characterized by static
nodes and constant demand; furthermore, we drop the load balancing require-
ment we previously outlined and assume that content queriesare directed to the
closest replica node. For simplicity, let us fix the time instant and drop the time
dependency from our notation; also, let all users be interested in every contenti
(i = 1, . . . , I) and request it at the same constant rate.

Given such a scenario, we formulate our replication problemas acapacitated
facility location problem where the set of replica nodesR = ∪iRi corresponds to
the set of facilities that are required to be opened, nodes requesting a content are
referred to as clients and information items correspond to the commodities that are
available at each facility. We model the capacity of a replica node as the number of
clients that a facility can serve. The goal is to identify thesubset of facilities that,
at a given time instant, can serve the clients so as to minimize some global cost
function while satisfying the facility capacity constraints.

We point out that, with respect to traditional formulationsof the capacitated
facility location problem, we need to take into account the following aspects. Both
clients and facilities lay on the same network graphG = (V, E). As such, any
vertex of the graph can be a client or a facility: all vertexesthat are not selected as
facilities will be treated as clients.

In the location theory literature, two copies of the same facility can be opened
at the same location, in order to increase the capacity of a site. Instead, in our
work a vertex of the graph can host only one copy of the same facility: indeed, it
is reasonable to assume that a node stores only one copy of thesame information
item.

For the sake of clarity, we first define asingle-commodity capacitated facility
location problem, where we delve into the details of local search techniques that
have been applied in the literature to solve such problems. We then move to amulti-
commodity version of the problem and discuss the issues related to the capacity
constraints we are required to satisfy in this case.

3.1 The single commodity problem

Let us consider one information item only (i.e.,I = 1). Then, we can define
the single commodity capacitated facility location problem as follows.

Definition 1 Given the set V of nodes (which can act as both clients and facility
nodes) and cost fj of opening a facility at j ∈ V , select a subset of nodes as
facilities, R ⊆ V , so as to minimize the joint cost C(V, f) of opening the facilities
and serving the demand while ensuring that each facility j can only serve at most
cj clients:

C(V, f) =
∑

j∈R

fj +
∑

h∈V

d(h,mh). (1)
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In (1), mh ∈ R is the facility j closest to h, and d(h,mh) is the cost attributable
to facility mh for serving client h (in the literature, this is typically modelled as a
pair-wise distance function between client and facility). Also, the number of clients
attached to facility j ∈ R, i.e.,

uj = |{h ∈ V, s.t. mh = j}|,

must be such that uj ≤ cj .

In words, the above problem amounts to finding how many facilities should
be open, and at which nodes, so as to minimize the average distance to access
a facility from a client location, while satisfying the capacity constraints of each
opened facility. This problem nicely translates into our setting, where we need to
establish the number of replicas to be created for an information item and find the
best nodes to store them so as to minimize the distance (hencethe delay) to access
the information. We also point out that the facility location problem in Def. 1
reduces to ak-median problem if the number of facilities is given, i.e.,R = k,
and we drop the capacity constraints. The solution to such a special case maps to
finding the best location fork facilities to be opened.

It is well known that, for general graphs, the above problemsare NP-hard [9]
and a variety of approximation algorithms have been developed and analyzed to
solve them. Among these algorithms, the ones based on local search are the most
versatile [6]. In a general form, a local search algorithm tosolve capacitated fa-
cility location problems consists of an iterative procedure in which, at every step,
a variation is applied to the current solution of the problem. If the global cost de-
creases, the variation is accepted as a new solution to the problem. The algorithm
stops when no more improvements can be obtained. Three variations are possible:
to swap the location of a currently opened facility, todrop a currently opened facil-
ity, and toadd a facility to the current solution. Note that the local search algorithm
to the capacitated version of the facility location problemis fairly complex: indeed,
it involves the computation of a minimum cost flow problem in order to verify the
capacity constraints [6].

Such local search procedures will inspire our distributed mechanism described
in Sec. 4, where we introduce three basic operations that iteratively, albeitasyn-
chronously, yield the solution to the content replication problem. However, there
are some important remarks to make. The key point in our solution is the defi-
nition of the opening costsfj ’s, which allows us to move from a centralized to a
distributed implementation as well as provide load balancing. Moreover, the par-
ticular operation that each node executes to solve the replica placement problem is
performed irrespectively of the number of replicas in the network. As such, con-
tent placement and replication are effectively de-coupled. Finally, in our network
system adding and swapping are constrained operations: only vertexes that are
connected by an edge to the current vertex hosting a content replica can be selected
as possible replica locations. Thus, our operations arelocal and information item
replicas can only move by one hop at the time in the underlyingnetwork graph.
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3.2 The Multi-commodity problem

We now consider the more general setting in which multiple commodities (i.e.,
information items) may be available at each facility (i.e.,replica node).

While the problem can be defined similarly to Def. 1, the cost function that we
need to minimize, formerly defined in (1), has to be rewrittenas follows:

C(V, f) =
∑

i∈I

∑

j∈Ri

fj(i) +
∑

i∈I

∑

h∈V

d(h,mh(i)) (2)

wherefj(i) is the cost to open a facility for commodityi, Ri ⊆ V is the subset of
nodes acting as facilities for commodityi, mh(i) ∈ Ri is the facility holding item
i that is the closest toh, and the numberuj(i)

1 of clients requesting any content
i attached to facilityj ∈ Ri, i.e.,uj(i) = |{h ∈ V s.t.mh(i) = j}|, is such that
∑

i∈I uj(i) ≤ cj .
In the traditional formulation of such problem, with distinct sets of facilities

and clients, a solution amounts to finding the location and the number of facilities
to open so that the overall client requests are satisfied. In our setting, however, the
problem is more complex: since any vertex of the graphG can host a facility or
can be a client, it is possible for a vertex to assume both roles. Indeed, a vertex can
be a replica node for one or more information items, and, at the same time, a client
requesting information items that are not currently hostedat the vertex.

Finding approximate solutions to the multi-commodity capacitated facility lo-
cations is still an open issue and little is known concerninglocal search heuristics
that can be effectively implemented in practice. In this work, we take a simple
approach that has been also discussed in [10]: a solution to the multi-commodity
problem is built from the union of the solutions to individual single-commodity
facility location problems. Therefore, we transform the formulation from multi-
commodity to single-commodity by solving the above problemfor each itemi
(i = 1, . . . , I) separately.

Then, for each itemi, (2) becomes:

C(V, f(i)) =
∑

j∈Ri

fj(i) +
∑

h∈V

d(h,mh(i)) (3)

wheremh(i) ∈ Ri is the facility closest toh and the number of clients attached to
facility j ∈ Ri is such that the capacity constraints are satisfied.

Despite the apparent simplicity of such an approach, how thecapacity con-
straints are verified remains an issue to be discussed. In ourwork, we adopt the two
techniques presented below, where we denote the subset of commodities hosted at
j by Ij and its cardinality byIj :

1. Each opened facility has a capacity that is allocated to each commodity in-
dividually. In practice, this translates into having a separate budget allocated

1Clearly, we haveuj(i) = 0 if j does not owni.
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to each information item that is currently replicated at a node in the network.
Formally, the capacity constraints can be written asuj(i) ≤ cj/Ij , ∀i ∈ Ij,
where we equally split the budgetcj available to facilityj over all the com-
modities it hosts. In the following, we name such a techniquesplit capacity
budget.

2. We consider a facility to have a capacity that is shared among the commodi-
ties currently hosted by the facility. This case appears to be more realistic
for our application scenario: each node hosting replicas ofinformation items
allocates a preset budget that is used to serve all the contents requested by
other nodes. Formally, we define the capacity constraints for this case as fol-
lows:

∑

i∈Ij
uj(i) ≤ cj , and we refer to such a technique asshared capacity

budget.

In conclusion, the approach we take in this work is to break the joint optimiza-
tion problem of the capacitated multi-commodity facility location into a number
of single-commodity location problems, as from (3), for which we use the local
search techniques outlined above with the additional considerations we made in
this section concerning the capacity constraints.

To the best of our knowledge, there is no known practical, distributed algorithm
to obtain approximate solutions to the capacitated versionof the multi-commodity
facility location problem either. In the next section, we therefore propose a new ap-
proach that only requires local knowledge, which is acquired with simple measure-
ments, and also provides load-balancing. It follows that, even in a static scenario,
our distributed algorithm does not converge to a static configuration in which a
fixed set of nodes is selected to host content replicas. As such, the traditional
methods that are used in the literature to study the convergence properties and the
locality gap of local search algorithms cannot be directly applied, which is the main
reason for us to take an experimental perspective and validate our work through
simulations.

4 Distributed mechanism for content replication

We now describe our distributed replication mechanism. Armed with the in-
sights on the problem formulation discussed in Sec. 3, our mechanism mimics a
local search procedure, by allowing replica nodes to execute one of the following
three operations on the content: (1) handover, (2) replicate or (3) drop. For clarity
of presentation, in the following we describe our mechanismin terms of two objec-
tives: content replication (Sec. 4.1) and replica placement (Sec. 4.2). Indeed, the
handover operation amounts to solving the optimal placement of content replicas,
whose number is determined through the add and drop operations.

For simplicity, we consider again that all users are interested in every contenti
(i = 1, . . . , I) and request it at the same constant rate. Also, we fix the timeinstant
and drop the time dependency from our notation.
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4.1 Content replication

Let us define the workload of the generic replica nodej for contenti, wj(i), as
the number of requests for contenti served byj during its storage time. Also, recall
that we introduced the valuecj as the capacity value of nodej and we provided
a definition that suited the simplified, static scenario described in Sec. 3. We now
adapt the definition ofcj to the dynamic scenario at hand, as the reference volume
of data that replica nodej is willing to provide during the time it acts as a replica
node, i.e., in a storage timeτ . Then, with reference to Eq. 1, we denote byfj =
∑

i∈Ij
fj(i) the cost associated with replicas at nodej.

Given the load balance we wish to achieve across all replica nodes and the node
capacity constraint, the total workload for replica nodej should equalcj . Thus,
we writefj as:

fj = cj −
∑

i∈Ij

s(i)wj(i) (4)

where we recall thats(i) denotes the size of contenti. In other words, we let
the cost associated with replica nodej grow with the gap between the workload
experienced byj and its capacitycj .

Then, during storage timeτ , the generic replica nodej ∈ R measures the num-
ber of queries that it serves, i.e.,wj(i) ∀i ∈ Ij. When its storage time expires, the
replica nodej computesfj and takes the following decisions: iffj > ǫ the content
is dropped, if fj < −ǫ the content isreplicated, otherwise the hand-over operation
is executed (see Sec. 4.2). Here,ǫ is a tolerance value to avoid replication/drop
decisions in case of small changes in the node workload.

The rationale of our mechanism is the following. Iffj < −ǫ, replica nodej
presumes that the current number of content replicas in the area is insufficient to
guarantee the desired volume of data, hence the node replicates the content and
hands the copies over to two of its neighbors (one each), following the placement
mechanism described below in Sec. 4.2. The two selected neighbors will act as
replica nodes for the subsequent storage time. Instead, iffj > ǫ, nodej estimates
that the workload the current number of replicas can provideis exceeding the total
demand, thus it just drops the content copy. Finally, if the experienced workload is
(about) the same as the reference value, replica nodej selects one of its neighbors
to which to hand over the current copy, again according to themechanism detailed
next.

4.2 Replica placement

As noted in Sec. 3, given the graph representing the network topology at a
fixed time instant, the placement ofR = k replicas can be cast as ak-median
problem. By applying the approximation algorithm in [6], weobserved that the
solution of such a problem for different instances of the topology graph yields
replica placements that are instances of a random variable uniformly distributed
over the graph. As a consequence, in a dynamic environment our target is to design
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a distributed, lightweight solution that closely approximates a uniform distribution
of the replicas over the network nodes while ensuring load balancing among them.
To this end, we leverage some properties of random walk and devise a mechanism,
calledRandom-Walk Diffusion (RWD), that drives the “movement” of replicas over
the network according to a random walk mobility model.

According to RWD, at the end of its storage timeτ , a replica nodej randomly
selects another nodel to store the content for the following storage period, with
probability pj,l = 1

dj
if l is a neighbor ofj, and0 otherwise, wheredj is the

current number of neighbors of nodej. In this way, each replica performs a random
walk over the network, by moving from one node to another at each time stepτ .
Thus, we can apply the result stating that in a connected, non-bipartite graph, the
probability of being at a particular nodej converges with time todj/(2|E|) [11].
In other words, if the network topology can be modeled by a regular graph2 with
the above characteristics, the distribution of replicas moving according to a random
walk converges to a stationary distribution, which is uniform over the nodes.

In general, real-world networks yield non-regular graphs.However, whenV
nodes are uniformly deployed over the network area and have the same radio range,
the node degree likely has a binomial distribution with parameters(V − 1) andp,
with p being the probability that a link exists between any two nodes [12,13].

For practical values ofp andV in the scenarios under study, we verified that
the node degree distribution is indeed binomial with low variance, i.e., all nodes
have similar degree. It follows that a random walk provides an acceptable uni-
form sampling of the network nodes, hence the replica placement distribution well
approximates the uniform distribution.

A similar result can be obtained also for clustered network topologies, where
each cluster core results to be an expander graph [14]. In this case, a uniform
replica placement over the nodes can be achieved within eachof the network clus-
ters, thus ensuring the desired placement in all areas wherethe user demand is not
negligible.

Finally, we stress that the presence ofR replicas in the network corresponds to
R parallel random walks. As observed in [15], this reduces by almost a factorR the
expected time to sample all nodes in the network, which is closely related to the
time needed to approximate the stationary distribution by aconstant factor [16].
It follows that, given a generic initial distribution of thereplicas in the network,
the higher theR, the more quickly the replica placement approximates a uniform
distribution.

5 Simulation scenario

We implemented our mechanism in thens − 2 simulator. We consider a wire-
less network with high node density, namely3.2 · 10−4 nodes/m2, on a square area
of 1 km2, which results inV = 320 and an average node degree of 9.6 neighbors.

2A graph is regular if each of its vertices has the same number of neighbors.
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By default, nodes move according to the stationary random waypoint model [17]
with an average node speed of 1 m/s and a mean pause time of 100 s, a setting that is
representative, for example, of customer mobility within amall. We also explored
the performance of our mechanism in presence of outdoor pedestrian mobility.

We assume nodes to be equipped with a standard 802.11 interface, with a
54 Mbps fixed data transmission rate and a radio transmissionrange of 100 m. As
our focus is on the placement and replication of items withinthe ad-hoc network,
we do not simulate cellular access. However, we account for the delay associated
with the download of information items from the cellular network, by assuming a
throughput of 384 kbps, matching that typically provided by3G technologies to
outdoor mobile users.

The rate at which a node interested in a content generates queries for that item
is set toλ = 0.01 requests/s. As for the propagation of the queries in the ad hoc net-
work, we assume the presence of a content-location service that nodes can access
to obtain the identity of the closest content replica3. A query for the closest replica
node is then propagated using sequence numbers to detect anddiscard duplicate
queries, as well as an application-driven broadcast that optimally selects the for-
warding nodes by leveraging the Preferred Group Broadcast (PGB) technique [19].
Also, a TTL is included into queries, allowing them to travel5 hops at most so as
to prevent network flooding. Once reached by the request, theintended destination
serves it, while other replica nodes ignore the query.

As far as the content return path is concerned, we assume that, at each hop,
the identity of the last node that relayed the query is included in the message and
recorded at the following forwarder. Thus, the path from thetarget replica node to
the query source is backtracked at the application layer without resorting to ad hoc
routing protocols, which would induce overhead or delay in the process.

Since all standard MAC-layer operations are simulated, both queries and replies
may be lost due to typical problems encountered in 802.11-based ad hoc networks
(e.g., collisions, hidden terminals): if a query fails (i.e., no answer is received after
2 s), a new request is issued, up to a total of 5 times4.

Finally, concerning the replication/drop parameters, thetolerance valueǫ used
in the replication/drop algorithm is set to 5% of the node capacity budget, while
the storage timeτ is set to 100 s.

For each experiment described in the following, results areaveraged over 10
simulation runs, each lasting around 3 hours of simulated time after a warm-up
period of 500 s.

3Since query propagation is not the focus of our work, we do notfurther address how such a
service is maintained; for details, we refer the reader to the vast literature on the topic, e.g., [18] and
references therein.

4According to extensive calibration tests, omitted due to space limitations, these parameters pro-
vide the best results in terms of content access performance.
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Figure 2: Numerical solutions of the optimization problems, and comparison
against our replication scheme: temporal evolution of the number of replicas (a),
and of theχ2 index (b)

6 Results

We present the main results of our work organized in a series of questions.
Furthermore, in order to benchmark the distributed mechanism proposed in Sec. 4
against the centralized approach discussed in Sec. 3, we implement the latter as
follows. Given the network time evolution, we take a snapshot of the network
topology everyτ s. For every snapshot, we solveI separate single-commodity
problems as in (3), under both split and shared capacity budgets. To do so, we set
fj(i) = cj/Ij − uj(i) andfj = cj −

∑

i∈Ij
uj(i) in the case of split and shared

capacity budget respectively, withuj(i) = s(i)wj(i). As a result, load balancing
is achieved under the assumption that each content query reaches one replica node
only.

6.1 Benchmarking the replication scheme

Here, we provide baseline results on the performance of our replication scheme
with respect to the multi commodity problem presented in Sec. 3.2, and discuss its
fairness.
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What is the impact of the capacity budget on the replication scheme?

To answer this first question, we run the CFL centralized algorithm in a snap-
shot of the mobile network topology, in presence of 4 items of1 Mbytes each.
We vary the value ofcj from 10 Mbytes to 40 Mbytes, which, in the case of opti-
mization with split capacity budget, means that each content is assigned a budget
cj/4.

The optimal number of replicas per information item, denoted by R∗
i , is ob-

tained by numerically solving the optimization problem in (3), in both its split and
shared capacity budget versions, and is shown in Fig. 1(a)5. The plot clearly shows
that, as higher budgets allow replica nodes to satisfy larger amounts of requests,
increasingcj reduces the need for replication, with the result that a lower number
of replicas is present in the network.

It is interesting to observe that a significantly higher number of replicas is re-
quired by an optimization with split capacity budget with respect to that needed by
an optimization with shared capacity budget. The reason is that the latter, using a
common budget for all items, forces replications only when the total workload for
all items exceeds the budget. Conversely, optimization with split capacity budget
uses separate budgets for each content and, thus, results inmore frequent violations
of such constraints.

Now, intuitively, a large number of replicas may have a beneficial effect on con-
tent access performance: more replicas should imply higherchances for queries to
be satisfied through device-to-device communication. In Fig. 1(b) we show the
most important percentiles (5%, 25%, 50%, 75%, 95%) of content access delay
with split and shared capacity constraints, forcj = 40 Mbytes. Contrary to the in-
tuition, our results indicate that the advantage granted bya high number of replicas
under the split capacity is quite negligible, and this is mainly due to the congestion
that arises in the wireless network.

In summary, our findings pinpoint that the replication mechanism with shared
capacity constraints is a suitable approach. Beside experimental results, there are
also practical reasons to opt for shared capacity constraints. Indeed, in the split
capacity case, a budget has to be assigned to each item currently stored by a replica
node, which is a quantity that may vary over time. As a consequence, content
replicas may not be suitably handled if the remaining capacity available to a node
is not appropriately re-distributed. Furthermore, usability aspects also play a role
in favor of a shared capacity approach: it would be unfeasible to ask a user to select
a service budget to allocate to every possible item she will ever replicate.

5Here and in the following, unless stated otherwise, the results refer to one of the four items since
similar results were obtained for each of them.
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How does our replication scheme perform with respect to the CFL centralized
algorithm?

In order to provide an answer, we simulate our replication scheme and we focus
on the case wherecj = 40 Mbytes. As shown in Fig. 2(a), our replication scheme
can well approximate the results obtained by solving the optimization problems:
indeed, the number of replicasRi generated by our scheme is very close to the op-
timal valueR∗

i , in both the cases of split and shared capacity budget. Moreover, the
number of replicas in the system appears quite stable over time, which is obviously
a desirable feature.

Not only the number, but also the placement of replicas itself is important when
comparing our scheme against a centralized solution. Thus,we now investigate the
similarity between the replica placement achieved by our technique and that ob-
tained with the CFL centralized algorithm over the different snapshots represent-
ing the network evolution. To do so, we employ the well-knownχ2 goodness-of-fit
test on the inter-distance between content replicas6. As depicted in Fig. 2(b), the
χ2 error obtained comparing the distributions we achieve withthe optimal ones is
extremely low in all cases; indeed, theχ2 error we obtain is well below the value7

needed to accept the null hypetesis that the two distributions are the same at a 95%
confidence level.

How fair is our replication scheme?

The scheme we propose is fair in terms of resources demanded from nodes in
the network. On the one hand, in Fig. 3(a), we show the distribution of the number
of items stored by a node at the same time: a node seldom storesmore than one
replica, which implies that node memory utilization is similar across the network.
Indeed, our scheme successfully avoids the risk of replica stacking at some good
candidates thanks to the enforced periodic swapping of the replica role among
nodes. On the other hand, Fig. 3(b) depicts the cumulative distribution function
(CDF) of the percentage of total network workload handled byeach node, in terms
of answered queries: the curve is quite steep around the ideal value 1

V
= 0.3%,

corresponding to a perfectly fair workload distribution among nodes.

6.2 Impact of the content characteristics

We now vary the popularity and size of content items, and observe their impact
on the performance of our replication scheme.

6Note that using inter-distances instead of actual coordinates allows us to handle a much larger
number of samples (e.g.,V · (V − 1) instead of justV samples) thus making the computation of the
χ2 index more accurate.

7With 14 degrees of freedom as in our case, such value is 23.685.
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Figure 3: CDFs of the stored items and of the workload at each network node

Table 1: R∗
i computed by the centralized CFL algorithm in presence of different

content popularity
Item id Interested Opt. with split budget Opt. with shared budget

1 100% 39 42
2 75% 30 29
3 50% 19 18
4 25% 14 15

How does our replication scheme perform in presence of itemswith different
popularity?

We study now the scenario when not all nodes are interested ina content. In
such a situation, a node stores a replica of the content only if it is interested. If a
node attempts to hand over the content to an uninterested node (by random selec-
tion), the request will be denied and a different node will have to be selected.

In Table 1, we report the results of the CFL algorithm when thepercentage of
interested nodes,p(i), i = 1, . . . 4, varies from 25% to 100%. We also setcj =
40 Mbytes for the optimization with shared capacity budget andcj = 60 Mbytes
for the optimization with split capacity budget. Interestingly, Table 1 indicates that,
in order for the replication mechanisms to yield roughly thesame replication factor,
the capacity budget that is required for the shared capacityapproach is substantially
lower than that required for the split capacity case.

As far as the optimization with shared capacity budget is concerned, Fig. 4(a)
shows that the average number of replicas for itemi, R̄i, generated by our scheme
oscillates around the optimal value determined by the CFL algorithm for the same
item,R∗

i , even wheni is characterized by low popularity. Moreover, the workload
remains evenly shared among replica nodes: Fig. 4(b) shows that each node serves
at least 0.2% of the total workload and 98% of nodes serve lessthan 0.4% of the
total workload. The load distribution is thus quite dense around 0.3%, i.e.,1

V
that

is the ideal mean workload. Finally, the results in Fig. 4(c)underline the fairness
of our replication scheme also from a memory utilization point of view, with nodes
caching with high probability at most one content at a time. We observe similar
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Table 2: R∗
i computed by the centralized CFL algorithm in presence of different

content sizes
Item id Item size Opt. with split budget Opt. with shared budget

1 1 Mbytes 39 42
2 2 Mbytes 62 67
3 3 Mbytes 87 91
4 4 Mbytes 115 117
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Figure 4: Impact of content popularity on the replication with shared capacity, in
terms of number replicas, workload distribution, and memory utilization

results8 when the split capacity approach is used, although this requires a larger
budget to be allocated to the replication process.

How does our replication scheme perform with different content sizes?

Let us focus on a scenario where the four items have identicalpopularity but
different sizes (s(i), i = 1, . . . , 4). The considered values are detailed in Table 2,
along with the optimal number of replicasR∗

i computed, for each item, by the
centralized CFL algorithm under the split and shared capacity budget constraints.

Focusing on the optimization problem with shared capacity budget, Fig. 5(a)
shows a good matching between̄Ri and the optimal valueR∗

i , for any itemi. The
workload exacted from the nodes by our scheme is shown in Fig.5(b), and the
number of information items stored by each node is depicted in Fig. 5(c). Very
similar considerations apply to the case of optimization with split capacity bud-
get, although comparable performance can only be attained if the capacity budget
allocated by each node largely exceeds that in the shared capacity approach.

8For the sake of brevity, we omit these results in this work.
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Figure 5: Impact of content size on the replication with shared capacity, in terms
of number of replicas, workload distribution, and memory utilization
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Figure 6: Impact of user mobility on the replication with shared capacity, in terms
of number of replicas, workload distribution, and memory utilization

6.3 Impact of mobility

What is the impact of a more accurate human mobility model on our scheme?

We now study the performance of our scheme in presence of non-random clus-
tered mobility, which has been shown to characterize human movements in outdoor
environments. More precisely, we employed the SLAW model [20] to generate a
synthetic trace representing the movements of 320 outdoor users within an area
of 1 km2, during 3 hours. The SLAW settings included 600 waypoints, Pareto-
distributed with Hurst parameter equal to 0.75, a flight speed of 1 m/s, and pause
times that obey a Levy distribution with coefficient equal to1 and minimum and
maximum values equal to 100 s and 1000 s, respectively. The distance weight,
which determines the priority that nodes give to nearby locations before travel-
ing to farther locations, is set to 3. All results refer to thecase of the optimization
with shared capacity budget: those for the optimization problem with split capacity
budget are very similar and are omitted for sake of brevity.

Fig. 6(a) shows the evolution of the number of replicas per information item
over the simulation time, for SLAW and the stationary RWP previously employed.
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Figure 7: Impact of node speed on the replication with sharedcapacity, in terms of
number of replicas, workload distribution, and memory utilization
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Figure 8: Impact of content set cardinality on the replication with shared capacity,
in terms of number of replicas, workload distribution, and delay

In both cases, the number of replicas per item roughly matches the optimal value.
In the SLAW scenario, the presence of a small number of dense clusters implies
that content queries will be originating from within each cluster: this explains the
(almost negligible) difference in the number of replicas and workload with respect
to the RWP model. It also follows that the different mobilitydoes not result in sig-
nificant differences in the total load distribution, as shown by the plot in Fig. 6(b).
As far as memory utilization is concerned, in Fig. 6(c) SLAW forces a slightly
more unbalanced CDF, as nodes group into denser clusters than under RWP mo-
bility. Specifically, under SLAW, 80% of nodes hold two or more items versus the
90% measured under the RWP model.

How does our mechanism work as the node speed varies?

Invariance of the performance of our replication scheme to the node speed is
demonstrated by Fig. 7(a), Fig. 7(b) and Fig. 7(c). There, wecan notice how
the different velocity of nodes during their movement does not lead to significant
variations in the number of replicas, per-node workload anddelay, respectively.
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Figure 9: Impact of network density on the replication with shared capacity, in
terms of number of replicas, workload distribution, and delay
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Figure 10: Impact of network size on the replication with shared capacity, in terms
of number of replicas, workload distribution, and delay

6.4 Scalability

In order to determine the scalability properties of the proposed replication
scheme, we study the impact that the number of items, networkdensity, and net-
work size have on the system performance. Again, all resultsrefer to the case of
optimization with shared capacity budget, since those obtained under optimization
with split capacity budget are similar, but require a significantly higher budget to
be allocated at nodes.

We first evaluate the performance when the cardinality of theinformation item
set varies between 1 and 32. More precisely, Fig. 8(a) shows the number of replicas
per item generated in the system, which grows as the size of the information set in-
creases. Indeed, a larger content set implies that nodes tend to store more items on
average; however, their capacity budgetcj remains constant, and is shared among
all items they store. As a result, focusing on one single content, each replica node
for that content will be able to serve fewer and fewer queriesas the number of
available items increases. As a consequence, more replicasfor the same content
are needed in order to meet the constraint on the capacity budget, hence to keep the
workload constant, as depicted in Fig. 8(b).
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Fig. 8(c) shows the effect that the number of information item has on the service
provisioning delay. The increase of the delays is imputableto the heavier traffic on
the channel, that results in collisions and retransmissions of the information replies.

We then study the effect of the network density, measured as the average node
degree, which is increased up to a mean number of neighbors per node equal to
20 in Fig. 9. Fig. 9(a) shows that the number of replicas increases according to
the optimal number of facilities computed by the CFL local search algorithm. In-
deed, the increased presence of neighbors induces a higher load in the network, in
terms of queries: in order to satisfy the new demand, and yet fulfill the per-node
workload constraint, additional nodes must become providers for each content.
The availability of additional facility nodes allows them to experience a practically
unchanged per-storage time workload, in Fig. 9(b), as well as a similar delay for
successful content requests, in Fig. 9(c).

Finally, in Fig. 10, we assess the performance of the replication system versus
the size of the network: that is, we maintain the network density constant but we
consider a number of nodes ranging between 100 and 1000. As one could expect,
the number of replicas grows linearly with the network size,in Fig. 10(a), while
Fig. 10(b) and Fig. 10(c) show that the network size has virtually no impact on the
average workload at replica nodes and on the delay, respectively.

Overall, our replication scheme shows excellent scalability properties, since
it can dynamically adapt the number and placement of replicas to the network
settings, so as to maintain a constant utilization of communication and memory
resources at each node. Moreover, we recall that such resultis obtained with lo-
cal measurements only, and thus the cost of the process does not change with the
number of items or the size and density of the network.

7 Benchmarking our replication scheme to other approaches

We now turn our attention to a network system where information items are
associated to different query rates, and we evaluate the allocation of replicas for
each content. In this case, we compare the performance of ourreplication scheme
with that of the so-called square-root replication strategy [21]. According to such a
strategy, the allocation percentageα(i) for a contenti is proportional to the square
root of the total demand per second for that content, i.e.,

α(i) =

√

p(i)
∑I

i=1

√

p(i)
.

In [21], it has been proved that square-root replication is optimal in terms of num-
ber of solved queries. Although initially introduced for wired, unstructured, peer-
to-peer networks, the square-root rule has since been applied to wireless networks
as well [22].
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We derive our simulation results in the case ofI = 4 items with different popu-
larity, andcj={5, 15, 40} Mbytes. Fig. 11 shows the fraction of the total number of
replicas of itemi, versus the associated query ratep(i)V λ. The plot compares our
scheme with: (i) the square-root strategy, (ii) a uniform strategy, which allocates
the same number of replicas per item, and (iii) a proportional strategy, where the
number of replicas is proportional to the content popularity. We observe that our
scheme achieves an allocation in between the square-root and proportional distri-
butions, while it is far from that obtained under the uniformstrategy. This suggests
that our replication scheme well approximates the optimal replication strategy. In
particular, we can observe that, whencj is higher, i.e., replica nodes are more
generous in reserving resources to serve requests, the allocation tends to follow a
proportional distribution. Conversely, in presence of lower values ofcj , i.e., when
the budget is limited, the allocation better fits the square root rule. In other words,
a “strict” budget sacrifices content replicas that play a marginal role in achieving
low access cost: such replicas are dropped and the overall shape of the distribution
drifts from proportional to square root.

Before we move on, a further observation is required. Since our replication
scheme roughly achieves the result obtained by a square-root allocation, it is rea-
sonable to wonder why a different approach to content replication is required. First
of all, in this work we have different objectives than that of[21]: load-balancing,
for example, requires an additional layer to complement thesquare root allocation
scheme, which instead we achieve as part of our design. Furthermore, the dis-
tributed version of the replication algorithms proposed in[21] has some limitations
that renders them less suitable to be deployed in a mobile, wireless environment.
The simple path replication scheme catering to low storage requirements, just like
our scheme, substantially over/undershoots the optimal number of replicas. The
other approaches discussed in [21] are better at convergingto an optimal number
of replicas but require the bookkeeping of large amounts of information. Finally,
the design and the evaluation of such algorithms in [21] do not take into account
the dynamic nature that is typical of a mobile network.

21



As a second step in our comparative evaluation, we benchmarkour replication
mechanism with a simple caching scheme. In particular, we consider apull-based9

caching mechanism: a node issues a query for an information item of interest to
other nodes in its vicinity. Such a request can travel up toh hops away from the
node that issued the request. If a request is not satisfied within a timeout, the
content is fetched directly from the cellular network. After having successfully
downloaded the content, the node stores it until the corresponding validity time
expires. In case a node receives a query for the stored content, it will serve it
through device-to-device communication. Note that, if a node is not interested in
an information item, it will not participate to the caching process, including content
transfer and storage.

In summary, with the mechanism outlined above, informationitems spread
from one node to another in the network in a manner that loosely resembles an
epidemic diffusion process. However, when this content propagation is hindered
by availability problems, the cellular network is used to create new content sources
and avoid starvation.

With respect to the replication scheme we propose, the pull-based caching ap-
proach analyzed here differs in many aspects. First, such a caching scheme even-
tually achieves full content replication, in that all nodes, at the end of the diffusion
process, hold a copy of the content and can serve requests from neighbors. Instead,
the goal of our replication mechanism is to find the optimal number of replicas
that minimize content access costs, while guaranteeing load balancing. Addition-
ally, in the caching scheme, nodes simply discard expired content, while, in our
scheme, replica nodes are in charge of downloading up-to-date versions of the con-
tent. Since in our simulations nodes are loosely synchronized, the former behavior
implies that, at regular intervals corresponding to the content version expiration
times, the whole content diffusion process restarts from scratch.

In order to better understand our results, we now proceed with some key intu-
itions that follow from the differences between caching andreplication schemes
outlined above. It is well known that pull-based caching approaches are sub-
optimal during the bootstrap phase of the content delivery process: the few nodes
storing a copy of the content are overwhelmed by queries originating from nearby
nodes, while the vast majority of the other nodes remain idleand wait for the con-
tent to propagate towards them. The caching scheme we evaluate here partially
overcomes this problem by allowing nodes to fetch content through the cellular
network. However, it is reasonable to expect a large number of “external” data
transfers: as a consequence, access congestion may arise also at the cellular level.
Finally, we note that when the content is unpopular, the diffusion process is even
slower and the above negative effects are amplified.

In the following, we test the performance of the replicationand caching ap-
proaches in presence of two content discovery mechanism: the one presented in

9It is not the focus of this work to explore push-based mechanisms, nor more advanced ap-
proaches such as interleaving of push/pull phases.
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Figure 12: Performance of caching and replication mechanisms in terms of (a)
number of replicas and (b)χ2 index, for 100% content popularity and 100 s content
validity time

Sec. 5 and employed in the previous sections, which is based on a content location
service, and a flooding-based approach. The latter mechanism lacks the knowledge
of replica node identities, and thus floods the network with queries for the desired
content, although the overhead is reduced by means of a PGB-based, TTL-bounded
forwarding. The presence of two discovery techniques allows us to comment on
the impact that an optimized, yet complex solution (as the one based on the use of
a content location service) and a simple, yet sub-optimal one (flooding) have on
the overall system performance.

We first focus on the behavior of the replication and caching schemes over
time. We run the two solutions in the identical standard settings outlined in Sec. 5,
assuming a content validity time of 100 s and injecting one replica in the network at
the beginning of the simulation. The number of replicas present in the system over
time is depicted in Fig. 12(a). We observe that, while our replication scheme con-
trols the number of replica nodes and keeps it relatively small, the caching solution
leads to a rapid growth of users caching the content. As expected, by achieving full
replication, the caching strategy is more expensive than the replication scheme for
the mobile nodes, in terms of storage requirements.

One may argue that fewer content replicas may lead to a suboptimal place-
ment: full replication ensures that the content resides where the demand is. The
results illustrated in Fig. 12(b), however, show that such additional storage space
usage does not lead to any significant advantage in terms of the quality of replica
placement. Theχ2 index obtained by comparing the geographical distributionof
replicas under the two schemes with that computed by the centralized solution is
essentially equivalent.

We now compare the performance of the caching approach with that of our
replication scheme, when considering the following metrics that complement those
previously employed:

• query solving delay, intended as the time elapsed from the instant when a
node sends the first query until the request is fulfilled, by either a replica
node or the cellular network;
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Figure 13: Performance of caching and replication mechanisms in terms of ration
of cellular downloads (a) and query solving delay (b) for content popularity of
25-100%

25 50 75 100
0

2

4

6

8

10

12

14

Content validity duration (s)

A
ve

ra
ge

 D
el

ay
 (

s)

 

 

Caching − PD
Caching − Flood
Replication − PD
Replication − Flood

(a) Query solving delay

25 50 75 100
0

25

50

75

100

Content validity duration (s)

P
er

ce
nt

ag
e 

of
 e

xt
er

na
l d

ow
nl

oa
d 

(%
)

 

 

Caching − PD
Caching − Flood
Replication − PD
Replication − Flood

(b) Percentage of external
downloads

Figure 14: Performance of caching and replication mechanisms in terms of ratio
of cellular downloads (a) and query solving delay (b) for different content validity
periods [25,50,75,100] s

• percentage of external downloads, i.e., queries that resulted in an external
download, with respect to the overall requests generated inthe network.

Assume the content update period to be fixed at 100 s. Fig. 13(a) shows the
average delay (along with the 95% confidence interval) for the replication and
caching scheme as the content popularity varies. As hinted at above, the repli-
cation scheme outperforms the caching mechanism, and the difference in the rel-
ative performance is amplified (in favor of replication), asthe content popular-
ity decreases. Indeed, as content popularity decreases, fewer nodes participate in
the diffusion process that underlies the caching scheme. Assuch, nodes have to
wait longer for their queries to be satisfied and, in general,they end up download-
ing the content from the cellular network. Instead, when thecontent popularity is
high, the epidemic-style diffusion process performs better, and the delay decreases.
Fig. 13(b) reinforces the key intuitions we discussed in this section: when the con-
tent diffusion process is hindered by content popularity, mobile nodes resort to the
cellular network to compensate for the delays of device-to-device communication.
Our replication scheme outperforms the caching approach also in this aspect: by
approximating optimal content replication and placement,our mechanism reduces
the content access costs, in terms of congestion. Instead, the caching mechanism
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does not alleviate access congestion: i) nodes in the vicinity of a content replica
will “collide” to obtain the content through device-to-device communication, and
ii) nodes resorting to the cellular infrastructure becauseof query timeout expira-
tion also compete for bandwidth. These interwined aspects are exacerbated when
the content becomes stale: with our approach, few replica nodes take care of the
update process, while, with the caching scheme we study here, the whole content
diffusion process has to start over.

Next, we delve into the impact of the content update frequency, and compare
the replication and caching scheme when the content validity time is in the inter-
val [25, 100] s. Here the content popularity is set to 100%. Fig. 14(a) shows the
delay for the replication and caching scheme as the update frequency decreases
(i.e., larger update times). When the update frequency is high, both caching and
replication suffer in terms of access delay. Requests for anupdated version of the
content put under stress the replication scheme, because few replica nodes are in
charge of the content update, and consumer nodes have to waitfor the update pro-
cess to finish. Instead, as we argued above, the caching scheme has to restart at
every content update, and this is suboptimal. Fig. 14(b) reinforces the intuition that
the caching scheme, in order to mitigate a slow diffusion process, heavily relies
on cellular communications, a phenomenon that is exacerbated when the update
frequency is high. Instead, the replication scheme is essentially unaffected by the
update frequency with respect to the number of external downloads.

As described earlier in this section, we carried out our comparative analysis
using different content access mechanisms. As reported in our results, there is no
noticeable impact of using a simple flooding technique versus a more sophisticated
one based on content location service. However, although wedo not report the
results here for sake of conciseness, the workload payed by each node because of
queries being flooded in the network is larger than with an auxiliary service helping
nodes to target the closest replica.

In light of the results discussed above, our content replication scheme clearly
emerges as a simple, efficient and performing alternative totraditional mechanisms
that distribute the content through opportunistic communications among the nodes.
By controlling the number and the placement of content replicas, our mechanism
appears to be suitable especially when content popularity is not 100%, both for
performance and cost-related reasons.

8 Related work

Simple, widely used techniques for replication are gossiping and epidemic dis-
semination [23, 24], where the information is forwarded to arandomly selected
subset of neighbors. Although our RWD scheme may resemble this approach in
that a replica node hands over the content to a randomly chosen neighbor, the
mechanism we propose and the goals it achieves (i.e., approximation of optimal
number of replicas) are significantly different.
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Another viable approach to replication is represented by quorum-based [25]
and cluster-based protocols [26]. Both methods, although different, are based on
the maintenance of quorum systems or clusters, which in mobile network are likely
to cause an exceedingly high overhead. Node grouping is alsoexploited in [27,28],
where groups of nodes with stable links are used to cooperatively store contents and
share information. The schemes in [27,28], however, require an a-priori knowledge
of the query rate, which is assumed to be constant in time. Note that, on the con-
trary, our lightweight solution can cope with a dynamic demand, whose estimate by
the replica nodes is used to trigger replication. We point out that achieving content
diversity is the goal of [29] too, where, however, cooperation is exploited among
one-hop neighboring nodes only.

Threshold-based mechanisms for content replication are proposed in [30, 31].
In particular, in [30] it is the original server that decideswhether to replicate con-
tent or not, and where. In [31], nodes have limited storage capabilities: if a node
does not have enough free memory, it will replace a previously received content
with a new one, only if it is going to access that piece of information more fre-
quently than its neighbors up toh-hops. Our scheme significantly differs from
these works, since it is a totally distributed, extremely lightweight mechanism,
which accounts for the content demand by other nodes and ensures a replica den-
sity that autonomously adapts to the network dynamics.

Finally, relevant to our study are the numerous schemes proposed for handling
query/reply messages; examples are [32], which resembles the perfect-discovery
mechanism, and [33, 34] where queries are propagated along trajectories so as to
meet the requested information. Also, we point out that the RWD scheme was first
proposed in our work [35]. That paper, however, besides being a preliminary study,
focused on mechanisms for content handover only: no replication or content access
were addressed.

9 Conclusions

We focused on content replication in mobile networks and we addressed the
joint problem of (i) establishing the number of content replicas to deploy in the
network, (ii) finding their most suitable location, and (iii) letting users efficiently
access content through device-to-device communication.

We studied the above problems through the lenses of facilitylocation theory
and proposed a distributed, lightweight scheme that buildson (i) local search ap-
proximations of the multi-commodity capacitated facilitylocation problem and (ii)
parallel random walk diffusion in non-regular graphs. We showed that, despite its
simplicity and the fact that it only leverages local measurements, our replication
solution can approximate with high accuracy the solution attained by optimal cen-
tralized algorithms, while also guaranteeing a fair balancing of the communication
and memory resources demanded of nodes. Additionally, the scheme we propose
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adapts to network dynamics, in terms of content popularity,size and set cardinality,
as well as user number, density and mobility.

When compared to different approaches to content replication and caching,
our approach performs closely to square-root-based replication, while it outper-
forms traditional caching techniques that mimic an epidemic diffusion of the con-
tent, especially in the more challenging settings of low content popularity and high
frequency of content updates.
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