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Abstract—We use results from the asymptotic analysis of
code-division multiple access with random spreading as a tool
for gaining insight and deriving design guidelines on practical
system issues, inspired by the current UMTS/IMT2000 standard-
ization process. In particular, we consider a simple synchronous
single-cell system with perfect power control and linear detection,
and we examine the following: 1) the optimal tradeoff between
coding rate and spreading gain and 2) the comparison of different
multirate schemes.

Our analysis shows that, for the sake of system spectral effi-
ciency maximization, there exists a thresholdEb=N0 below which
the single-user matched filter (SUMF) is optimal (within the limits
of our system model). As far as multirate schemes are concerned,
we show that multicode and variable-spreading with SUMF de-
tection are equivalent, while the former is uniformly better than
the latter with linear minimum-mean-square error detection. Vari-
able-spreading can perform very close to multicode if high-rate
users are detected by observing the whole “low-rate” symbol in-
terval. Finally, we compare the capacity regions of the multimod-
ulation and multicode schemes versus theEb=N0 ratio.

Index Terms—CDMA system capacity, linear receivers, multi-
rate CDMA, random spreading.

I. INTRODUCTION AND MOTIVATIONS

T HE system capacity of code-division multiple access
(CDMA) depends on several factors like user synchro-

nism, the choice of spreading sequences, the partition of the
overall bandwidth expansion between spreading gain and
channel coding rate, the effects and statistics of multipath
propagation channels, the geometry of cell coverage and
sectorization, power control and power allocation schemes, the
type of receiver (coherent, noncoherent, single-user, multiuser,
linear, nonlinear) used at the base stations and at the user
terminals.

Even by restricting the analysis tooversimplifiedsingle-cell
synchronous CDMA systems with frequency-flat propagation
channels, results depend on the set of spreading sequences and
on the receiver scheme used.

The need to gain insight into the fundamental system design
tradeoffs independently of the system fine structure motivates
the asymptotic analysis based on random spreading sequences
of [1]–[5]. In these works, the powerful theory of limiting eigen-
value distribution of large random matrices (see [6] and [7],
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and references in [3] and [4]) is used to study the system ca-
pacity of single-cell synchronous CDMA under the assumption
of random spreading sequences andlarge systems, i.e., when
both the number of users and the spreading gain go to in-
finity, but the ratio of users per chip converges to a
constant. These results have been extended in [8] to the case of
chip-synchronous, symbol-asynchronous systems, in [9] to the
case of flat fading, in [10] to the case of multipath fading with
nonideal channel estimation, and in [11] to the case of optimal
(nonlinear) multiuser detection.

The main goal of this manuscript is to show how the the-
oretical results of [4] and [8] can be used to develop useful
design guidelines for some practical issues of CDMA systems.
This study is motivated by the debate around the standardiza-
tion of UMTS/IMT2000 [12], [13] third-generation mobile
communication systems, and in particular by the definition of
a UMTS air interface for satellite personal communications
[14]. In low-earth orbit satellite systems, because of the limited
on-board power and the high carrier frequency, line-of-sight
(LOS) propagation is necessary to close the link-budget.
Multipath is negligible, so that the channel can be modeled as
frequency flat. Users belonging to the same spot-beam are well
isolated from interbeam interference by the radiation pattern of
the spotbeam antenna. Power control is able to compensate for
variations due to the relative motion of the user terminal and
the spot-beam. Therefore, by neglecting the possible Rician
fading and synchronization errors,1 synchronous CDMA with
perfect power control is not an unrealistic model (asynchronous
interference generated by other satellites in LOS can be either
taken into account by suitably dimensioning the background
noise power spectral density or eliminated by some beam
switching-off strategy).

We consider a coded system where the receiver of each
user consists of a linear filter front-end, viz., either a
single-user matched filter (SUMF) receiver or a linear min-
imum-mean-square error (LMMSE) receiver [7], followed by
a single-user decoder. The key performance measure here is
the signal-to-interference-plus-noise ratio (SINR) at the filter
output. In fact, the users’ quality of service (QoS) can be
expressed in terms of a target SINR, depending on the user
channel code.

This paper is organized as follows. In Section II, we review
the synchronous CDMA system model and the main results of
[4], which will be used throughout this paper. In Section III,
we apply the asymptotic random spreading analysis to the
investigation of the optimal tradeoff between coding rate and
spreading gain. We take into account the influence of different

1Typically, the fraction of LOS to scattered received energy (Rician factor) is
large (�10 dB) and quasi-synchronous transmission in the same beam is pos-
sible also in the uplink [14], [15].
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pilot channel formats proposed for UMTS [12] to enable co-
herent detection. Pilot channels can be either multiplexed into
the data symbols (pilot symbols) or superimposed to the data
signal as an additional spread spectrum signal (pilot signals).
In Section IV, we compare different multirate CDMA schemes
[16]–[19] in terms of their asymptotic capacity region. Finally,
in Section V, we outline the main findings of this research.

II. SYSTEM MODEL

We consider a single-cell synchronous direct-sequence
CDMA system (DS-CDMA) with frequency-flat propagation
and perfect power control, so that fading and deterministic
path attenuation are perfectly compensated for. The receiver
front-end is formed by a chip-matched filter followed by
sampling at the chip rate. We let and denote the number
of users and the spreading gain (number of chip per symbol),

and denote the th
user complex amplitude (taking into account the carrier phase),
modulation symbol, and spreading sequence, respectively. For
each symbol interval, the receiver collects a vectorof
chip-rate samples, which can be written as [7]

(1)

where is an matrix whose columns are
the user spreading sequences,

and is a complex circularly
symmetric white Gaussian noise vector with per-component
variance . Modulation symbols and spreading
sequences have unit average energy, i.e., and

for all . The average received energy per symbol
from user is and the user signal-to-noise ratio

(SNR) is given by .
The receiver of each user is formed by a linear filtering

operation , followed by single-user decoding acting
on the filter output. We consider SUMF and LMMSE receivers
[7], defined by the filter vectors

SUMF
LMMSE

(2)

where .
Following [4], we model the spreading sequences as

random with independently, identically distributed (i.i.d.)
complex circularly symmetric entries , such that

and . Let be a
random variable obtained by selecting at random with uniform
probability the SNR of a user, i.e., ,
for all . As , we assume that
converges in distribution to a random variable, with a
given cumulative distribution function (cdf) . Finally, we
assume alarge system, i.e., we let while is
finite and converges to a given value. Notice that the ratio

is the “channel load,” measured inusers per chip. Under
the above conditions, the SINR at the output of an SUMF and
an LMMSE receiver for a user with given SNRconverges in

probability to the value given by the following equations [4,
Theorem 3.1 and Proposition 3.3]:

SUMF

LMMSE
(3)

Concerning the LMMSE case, must be taken as the unique
positive solution to the relevant equation and the uniqueness of
this solution is proven in [4, Proposition 3.2].

III. CODING VERSUSSPREADING

The system spectral efficiencyof a multiuser system is the
number of users bits/s/Hz that the system is able to support
subject to a given QoS constraint on the transmission of each
user. We let and denote the bit rate (bits/second) of each
user and the system bandwidth (Hertz), respectively. Then, we
have . We assume also that users transmit at given
power , so that is the same for all users.

In practical systems, a fractionof the transmission resource
per user is dedicated to synchronization and channel estimation
[12], [13]. In UMTS, two main techniques are considered: mul-
tiplexed pilot symbols and superimposed pilot signals. Going
into the details of specific algorithms is out of the scope of this
paper. However, experimental evidence shows that the quality of
channel estimation provided by both the pilot symbols and pilot
signals technique depends mainly on, and provide similar re-
sults for the same [15]. Then, apart from practical implemen-
tation considerations, the two techniques are equivalent as far as
channel estimation is concerned. On the contrary, they may have
a different impact on the system spectral efficiency, depending
on the type of linear receiver considered. Therefore, it is inter-
esting to study system spectral efficiency with pilot symbols or
pilot signals for leaving as a parameter, whereis designed in
order to achieve (almost) perfect coherent detection.

Asymptotic SINR with Pilot Symbols:With this scheme, a
fraction of the transmitted symbols are pilot symbols known
to the receiver. The symbol rate necessary to achieve bit rate

is , where is the channel coding
rate, expressed in bits/symbol. The resulting spreading gain is
given by chip/symbol, where for
simplicity we assume that the chip rate is equal to the system
bandwidth ,2 and that is an integer.

The SNR for each user is given by
, and the channel load is given by

. By using these expressions in (3) and by using the
fact that all users have the same SNR (i.e., with proba-
bility 1), we obtain the asymptotic output SINR as a function of
the basic system parameters

SUMF

LMMSE (4)

2This is equivalent to assume ideal zero excess-bandwidth Nyquist
chip-shaping pulses. In UMTS, the chip-shaping pulse is root-raised cosine
[20] with rolloff 0.22 (see [12] and references therein).
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Asymptotic SINR with Pilot Signals:With this scheme, each
user transmits a data signal at power and a pilot signal
at power . Pilot signals are spread-spectrum signals, formally
identical to data signals, but modulated by a training symbol
sequence known to the receiver. The system with pilot signals is
equivalent to a system with virtual users. “Data” and “pilot”
users have the same symbol rate and SNRs

and , respectively. By using
these expressions in (3) and by using the fact that there are
virtual users with SNR and virtual users with SNR (i.e.,

takes on values and with probability ), we obtain
the asymptotic output SINR as a function of the basic system
parameters

SUMF

LMMSE

(5)

Notice that, with the SUMF receiver, pilot signals and pilot sym-
bols yield the same asymptotic SINR. Therefore, these tech-
niques with SUMF are equivalent in terms of system spectral
efficiency.

QoS Constraints:The user coding rate is related to the
desired SINR at the receiver output by some QoS require-
ment. Typically, the function for any meaningful
QoS constraint is nondecreasing in. Depending on the appli-
cation, QoS is given in terms of the target bit-error rate (BER) or
frame-error rate (FER). For example, data transmission requires
very small FER (e.g., 10 ) and speech transmission (mo-
bile telephony) requires not too large BER (e.g., between 10
and 10 ). Driven by this rationale, we consider an FER con-
straint suited to data transmission and a BER constraint suited
to speech transmission. In particular, we study the asymptotic
system spectral efficiency subject to the following.

1) Arbitrarily small FER, assuming optimal channel codes
(i.e., single-user capacity achieving Gaussian codes).
Since with Gaussian codes the output of the receiver
linear filter is Gaussian, this yields the rate function

, where is the SINR at the receiver
filter output.

2) Given target BER, assuming uncoded quadrature ampli-
tude modulation (QAM)/phase-shift keying (PSK) mod-
ulation with bits/symbol. This yields the rate function

for (6)

where is defined as the minimum required SINR
for which a QAM/PSK modulation with cardinality
achieves the target BER (with coherent detection).

We evaluate the BER as a function ofby making a
Gaussian approximation of the receiver filter output and
by assuming Gray binary labeling of the modulation sym-
bols [20]. Then, the BER of QAM/PSK modulations is
given by

BPSK
QPSK

8PSK

QAM

(7)

where .

A. Spectral Efficiency with the FER Constraint

We study the system spectral efficiencyas a function of
the required SINR for the coding rate
induced by the above FER constraint, and by treating
and as given system parameters.

The asymptotic SINR equations (4) and (5) can be put in the
form

(8)

where and given in (9), shown at the bottom
of the page. Following the approach of [4, Proposition 3.2], we
rewrite (8) as

(10)

We notice that

for all types of receivers considered. The function is strictly
increasing for with the SUMF while it first decreases to
a minimum and then increases with the LMMSE.

As far as the solution of (10) with respect tois concerned,
the following remarks are in order.

• The solution of (10) may not exist or may not be unique. In
fact, this behavior of the SINR equation is different from

Pilot symbols or pilot signalsSUMF
Pilot signalsLMMSE

Pilot symbolsLMMSE

(9)
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the case of [4, Proposition 3.2], whereis assumed to be
independent of the coding rate.

• If , (10) has a unique
solution which satisfies the inequalities

deriving from

(11)

which holds under the reasonable assumption that
(i.e., less than 50% of the system resources are devoted to
pilot transmission).

• Otherwise, there is no solution for the SUMF, but there
may be one for the LMMSE with pilot symbols or pilot
signals. In both cases, if any solution exists, there are two
ones, and the smaller must be discarded. A solution exists
if and only if the minimum of for is smaller
than 1.

By solving (10), we obtain as a function of and the system
parameters and . Equivalently, from (8), we can write
the system spectral efficiencyas a function of

(12)

The following remarks are in order.

• The necessary to have nonzero spectral efficiency
for given and must satisfy

• By using (11) into (12), still assuming that less than 50%
of the system resources are devoted to pilot transmission,
the system spectral efficiencies with the different types of
receiver are ordered as follows:

Intuitively, the performance of the LMMSE receiver with pilot
signals is worse than with pilot symbols because the former
case is equivalent to having users and spreading gain

, while the latter is equivalent to having only users
and spreading gain reduced by the factor . For , the
channel load (total number of equivalent users per chip) is larger
in the pilot signals case. In other words, pilot signals expand
the dimension of the signal subspace spanned by the multiple-
access interference. Now, it is well known that linear multiuser
receivers perform poorly when the dimension of the interference
subspace is a large fraction of the spreading gain [7] (this effect
is sometimes referred to as “dimensional crowding” [22]). For

, the two system have the same spectral efficiency, as
can be seen by inspection of (4) and (5).

Figs. 1 and 2 show versus for and 10 dB, and
for . This corresponds to about6 dB of pilot-to-data
signal power ratio and to one pilot every five transmitted sym-
bols. These values appear to be quite realistic in order to ensure
coherent detection, as shown by simulations of practical systems
[15], [14].

Fig. 1. Asymptotic spectral efficiency� of DS-CDMA versus required SINR
� with � = 0:20 andE =N = 2 dB.

Fig. 2. Asymptotic spectral efficiency� of DS-CDMA versus required SINR
� with � = 0:20 andE =N = 10 dB.

Qualitatively, we observe that, for low values of (see
Fig. 1), the asymptotic system spectral efficiency for both the
SUMF and the LMMSE receivers decreases as the target SINR

increases. The system spectral efficiency is maximized by
, which implies . From a practical system de-

sign point of view, this means that, for low , a system
optimized for spectral efficiency has a very large number of
users with negligible coding rate. The overall bandwidth expan-
sion factor is entirely devoted to low-rate coding and the
spreading gain should be as small as possible (i.e., ). This
kind of systems is proposed, for example, in [21] under the name
of code-spread CDMA.

On the contrary, with LMMSE and sufficiently high
(see Fig. 2), is first increasing and then decreasing with

. From a practical system design point of view, this means
that in a system optimized for spectral efficiency the overall
bandwidth expansion factor is allocated partly to
spreading and partly to coding. The optimum coding rate
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is and the corresponding optimum
spreading gain is given by

(13)

where is the value of the target SINR maximizing.
In all cases, approaches zero for

which is a solution of the equation

(14)

Interestingly, depends on and on , and
it is independent of the type of receiver and of the pilot tech-
nique.

We can prove analytically the above qualitative results
by considering the expression (12) of the system spectral
efficiency. We obtain the following.

• For the SUMF

for and , which implies that is a de-
creasing function of .

• For the LMMSE with pilot symbols

Hence, there may be a single zero of (and a
maximum of ) provided that , which
holds if and only if

(15)

• With pilot signals, the analysis is more complicated. How-
ever, we can show that has a maximum for positive

for and all above the value

(16)

In other words, with the LMMSE receiver, there exists a
threshold value of , albeit quite low, below which
the system spectral efficiency is maximized by , and
coincides with the maximum spectral efficiency attained by
the SUMF. In this case, if system spectral efficiency is the
main performance indicator, there is no point in using the more
complicated LMMSE receiver. By letting in (15), we
obtain the threshold value dB, which is in
agreement with the behavior shown in Figs. 1 and 2.

B. Spectral Efficiency with Uncoded QAM and BER Constraint

Consider now the case of uncoded QAM, for which is
given by (6). The closed-form analysis in this case is compli-
cated by the fact that is a piecewise constant function of

. However, the behavior of is qualitatively similar to that
observed above for the case of optimal Gaussian codes.

Figs. 3 and 4 show the system spectral efficiency for target
BER equal to 10 and 15 dB, re-

Fig. 3. Asymptotic spectral efficiency� of DS-CDMA versus required SINR
� with � = 0:20, E =N = 10 dB, and uncoded QAM/PSK with target BER
equal to 10 .

Fig. 4. Asymptotic spectral efficiency� of DS-CDMA versus required SINR
� with � = 0:20,E =N = 15 dB, and uncoded QAM/PSK with target BER
equal to 10 .

spectively. The peaks of the spectral efficiency curves corre-
spond (from left to right) to binary PSK (BPSK), quadrature
PSK (QPSK), 8PSK, 16QAM, and 32QAM constellations.

With the SUMF, the maximum spectral efficiency is attained
by BPSK and QPSK. It is easy to show that these two modula-
tion formats are equivalent in terms of spectral efficiency, since
the BPSK system is able to support twice as many users as the
QPSK system, with half bits/second/Hertz per user.

With the LMMSE receiver, a different behavior can be ob-
served. For lower than a threshold, the spectral effi-
ciency is maximum for QPSK (see Fig. 3). We notice that QPSK
and BPSK are not equivalent with LMMSE detection. In par-
ticular, it can be shown that QPSK yields better spectral effi-
ciency than BPSK for all . This is due to the dimensional
crowding effect already observed for pilot signals, since the
BPSK would need to support twice as many users as the QPSK
system, in order to have the same spectral efficiency. For
larger than the threshold, the spectral efficiency is maximum
for signal constellations larger than QPSK (see Fig. 4, where
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the maximum is attained by 16QAM). The threshold value of
can be calculated numerically, and depends on the BER

target and on .

IV. COMPARISON OFMULTIRATE FORMATS

In this section, we show how the asymptotic random sequence
analysis can be used to select a multirate format. We consider
two user classes of size and , with bit rates
bits/s, respectively, and assume that the rate ratio
is an integer greater than 1.

As before, we study the asymptotic system performance in
the limit for , while the numbers of users per
chip and converge to constant values and ,
respectively. Let and be the SINR at the linear receiver
output (SUMF or LMMSE) and the SNR of a user in class

. The two classes are characterized by SINR requirement
and SNR constraint . Following [4], we define

the multirate system capacity regionas

for
(17)

The boundary of is the set of pairs for which it is not
possible to stay in by increasing both components.

Among the methods recently proposed for implementing
multirate CDMA (see, e.g., [16]–[19]), we examine and com-
pare multimodulation (MM), multicode (MC), and variable
spreading (VS).

A. Multimodulation Scheme

With MM, users of both classes transmit with the same
symbol rate , by using different coded-modulation schemes
with spectral efficiency and
bits/symbol, respectively. The spreading gain is
common to both classes.

Since the two sets of users transmit with different coded-mod-
ulation schemes, they have different SINR requirementsand

. In order to obtain results independent of the specific coded-
modulation schemes used, we assume that optimal Gaussian
codes are used. Thus, the SINR requirements are

(18)

The asymptotic capacity region for MM has been found in [4].
For the sake of completeness, we provide the expression in the
case of two classes considered in this paper. With SUMF re-
ceiver, is defined by the inequality

(19)

With LMMSE receiver, is defined by the inequality

(20)

(Obviously, this includes the SUMF asymptotic capacity re-
gion.)

An interesting property of MM is that the optimal power al-
location problem can be solved in closed form. In fact, for all

, the SNRs required to achieve SINRs is
given by

(SUMF)

(LMMSE)
(21)

We can make here a link to the results of [23], which will be
useful in the discussion of the VS case below. In [23], it is shown
that most power control problems can be formulated in the form

, where is the vector of assigned user SNRs, and
is a (vector) interference function.

An interference function is said to befeasibleif there exists a
nonnegative solution to the above inequality. The interference
function is said to bestandardif the following conditions
hold for all : a) (positivity); b)

(monotonicity); and c) for all
(scalability). If is standard, the power control iteration

(22)

is globally convergent to a unique SNR vector. Moreover,
the componentwise minimum feasible SNR assignment, i.e., for
every achieving the SINR target for all users, [23].

In our case, the required SINR targetsare met by both
classes if [4]

(SUMF)

(MMSE)
(23)

The above inequalities yield the interference function defined
componentwise (for ) by

(SUMF)

(LMMSE)

It is easy to show that the above interference function is standard
and that the SNR assignment given by (21) is the unique fixed
point of iteration (22), i.e., it is the componentwise minimum
feasible SNR assignment.

The boundary of is given by equality in (19) [respectively,
in (20)]. In general, the minimum in the right-hand side (RHS)
is achieved by one of the classes (say, class). Then, the power
control solution (21) gives for class , while
for the other class. In other words, the users in the class with
the tightest power constraint must transmit at their maximum
SNR, while the users in the class with loosest power constraint
transmit at SNR below their maximum. The system capacity is
limited by the class with largest ratio .
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B. Multicode Scheme

With MC, every high-rate user divides its data stream into
substreams (“virtual low-rate users”). Each substream is indi-

vidually spread and transmitted, and each virtual user is detected
by an independent receiver. Under the assumption of random
spreading, the MC system is equivalent to a single-rate system
with users/chip, all with the same bit-rate ,
or, equivalently, with the same spectral efficiency .
The SINR requirement is given in (18) and the capacity re-
gion is immediately obtained as

(SUMF)

(LMMSE)
(24)

where is the SNR constraint for a user of the equivalent
single-rate system.

The boundary of the MC capacity region is achieved when
each equivalent low-rate user transmits at its maximum SNR.
This implies that the transmit power of high-rate users is equal
to times the transmit power of low-rate users, as it is obvious
from the signal-splitting MC approach.

Also, we must keep in mind that the capacity regions derived
by the asymptotic analysis are valid for random spreading
sequences. With MC, all the virtual users corresponding to
the same high-rate user could be made orthogonal by choosing
mutually orthogonal spreading sequences (typically, dif-
ferent Walsh–Hadamard sequences, chip-wise multiplied by a
common scrambling sequence in order to randomize nonorthog-
onal interference from the other users). The random-signature
sequence approach followed in this paper cannot take this
orthogonality constraint into consideration. However, mutual
orthogonality is expected to have little impact on the uplink,
since the main source of impairment is the nonorthogonal
interference from other users.

C. Variable-Spreading Scheme

With VS, high-rate users transmit with a symbol rate .
Thus, the effective spreading sequence length for a high-rate
user is (assumed to be integer). This is conceptually sim-
ilar to the multicode scheme: in fact, a high-rate user can be
decomposed into virtual low-rate users whose sequences are
zero in a part of the “long” symbol interval, as shown in Fig. 5.
Both classes of users have the same coded-modulation spec-
tral efficiency . In fact, , since

. High-rate users transmit at powertimes larger
than low-rate users. Since their symbol rate istimes larger,
their SNR constraint (energy per symbol over) is the same
as for low-rate users. Hence, as in the MC case, all users have
the same SINR requirement and the same SNR
constraint .

Intuitively, we expect that the capacity region of VS is some-
what similar to that of MC. However, the asymptotic analysis
based on purely random sequences is not directly applicable in
this case, because the spreading sequences, being constrained
to be zero on certain symbols, are not random. Nevertheless,

Fig. 5. Decomposition of a high-rate user intor low-rate virtual users (r = 4

in this example).

by applying the powerful results of [6] (used in [8] to solve
the single-rate chip-synchronous symbol-asynchronous CDMA
case), we obtain closed-form results also for VS. These results
(which are new to the authors’ knowledge) are stated in the fol-
lowing propositions whose proof is postponed to Appendix A.

Proposition 1: With the SUMF receiver, the asymptotic
system capacity region of VS is exactly the same of MC, given
in (24).

Now, we turn our attention to the more interesting case of
LMMSE receiver. For low-rate users, we have the following.

Proposition 2: With the LMMSE, the asymptotic SINR of
low-rate users is given by the unique nonnegative solution of
the fixed-point equation

(25)

With the LMMSE, the symbols of high-rate users can be
detected either by considering only the short symbol interval
of duration over which the corresponding spreading
sequence is nonzero, or by considering the whole symbol in-
terval of duration [16]. For the sake of brevity, we nick-
name these two linear detection schemes for high-rate users as
“short-interval” and “long-interval,” respectively. Short-interval
detection is less complex, since it requires shorter linear filters.
However, since the interference created by low-rate user sym-
bols over high-rate user symbols is correlated over the whole
long symbol interval, we expect that the short-interval detection
suffers from some performance degradation. We have the fol-
lowing.

Proposition 3: With LMMSE receiver andshort-interval
detection, the asymptotic SINR ofhigh-rate users is the unique
nonnegative solution of the fixed-point equation

(26)
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Proposition 4: With LMMSE receiver andlong-interval de-
tection, the asymptotic SINR ofhigh-rate users is given by the
unique nonnegative solution of the fixed-point equation

(27)

where is the unique nonnegative solution of the fixed-point
equation

(28)

The following result states the desired comparison between
MC and VS.

Proposition 5: Let and denote
the capacity regions with LMMSE receiver for the MC, VS
(long-interval detection), and VS (short-interval detection) sys-
tems. Then, the inclusion relation

holds for all given system parameters (SINR requirement,
rate ratio , and SNR constraint ).

Unfortunately, the power control problem for VS with
LMMSE receiver does not have a nice closed-form solution as
for MM. Then, in order to plot the capacity region boundary for
VS/LMMSE, we resort to a semi-analytic method exploiting
the power control iteration (22) with the proper definition of a
standard interference function.

By substituting into the SINR equations
(25)–(27), we obtain the interference function (defined compo-
nentwise)

(29)

where for short-interval detection and
for long-interval detection. The above in-

terference function is standard.
From [23], we know that the new interference function in-

cluding the SNR constraint, given by

is also standard. Therefore, the resulting power control recursion
(22) is globally convergent. Moreover, its unique fixed point
has the property that if

(30)

then the SINR requirement for classis satisfied, while if

(31)

then the SINR requirement for classis not satisfied. In order
to check if a pair is inside the capacity region, it is
sufficient to run the power control recursion based on
and calculate its fixed point . If (30) is met for both ,
then .

Since the interference function is componentwise increasing
in and , it is easy to see that any straight line ,
for , intersects the capacity region boundary in a single
point. Then, the points on the boundary can be obtained by
searching for the intersection for all directions.3

D. Numerical Results

In our example, low-rate users transmit with spectral effi-
ciency bits/symbol and the rate ratio is (i.e.,

and bits/s, where is the symbol
rate of low-rate users). We compare the system capacity as-
suming that both low-rate and high-rate users have the same

. Then, the SNR constraint for low-rate users (in MM)
and for both low-rate and equivalent low-rate users (in MC and
VS) is given by , while the SNR constraint for
high-rate users in MM is given by .

Figs. 6 and 7 show the asymptotic capacity region boundaries
for MM, MC, and VS with SUMF and LMMSE receivers, for

dB and dB, respectively. Some com-
ments are in order.

1) Equivalence of MC and VS (Long-Interval Detec-
tion): The capacity regions of MC and VS with LMMSE and
long-interval detection are almost identical. In Appendix A, we
prove that the term in Proposition 4 satisfies

where is the solution of (25), i.e., it is the SINR of low-rate
users in the VS system. If we replaceby in (27),
it is immediate to show that the optimal power control yields

, which implies . With this substitution,
the expressions of and become identical to that of in
the MC system, therefore the corresponding capacity region co-
incides with that of MC. From the above argument, it is intuitive
to see that if is very close to , then the VS and the
MC capacity regions will be also very close. This is precisely
what happens for our choice of system parameters. Most impor-
tantly, we checked numerically that this fact occurs for a very
wide range of system parameters ( and ). Therefore,
we can conclude that the MC and the VS (with long-interval
detection) systems are (almost) equivalent from the asymptotic
capacity point of view.

2) Comparison Between MM and MC:In Appendix B, we
prove that, with LMMSE receiver, the (absolute) slope of the
MM capacity region boundary is always larger than that of MC,

3Notice that, unlike the capacity region of the “classical” multiple-access
channel [24], these capacity regions need not be convex, unless an explicit con-
vexification based on time-sharing between different pairs(� ; � ) is done (this
is equivalent to take the convex hull of the points obtained from the above algo-
rithm).
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Fig. 6. Capacity regions of MM, MC, and VS systems, forR = 0:5
bit/symbol,r = 4, andE =N = 3 dB.

Fig. 7. Capacity regions of MM, MC, and VS systems, forR = 0:5
bit/symbol,r = 4, andE =N = 10 dB.

that the MM capacity region boundary intersects the horizontal
axis in always less than the corresponding intersection of
MC, and that an intersection of the two boundaries exists if

(32)

The RHS of the above inequality, evaluated for and
, yields 4.3 dB. In fact, in Fig. 6 ( dB) the MC

capacity region contains the MM capacity region, while in Fig. 7
( dB) the MM capacity region is not contained into
that of MC. The MM capacity region contains the MC capacity
region only in the limiting case of a noiseless system, i.e., for

.
With LMMSE, MM outperform MC and VS for large and

small , provided that (32) is satisfied. This is an unlikely sit-
uation because a real system is expected to operate with a large
number of low-rate users and a small number of high-rate users.
In this case, MC and VS are distinctly better than MM, espe-
cially for low (this agrees with the experimental results
of [17]).

3) On the Correct Interpretation of the Asymptotic Capacity
Regions: At first glance, the fact that the capacity boundaries
for MM and VS do not coincide with that of MC for
might appear strange. In fact, for strictly equal to 0, all sys-
tems are equivalent (all reduce to a single-rate system with
users per chip). However, this behavior is easily explained if
we take into account that the asymptotic analysis is valid under
the assumption that the number of usersin both classes(i.e.,
both and ) goes to infinity as . Obviously, this
assumption rules out the case of identically zero. The in-
tersection of the capacity region boundaries with the horizontal
and vertical axes should be interpreted as the limits for
and for , respectively. In other words, in the MM and
VS systems, even an arbitrarily small (but positive) fraction of
high-rate users per chip is sufficient to make the whole system
perform worse than a single-rate low-rate system. This is due to
the fact that in MM and VS the most stringent power constraint
is determined by high-rate users. Therefore, the system capacity
is dominated by the SINR requirement of high-rate users, even
if these are a negligible fraction of the overall users.

4) Suboptimality of VS with Short-Interval Detection:Apart
from the limiting case , the VS system with LMMSE
receiver and short-interval detection performs uniformly worse
than VS with long-interval detection and MC.

5) Empirical SINR CDF: In order to validate our analysis,
we simulated a chip and symbol synchronous system with
random spreading, and
dB, with MM, MC, and VS (both long- and short-interval
detection). Figs. 8 and 9 show the empirical SINR cdf obtained
by generating 5000 independent sets of spreading sequences,
for the different systems, for SUMF and LMMSE receivers,
respectively. The vertical lines indicate the SINR targets

dB and dB. In all
cases, we chose to be on the capacity region boundary,
with at about half of its maximum value, and to be the
corresponding values obtained by the optimal power control
recursion.

We observe that in all cases the SINR of the actual random
system with finite is distributed around its target SINR. The
SINR distribution tails for high-rate users and VS are larger,
since the actual spreading gain for high-rate symbols is only
128/4 = 32 chips.

V. CONCLUSION

We have applied the recently proposed asymptotic analysis
of large CDMA system based on random spreading sequences
to some design issues inspired by the current standardization
of third-generation wireless mobile systems. Even though our
model is very simple, it is representative of some satellite sys-
tems for personal communications and our approach might be
extended to more general systems.

First, we considered the tradeoff between channel coding rate
and spreading gain in order to maximize the overall system spec-
tral efficiency of a single-rate system. The impact of channel es-
timation techniques based on pilot symbols and on pilot signals
was taken into account. With the SUMF receiver, the two pilot
schemes are equivalent, while pilot symbols yield a better spec-
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Fig. 8. Empirical SINR cdfs of MM, MC, and VS systems with SUMF
receiver, forR = 0:5 bit/symbol,r = 4,E =N = 3 dB, andL = 128.

Fig. 9. Empirical SINR cdfs of MM, MC, and VS systems with LMMSE
receiver, forR = 0:5 bit/symbol,r = 4,E =N = 3 dB, andL = 128.

tral efficiency than pilot signals with the LMMSE receiver. We
showed that for below a given threshold (given in closed
form), the system spectral efficiency is maximized by low-rate
coding, no spreading, and SUMF receiver. For above this
threshold, the LMMSE receiver yields larger spectral efficiency
and the optimal partition between spreading gain and coding
rate can be easily evaluated. This result shows that linear mul-
tiuser detection followed by single-user decoding does not pro-
vide always an improvement as far as the overall system spectral
efficiency is concerned. In fact, multiuser detection should be
combined with channel decoding (see, for example, the optimal
MMSE decision-feedback scheme of [25] and the iterative soft
interference cancellation scheme of [26]).

Then, we compared three techniques for multirate CDMA
in terms of their asymptotic multirate system capacity. We
showed that, with SUMF, MC and VS are equivalent, while
with LMMSE, MC dominates VS. However, VS is very close to
MC if high-rate users are detected by using as observation the
whole low-rate symbol interval. On the contrary, if a simplified
receiver using the short high-rate symbol interval is used, VS

is distinctly worse than MC. MM may perform better than
MC for above a given threshold (given in closed form)
and when the fraction of high-rate users is large. Monte Carlo
simulation results are in close agreement with our analysis
and show that the empirical cdf of the received SINR of a
finite-dimensional system concentrates its probability mass
around the asymptotic SINR.

APPENDIX A
PROOFS

1) VS Multirate System Model:In order to model VS multi-
rate CDMA, we modify the basic system model (1) as

(33)

where is the received chip-rate sampled signal vector of
length during a “long” symbol interval,

is the spreading sequence of theth low-rate
user, modulated by the symbol

is the spreading sequence for theth symbol of the th high-rate
user (that is nonzero only over for consecutive chips), mod-
ulated by symbol , and is the vector of complex circularly
symmetric Gaussian noise samples, i.i.d. with mean zero and
variance 1. Since the spreading sequences are complex random
with circular symmetry, without loss of generality we have in-
cluded the phase of the complex amplitudein (1) as part of

, and we deal only with the magnitude (low-rate
users) and (high-rate users).

With the above definitions, the receiver input vector can be
written again in the compact form , where

is a matrix containing all spreading sequences
by columns, is a diagonal matrix given by

and is the vector of all modulation symbols.
Proof of Proposition 1: We make use of the following re-

sult, which can be easily obtained from the results in [4, Ap-
pendix B]. For i.i.d. random variables and , with mean
zero, variance 1, and finite fourth-order moment, the limit

(34)

as with , holds in probability.
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Without loss of generality, consider the output of the SUMF
receiver for low-rate user 1, given by . The SINR is
given by

By letting , with and , and
by applying the limit (34), we obtain the limit in probability of

as

(35)

Without loss of generality, we can consider the output of symbol
1 of high-rate user 1, given by . By using again
the limit (34), we obtain that the corresponding SINR con-
verges in probability to the same limit (35). Since this is also the
asymptotic SINR of a single-rate system withusers/chip with
SNR and users/chip with SNR (the single-rate equiv-
alent of an MC system), we conclude that with the SUMF re-
ceiver, VS and MC are asymptotically equivalent from the SINR
point of view. Since the asymptotic system capacity depends on
the multirate system only through the SINR asymptotic expres-
sion, the two systems have the same capacity region.

Proof of Proposition 2: We make use of the following re-
sult of [8, Appendix A]. Let with independent
complex circularly symmetric random elements . Define the
function , for and

, and assume that for some
constant independent of . Then, as and

, the limiting eigenvalue cdf of the matrix
satisfies the integral equation

(36)

where is the unique solution in the class of nonnegative
functions, analytical on and continuous on of the
integral equation

(37)

and where .
Now, without loss of generality, we consider the SINR at the

output of the LMMSE receiver for low-rate user 1. This is given
by [4]

(38)

where is obtained from by re-
moving the first column, and is obtained from by re-
moving the first column and row. From [8, Lemma A.1], we
know that, since is statistically independent of , the limit

holds in probability. The eigenvaluesof are related to the
eigenvalues of by . Then, the
limit in probability of as can be written as

(39)

where is the asymptotic eigenvalue distribution of
.

Now, we can apply results (36) and (37) to the matrix .
The function is given by

elsewhere.

By using the above expression, we can solve explicitly for the
function . In fact, we have

(40)

where denotes the indicator function of the set. The
function for is clearly a solution of
the above equation for all(the constant depends on), and by
the uniqueness of the solution of (37), it must be the only one.

From (39) and (36), by using the above result, we let
and we obtain

(41)

which yields (25).
Proof of Proposition 3: Without loss of generality, we

consider the detection of the first symbol of high-rate user 1. In
the following, given a vector of length , we denote by the
subvector of its first components and by the subvector of
its last components, so that . With
short-interval detection, the receiver input is the subvector.
Notice that for all and all .



BIGLIERI et al.: CDMA SYSTEM DESIGN THROUGH ASYMPTOTIC ANALYSIS 1893

Therefore, the SINR at the output of the LMMSE receiver is
given by , where

Now, can be interpreted as the SINR of an equivalent
system with spreading gain , with users having
SNR and with users having SNR . The fraction
of users per chip are given by and by

, respectively. Since the elements of all
sequences contributing to are i.i.d., we can apply directly
the result of [4] and write the limiting SINR as

(42)

Proof of Proposition 4: We use the same notation as in the
previous proof, but now we consider the detection of the first
symbol of high-rate user 1 over the long interval (i.e., by using
the whole vector as observation). The SINR at the output of
the LMMSE receiver is given by

(43)

where is obtained from by re-
moving the th column, and is obtained from
by removing the th column and row, and where
is the upper left submatrix of . Since is
statistically independent of , from [8, Lemma A.1], we have
that the limit

holds in probability. Then, the limit in probability of as
can be written as

(44)

where is the asymptotic eigenvalue distribution of .
We write as a 2 2 block matrix with blocks

and , where is . The
submatrices can be written explicitly in terms of the spreading
sequences as

(45)

From the matrix inversion lemma [27], we can write

(46)

where we let

By using the same techniques of [4, Appendix B] and the matrix
inversion lemma, it is not difficult to show that converges
in probability to the zero matrix, as . Now, we notice
that the term

is just the MSE resulting from LMMSE estimation of symbol
the of the th low-rate user with observation. We notice
also that can be seen as the output of a virtual multirate system
with low-rate users with spreading gain
high-rate users with spreading gain
and with rate ratio . From Proposition 2, we know that the
SINR for a low-rate user in such system converges in probability
to a constant independent of the particular user. Then,
converges in probability to the constant , as .
We conclude that is asymptotically equal (in the sense of
convergence in probability) to the matrix

(47)

The improvement provided by long-interval detection of the
high-rate users can be clearly seen from the above formula.
Namely, the interfering energy of low-rate users is reduced by
the factor , i.e., by the MSE resulting from the estima-
tion of low-rate users over the complement interval (where the
spreading sequence of the high-rate user symbol is zero), that is
ignored in the case of short-interval detection.4

From the fact that , and by using (44) and (47),
we can write

(48)

where is the asymptotic eigenvalue cdf of the matrix

Since all sequences appearing in the above expression have i.i.d.
entries, by following the same path of [4, Sec. 4], we obtain that

must satisfy (27).

4In fact, if �̂ = 0;Q becomes identical to~� defined in the proof of Propo-
sition 3 (short-interval detection).
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In order to complete the proof of Proposition 4, we have to
show that must satisfy (28). This is immediately obtained by
applying Proposition 2 to the new multirate system with output

. We skip the details for the sake of space limitation.
Proof of Proposition 5: Consider the equations

(49)

(50)

(51)

(52)

where satisfy (28). The (unique nonnegative) solutionof
(49) yields the asymptotic SINR for low-rate users in both
the MC and the VS systems, while the solutions of
(50)–(52) yield the asymptotic SINR for high-rate users in
the MC, VS (long-interval detection), and VS (short-interval de-
tection) systems, respectively. Let

(53)

for given and . Since the SINR requirement is the
same (i.e., and ) for both low-rate and high-rate
users, and because of the monotonicity of the interference func-
tion with respect to , the inclusion relations between the ca-
pacity regions of these systems stated in Proposition 5 follow
by showing that .

First, we observe that if , then , therefore
is trivially obtained by letting . Since

and and for all . It follows that
and that . It remains

to show that (i.e., that ). Consider
(28) yielding . We substitute into (28) and
we obtain

(54)

From (54) and (49), we conclude that ,
for all , and . Let be the solution
of (51) when we replace by , and let

. Since (this follows
form the fact that , as shown before), then

. Now, it is not difficult to show that , and it is
obtained for . This concludes the proof.

APPENDIX B
COMPARISON OF THECAPACITY REGIONS OF

MULTIMODULATION AND MULTICODE WITH

THE LMMSE RECEIVER

The capacity regions with the LMMSE receiver are described
by inequalities (20) and (24) in the cases of MM and MC, re-
spectively. For a fair comparison, we assume that

. The analysis of the capacity region is simplified if
we observe that

and hence for all . Inequalities (20)
and (24) can be written as in the equation shown at the bottom
of the page.

1) Intersection of the Axis: It is clear from the above
equations that the intersection of theaxis with MM (obtained
by setting above) is always lower than the corresponding
intersection with MC.

2) Slopes of the Capacity Boundaries:The (absolute) slope
of the MC capacity boundary is always smaller than the slope
of the MM capacity boundary, or, equivalently

This can be shown as follows:

and the last inequality trivially holds.

MM

MC
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3) Intersection of the Capacity Boundaries:The boundaries
of the MM and MC capacity regions may intersect since the
(absolute) slope of MM is higher than that of MC. Solving the
linear equations defining the boundaries, we get

The intersection is in the capacity region provided that ,
i.e., provided that (32) is satisfied.
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