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Abstract—Recently, several statistical techniques using flow
features have been proposed to address the problem of traffic
classification. These methods achieve in general high recognition
rates of the dominant applications and more random results for
less popular ones. This stems from the selection process of the
flow features, used as inputs of the statistical algorithm, which
is biased toward those dominant applications. As a consequence,
existing methods are difficult to adapt to the changing needs
of network administrators that might want to quickly identify
dominant applications like p2p or HTTP based applications or
to zoom on specific less popular (in terms of bytes or flows)
applications on a given site, which could be HTTP streaming
or Gnutella for instance. We propose a new approach, aimed to
address the above mentioned issues, based on logistic regression.
Our technique can automatically select distinct, per-application
features that best separate each application from the rest of the
traffic. In addition, it has a low computation cost and needs
only to inspect the first few packets of a flow to classify it, which
means that it can be implemented in real time. We exemplify our
method using two recent traces collected on two ADSL platforms
of a large ISP.

I. I NTRODUCTION

Application identification is of major interest for networks
operators, especially Internet Service Providers and enterprise
network administrators. However mapping flows to applica-
tions is not straightforward and has attracted a lot of attention
from the research community. Indeed, Internet traffic is the
product of a complex multi factor system involving a range of
networks, hosts and seemingly uncountable variety of appli-
cations. Its complexity is continually increasing as developers
keep producing new applications and inventing new usages of
the old ones.

Many different methods have been proposed to solve the
traffic classification problem. In the early Internet, traffic
classification relied on the transport layer identifiers. However,
the advent of new protocols like p2p, and the increase of
applications tunneled through HTTP make port-based classifi-
cation significantly misleading. Many studies have confirmed
the failure of port-based classification [7]. This triggered
the emergence of deep packet inspection (DPI) solutions
that identify the application layer protocol by searching for
signatures in the payload. The increasing use of encryption
and obfuscation of packet content, the need of constant updates
of application signatures and governments regulations, might
however undermine the ability to inspect packets content.

Recently, several solutions based on statistical classification
techniques and per flow features to probabilistically map flows
to applications have been proposed [11], [3], [10], [12].These
approaches generally consist of a first phase where flow

features are selected based on some intrinsic characteristics
like (the lack of) correlation and a second phase where flows
are clustered according to the selected features. In general,
the overall performance of the proposed statistical classifiers
are satisfactory when considering all flows and applications
in a given data set. The latter means that the dominant ap-
plications, typically Web transfers and some p2p applications
like eDonkey, are well classified but other applications that
represent a small fractions of transfers, like streaming, might
not be correctly identified by the statistical classifier. The
reason behind those varying performance might lay in the
feature selection process that tends to pick features that are
representative of the dominant applications in the considered
data set. More generally, we identified a number of challenges
for traffic classification that current approaches fail to correctly
address:

• A feature selection strategy that selects for each specific
(family of) application(s) adistinct set of features that
best discriminates it from the rest of the traffic.

• The ability to zoom in and out in the traffic as the
focus might be on a family of applications like all P2P
applications, or on specific applications like eDonkey or
Gnutella.

• Resilience to the problem of data over-fitting observed
in cross-site studies [14] whereby the statistical classifier
capture so-called local information, like port numbers of
p2p applications used by local users, that are detrimental
when the classifier is applied on a site different from the
one where it was trained.

• A classification method with a low computation cost
that is further able to work in real time, i.e., after the
observation of the first few packets of a connection.

In this paper, we propose to cast any traffic classification
question as a logistic regression problem (Section III). Using
this approach, we develop a method that has the potential to
respond to the above challenges.

The rest of the paper is organized as follows. Section II
discusses the related work. Section III provides formal state-
ments of the problems we address, the background on logistic
regression, and the classification process. Section IV explains
how we obtained and processed the data for our validation
experiments, and Section V provides the results from our
experimentation with real traffic. Section VI summarizes the
work and indicates future avenues of research.



II. RELATED WORK

Recent studies have relied on statistical classification tech-
niques to probabilistically map flows and applications [11],
[3], [2], [10], [12], [13].Hereafter, we cite a representative
sample of traffic classification research. For a much more
complete survey, see the work by Nguyen et al. [17].

Moore et al. in [12] presented an approach based on a
naive Bayes classifier to to solve the classification problemof
TCP traffic. They used a correlation-based filtering algorithm
to select the 10 most relevant flow-behavior features. The
resulting accuracy, between 93% and 96%, demonstrated the
the discriminative power of a combination of flow features and
machine learning algorithms.

Bernaille et al. presented in [3] an approach for early
identification of applications using start-of-flow information.
The authors used the size and direction of the first 4 data
packets and port numbers in each flow as features on which
they trained K-means, Gaussian mixture model and spectral
clustering respectively. Resulting clusters were used together
with labeling heuristics to design classifiers. Their results
have shown that information from the first packets of a
TCP connection are sufficient to classify applications withan
accuracy over 90%. The authors further specialized their work
to the identification of encrypted traffic in [2].

Karagiannis et al. [8] studied traffic behavior by analyzing
interactions between hosts, protocol usage and per-flow fea-
tures. Their techniques were able to classify 80%-90% of the
traffic with a 95% accuracy. In their recent work [9], they
applied those techniques to profile the users activities, and to
analyze the dynamics of host behaviours.

More recently, Pietrzyk et al. [14] investigated the use of
statistical classification algorithms for operational usage. They
point out that data over-fitting is a main weakness of statistical
classifiers. Indeed, even if a classifier is very accurate on one
site, the resulting model cannot be applied directly to other
locations. This problem stems from the statistical classifier
learning site specific information.

III. L EARNING CLASSIFIER USINGLOGISTIC REGRESSION

The use of logistic regression modeling has proliferated dur-
ing the past decade. From its original use in epidemiological
research, the method is now commonly used in many fields
including business and finance [18] or criminology [19] to
name a few. Logistic regression is designed for dichotomous
variables, i.e., to model the relation between a binary variable
(true vs. false) and a set of covariates.

In this work we use logistic regression to classify flows of a
given application against the rest of the flows. In the remaining
of this section, we introduce the logistic regression model. We
show how to estimate its parameters for a given application,
and how we select the relevant features for the classification
of a specific application.

A. Problem statement

The problem of traffic classification consists in associating
a class to a network flow, given the information or features

that can be extracted from this flow. A flow is defined as
a sequence of packets with the same source IP address,
destination IP address, source port, and destination port.Let
X be the n-dimensional random variable corresponding to the
flow features. To each flow a vectorx consisting of then the
measured features is associated. Each flow is generated by an
applicationy corresponding to a random variableY that takes
values in the set{1, 2, · · · , c + 1}, where c is the number
of applications. This definesc + 1 classes; each application
defines a class and the(c + 1)th class is the default class that
contain flows that cannot be associated with any application.
The problem of statistical classification is to associate a given
flow x with an applicationy. Logistic regression is a way
of defining the relation betweenx andy. While using logistic
regression, we will consider only one application (we call it A)
at a time, i.e.Y = 1 if the flow is generated by the application
of interest and0 otherwise.

B. Logistic regression model

Consider a flow with the following features vectorx =
(x1, x2, · · · , xn). We wish to have a probability of whether
this flow is generated by applicationA or not. Formally, we
can state this as

p(Y = 1|X = x) = P (x, βA), (1)

wherep(Y = 1|X = x) is the conditional probability that
the flow with featuresx = (x1, x2, · · · , xn) is generated by
the applicationA and P is a function ofx parametrized by
the weights vectorβA = (β0, β1, · · · , βn). Since the function
P represents a probability, it must take value between 0 and
1. Within the Logistic regression framework, one assumes a
specific function P:

P (x, βA) =
e
β0+

∑

n

j=1
βixi

1 + e
β0+

∑

n

j=1
βixi

, (2)

From the above equation, we can derive a linear function
between the odds of having application A and the features
vectorx, called the logit model:

log

(

P (x, βA)

1 − P (x, βA)

)

= β0 + β1x1 + · · · + βnxn, (3)

Unlike the usual linear regression model, there is no random
disturbance term in the equation for the logit model. That does
not mean that the model is deterministic because there is still
room for randomness in the probabilistic relationship between
P (x, βA) and the applicationA.

To implement any logistic regression model, one needs to
choose theβ1, . . . , βn values based on a given training set,
i.e., a set of flows for which we know whether they have
been generated by A or not. We discuss this issue in the next
section.



C. Parameter estimation

For the sake of clarity, we avoided indexing of many
variables with the application A. However we would like to
point out the fact that the following procedure is done for each
application of interest. In particular, it leads toβ vectors that
are application dependent.

Assigning the parameters to the logit model boils down to
estimating the weights vectorβ, which is usually done using
maximum likelihood estimation.

Consider a training data set ofN flows characterized by
the features vectorsX = (X1,X2, · · · ,Xn), where Xi =
(xi

1, x
i
2, · · · , x

i
n) is the features of flowi, and let the vector

Y = (y1, y2, · · · , yn) be such thatyi = 1 if flow i is generated
by the applicationA and yi = 0 otherwise. The likelihood
function is given by a standard formula [5]

P (X,β) =

N
∏

j=1

p(Y = yj |Xj) (4)

=
N
∏

j=1

(p(Y = 1|Xj)
yj (1 − p(Y = 1|Xj))

1−yj

As the values ofp are small, it is common to maximize the
log-likelihood L(X,β) = log P (X,β) instead [5], to avoid
rounding errors,

L(X,β) =

N
∑

j=1

[yj log(p(Y = 1|Xj)) + (1 − yj)log(1 − p(Y = 1|Xj))]

(5)
By substituting the value ofp(Y = 1|Xj) by its value

defined in Equation (2) we get the log-likelihood for the
logistic regression:

L(X,β) =

N
∑

i=1

[

yiβ
T Xi − log(1 + eβT Xi)

]

(6)

In the logistic regression model, we wish to findβ that max-
imizes Equation (6). Unfortunately, this can not be achieved
analytically. In this work, we compute it numerically usingthe
Newton-raphson algorithm [5]. This algorithm requires two
main components: the first derivative of the log likelihood
and the Hessien matrix, i.e., the second derivative matrix with
respect toβ.

From Equation (6) we can derive the first derivative

∂L(X,β)

∂β
=

N
∑

i=1

Xi(yi − p(xi, β)) (7)

We now derive the Hessien matrix

∂2L(β)

∂β∂βT
= −

N
∑

i=1

XiX
T
i p(xi, β)(1 − p(xi, β)) (8)

The pseudo code of Newton-Raphson algorithm is depicted
in Algorithm 1. We start with a first guess ofβ, then we
use the first derivative and the Hessien matrix to updateβ.

Using the newβ we compute the new log likelihood. This is
repeated until there is no further change ofβ. The Newton-
Raphson algorithm has been shown to converge remarkably
quickly [6]. In this work, it takes less than one second to
output an estimate ofβ.

Algorithm 1 Newton-Raphson algorithm
1: initialize β
2: while ‖βnew − βold‖ > thr1 and abs(Lnew − Lold) > thr2)

do
3: Calculateg = ∂L/∂β
4: CalculateH = ∂2L/∂β2

5: Setβold = βnew

6: Calculateβnew = βold − H−1g
7: SetLold = Lnew

8: CalculateLnew

9: end while
10: Calculate variance matrix̂V

D. Selection of relevant features

As we estimate a new model for each application, the
weightsβj given for each features emphasis the importance
for the corresponding feature to this application. Moreover,
logistic regression provide a way to test the relevance of a
given feature to the classification output. This can be done
through the formulation and testing of a statistical hypothesis
to determine whether the corresponding variables in the model
are “significantly” related to the outcome variableY . In other
words, for each featurej, we test the hypothesis that the
corresponding weightβj is equal to zero. If we can’t reject
this hypothesis, this means that this parameter is not relevant
to classify this application and, thus, can be removed from the
model [6].

In this work, we use the Wald test [6] that tests, individually,
for eachβj the null hypothesis that̂βj = 0. The Wald statistic
W (j) is obtained by comparing the maximum likelihood
estimate of each parameter̂βj to an estimate of its standard
deviationV̂ (β̂j).

W (j) =
β̂j

V̂ (β̂j)
(9)

The standard deviation̂V (β̂j) of βj is given by thejth

diagonal element of the variance matrix given by Equation
(10) [5], that is computed as the last iteration of the Newton-
Raphson algorithm (Alg. 1).

V̂ =

{

−
∂2L(β)

∂β∂βT

}

−1

(10)

Under thenull hypothesisthat βj = 0, W (j) follows a
standard studentt-distribution with n − 1 degree of freedom
tn−1.

For a given significance levelα, for eachβj we compute the
p-valuepvj = p(tn−1 > W (j)), and we reject the hypothesis
of βj = 0 if α > pvj . Otherwise, if we fail to reject the
hypothesis ofβj = 0, we exclude the corresponding feature



from our model. By doing so, we keep a minimum number of
features relevant to the application under study.

A crucial aspect of using logistic regression is the choice
of anα level to judge the importance of features. Bendel et al
[1] have shown that the choice ofα smaller than 0.01 is too
stringent, often excluding important variables from the model.
In this work, we useα = 0.01, and we will show in section
V-C that it enables to reduce the number of features for each
application without decreasing the classification scores.

E. Classification process

Logistic regression falls into the class of supervised machine
learning techniques[17]; thus it consists of two main steps. A
training step and a classification step.

Training step consist of building a classifier for each ap-
plication of interest. Consider, for example, the application
WEB. Using Newton-raphson algorithm we estimate a vector
βweb that maximize the probability of being WEB for all WEB
flows and minimize this probability for all non-WEB flows.

The classification step is done as follows: a given feature
vectorx = (x1, · · · , xp) is classified as WEB ifP (x, βweb) is
larger than a thresholdth. A usual choice of the threshold is
th = 0.5 [6], [5]. By using Equation (3), this boils down to
deciding that the new flowx is generated WEB if

βweb
0 +

∑n
i=1

x1β
web
i > 0.
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Fig. 1. CDFs of the probability of being a HTTP flows for HTTP flows and
Non HTTP flows. Training and test data are from R-III trace (see table III)
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Fig. 2. CDFs of the probability of being a P2P flows for P2P flowsand Non
HTTP flows. Training and test data sets are from R-III trace (see table III)

The choice ofth = 0.5 is very conservative, as the logistic
regression has a strong discrimination power. For example,
Figure 2 shows the cumulative distribution functions of the

probability p(y = p2p|x) for P2P and non-P2P flows in one
of the trace used in Section V. A choice ofth corresponds
to a vertical line at valueth on the x-axis. Figure 2 shows
that the classification in p2p/non-p2p is almost unaffectedby
the exactth value. Indeed, more than 80% of non-p2p flows
have a probability to be p2p flow less than 0.01, and more than
90% of p2p flows have a probability of being a p2p larger than
0.95. This is even more pronounced in the case of HTTP flows
(Figure 1) where 99% of non-HTTP flows have a probability
of being HTTP flows less than 0.005, and more than 90% of
HTTP flows have a probability larger than 0.99. These figures
show clearly that the choice of a larger threshold would change
only slightly the classification results.

IV. EXPERIMENT SETTING

In this section, we present our data set, how we establish
the reference point (ground truth) that is used as benchmark
for our statistical classifier, the definition of our traffic classes
and the traffic breakdown.

A. Data sets

Our data set consists of two recent packet traces collected at
two differentADSL Points of Presence (PoPs) in France from
the same ISP. Both traces were collected atthe same timeusing
passive probes located behind a Broadband Access Server
(BAS), which routes traffic to and from the digital subscriber
line access multiplexers (DSLAM) to the Internet. Captures
were performed without any sampling or loss. Traces contains
one hour of full bidirectional traffic, with similar number of
active users. More details are provided in table I.

We restrict our attention to TCP flows as they carry the vast
majority of the bytes in both traces. We are still left with the
issue of defining the set of flows to be analyzed. Restriction
is imposed by the classification method itself as we are using
as features information derived from the first 4 data packets.
We de facto exclude all flows with less than 4 data packets as
well as the ones for which we did not observe the initial three
way handshake. This typically leaves around 70% of volume
for the analysis. Details about the impact of the flow definition
on the amount of data excluded for each application class can
be found in [14].

B. Application breakdown

In order to benchmark the performance of any classification
method, a data set with pre-labeled classes of traffic is needed.
We term such a data set our reference point. Establishing a
correct reference point is fundamental when evaluating traffic
classification mechanisms to provide trust-worthy results. As
a human-labeled data set is almost impossible to have, we rely
on DPI tools. In [15], We have compared an internal tool of
Orange, that we term OrangeDPI Tool or ODT for short,
to Tstat [16], whose latest version features DPI functions.
ODT and Tstat v2 offer similar performance and outperform
signature based tools used in the literature [10], [4]. More
details about the reference point issue can be found in [15].



Set Date Start Dur Size [GB] Flows [M] TCP [%] TCP Bytes [%] Local users Distant IPs
MS-I 2008-02-04 14:45 1h 26 0.99 63 90.0 1380 73.4 K
R-III 2008-02-04 14:45 1h 36 1,3 54 91.9 2100 295 K

TABLE I
TRACES SUMMARY

Class Application/protocol
WEB HTTP and HTTPs browsing
HTTP-STR HTTP Streaming
EDONKEY eDonkey, eMule obfuscated
BITTORRENT Bittorrent
GNUTELLA Gnutella
CHAT MSN, IRC, Jabber

Yahoo Msn, HTTP Chat
MAIL SMTP, POP3, IMAP, IMAPs

POP3s, HTTP Mail
FTP Ftp-data, Ftp control
GAMES NFS3, Blizzard Battlenet, Quake II/III

Counter Strike, HTTP Games
STREAMING Ms. Media Server, Real Player

iTunes, Quick Time
OTHERS NBS, Ms-ds, Epmap, Attacks
UNKNOWN -

TABLE II
APPLICATION CLASSES

Traffic classes recognized by ODT are summarized in Table
II. Breakdown of traffic is presented in Tables III and IV.
Traffic proportions are very different in both locations even
though both traces were collected in the same country and at
the same time. Web and eDonkey are the dominant classes in
terms of flows while in terms of bytes, these are Web, eDonkey
and HTTP streaming, the latter reflecting the popularity of
streaming service providers like YouTube. While HTTP traffic
is broken into many classes, it is important to note that the
most important ones for HTTP applications in our data sets
are Web browsing, HTTP-streaming and HTTP chat. We will
term those three categories as HTTP in Section V, neglecting
the minority of HTTP flows in the mail and games classes.

TABLE III
TRAFFIC BREAKDOWN RIII. FOR FLOWS≥ 4 DATA PACKETS

Flows Size
Number % MB %

WEB 160802 49.16 5519.56 24.61
HTTP-STR 4282 1.31 2654.14 11.84
EDONKEY 119057 36.40 8295.35 36.99

BITTORRENT 8789 2.69 1529.69 6.83
GNUTELLA 4718 1.44 1093.83 4.89

CHAT 4365 1.33 46.66 0.22
MAIL 4206 1.29 244.47 1.10

STREAMING 679 0.21 451.09 2.02
FTP 437 0.13 156.06 0.71

GAMES 182 0.06 3.87 0.02
OTHERS 835 0.26 12.54 0.07

UNKNOWN 18501 5.66 2248.00 10.03

TABLE IV
TRAFFIC BREAKDOWN MSI. FOR FLOWS≥ 4 DATA PACKETS

Flows Size
Number % MB %

WEB 319009 78.91 8368.85 52.41
HTTP-STR 6901 1.71 2777.43 18.72
EDONKEY 23212 5.75 1106.59 9.06

BITTORRENT 2313 0.57 649.81 4.15
GNUTELLA 223 0.06 104.19 0.66

CHAT 7539 1.87 86.87 0.55
MAIL 18406 4.56 856.33 5.46

STREAMING 207 0.05 372.43 2.39
FTP 1129 0.28 470.52 3

GAMES 183 0.05 1.68 0.02
OTHERS 8803 2.19 196.23 1.25

UNKNOWN 13535 3.36 275.96 1.76

C. Flow Features

Most studies on traffic classification rely on statistics com-
puted once all the packets of a flow have been observed, e.g.,
duration, number of packets, mean packet size, or inter-arrival
time [17]. This clearly prevents any online classification.In
contrast, we evaluate the feasibility of application identifica-
tion in the early stage of a connection. A few works have
tackled this challenge. In particular, [3] and [11] showed that
statistical features extracted from the firstk packets of each
connection, wherek is typically in the range of 4 to 5 packets,
lead to a good overall classification performance. We however
uncovered in [14] some weaknesses of those approaches
related to the ability to detect some key applications like
HTTP streaming, which is gaining in popularity and a data
overfitting issue when one wants to apply a classifier on a
trace collected on a location different from the one it was
trained on. The latter situation could typically be the one of
an ISP that trains the classifier on its major PoP, where DPI
tools are available, before deploying it on its other PoPs. We
will show in this section that logistic regression is able to
overcome those weaknesses.

The choice of flow level features turns out to be a major
task in traffic classification. As explained before, state ofthe
art approaches often rely on a preliminary feature selection
phase, e.g. the correlation based filter technique in [10], [12].
Such method outputs a single set of features which isthe same
for all applications. In contrast, logistic regression picks for
each application of interestdistinct featuresthat best separates
it from the rest of the traffic.

As we want to evaluate the ability of logistic regression to
perform traffic classification on the fly, we selected an initial
set of features that can be computed by the observation of the
beginning of the flow: size and direction of the first 4 data



packets, presence of push flags and port numbers. Out of this
set, logistic regression picks the most relevant features for each
application. Size and direction of the first data packets have
been shown to lead to good classification results in [3]. We
enrich this set with a push flag indicator that indicates whether
a data packet has its PUSH flag set or not.

We thus end up having a mix of quantitative and qualitative
features. While logistic regression can handle both types
of parameters, it is recommended to transform quantitative
parameters into qualitative ones [6]. We proceeded as follows:

• Size of data packets: we classify each data packet as
small or not small packet. We used a fixed threshold,
derived from empirical distributions of packet sizes, of
200 bytes for all applications and all traces.

• Port numbers: the quantization technique used depends
on the application of interest. For applications using
the HTTP protocol, we assign the port variable to 1 if
the source or destination port number belongs to the
set80, 8080, 443 and 0 otherwise. For P2P applications,
we assign the port variable to 1 if both the source
and destination ports are above 1024. Note that other
quantization strategies are possible. For instance, for p2p
applications, one could have used legacy port numbers of
considered p2p applications. It turned out however that
the quantization technique we use, which makes no use
of such a priori information, offers satisfactory results.

D. Performance metrics

We present results in terms of True Positives (TPs) and True
Negatives (TNs) ratios. These notions are defined with respect
to a specific class. Let us consider such a specific class, say the
HTTP streaming class. TPs are the fraction of HTTP streaming
flows that are labeled as such by the statistical classifier, i.e.,
logistic regression. TNs are the fraction of flows not labeled as
HTTP streaming by our DPI tool that are also not labeled as
HTTP streaming by logistic regression. For an ideal classifier,
TPs and TNs should be both equal to 100%.

V. EVALUATION

A. Feature Selection

For each application we estimated a logistic regression
model, and using the statistical test presented in section III-D,
we select the subset of features relevant to each application.
The list of selected features is presented in Table V. We
observe that the set of features kept for HTTP applications is
(almost) the intersection of the ones kept for each individual
HTTP applications. Indeed, logistic regression selects, for each
application, the features that maximize the difference between
the flows of this application and the rest of the flows in
the datasets. When focusing on HTTP streaming, it might
thus use most of the specific features used for detecting
all HTTP applications and add a few additional ones (e.g.,
the push variable for the third data packet here) to further
differentiate those flows from other flows. Conversely, when
logistic regression has to handle all HTTP applications, it
keeps only features that allow to distinguish those flows from

the non HTTP flows in the data set, thus getting rid of features
that might be important to specifically detect HTTP chat or
HTTP streaming for instance.

Note that, while our features are enough to separate the
p2p flows as a whole group from the other flows, as we will
see in the next section, none of our features seem enough
statistically significant to separate BitTorent flows from the
remaining P2P flows. Indeed, the p-values (see section III-D)
computed for relevance of our features are all larger the the
significance levelα. This might explain why in recent studies
[14], [3], the classification of BitTorrent flows, using similar
features set combined with other statistical algorithms, appears
challenging.

B. Overall performance

For both traces we have, the logistic regression achieve over-
all TPs and TNs ratios over 98% and 97% respectively. These
results are similar to the results obtained by most statistical
classifiers, see [17]. This is because dominant applications like
web or edonkey are well classified in all cases. A challenge
in the traffic classification domain, is to be able to work at at
different level of granularity, e.g., either groups of applications
or specific applications. In the next sections, we will focuson
two sets of applications: (i) applications that use the HTTP
protocol like Web browsing, HTTP streaming (e.g., YouTube)
or HTTP chat and (ii) p2p applications. In each case, we will
evaluate the ability of logistic regression to either detect the
whole family, e.g. all HTTP applications or specific members
like HTTP streaming and the impact of parameters selection
on the classification results.

Please note that in each experiment, including cross site
case, we use 5% of flows for training and the remaining for
testing.

For the cases where training and testing is done with the
same trace, we only present results for our first trace as
the results are highly similar for the two traces. A different
scenario where training and testing is done on different traces
will be discussed in Section V-E

C. HTTP driven applications

In this section we focus on the HTTP applications found
in our datasets, namely: Web browsing, HTTP streaming and
HTTP chat.

In Table VI, we present on the right column (’before
selection’), TPs and TNs ratios for all HTTP applications
taken together and each type of HTTP application in isolation
for MS-I trace. We observe very high TPs and TNs for the
’All HTTP’ and ’Browsing’ cases and quite high values for
’HTTP streaming’. The latter result for HTTP streaming is a
noticeable one as, to the best of our knowledge, no statistical
classification technique has been able so far to isolate HTTP
streaming traffic only – see for instance [14] where the features
selected in [3] and [11] are used on data set MS-1 and lead
to poor TNs results. However, the TN score obtained here
is not high enough, since it means that 16% of flows from
other classes are misclassified as HTTP streaming. Given



TABLE V
THE SET OF SELECTED FEATURES(WITH X) FOR EACH APPLICATION

1st packet 2nd packet 3rd packet 4th packet port number
direction push size direction push size direction push size direction push size

All HTTP X X X X X X X
Web X X X X X X X

HTTP streaming X X X X X X X X
All P2P X X X X X X X X X X X X
eDonkey X X X X X X X X X X X

BitTorrent
Gnutella X X X X X X

that the number of HTTP streaming flow is fairly low, these
misclassified flows in fact represent a significant fraction of
the flows in the HTTP streaming class. Still, the good news is
that all those flows are Web flows. This means that our features
are enough to label the HTTP streaming flows as HTTP-based
application, but not enough to separate them from Web. We
leave for future work the search of additional features to better
discriminate between Web and HTTP streaming flows. Our
method, that enables to select the discriminative power of each
feature for a particular application will be helpful to choose
among potential candidate features.

The left column of Table VI shows results of logistic
regression where only features corresponding to statistically
significantβ values are considered. We do observe no signif-
icant changes before and after the selection procedure. This
reveals that logistic regression indeed gives no significance to
the parameters that have no discriminative power for the con-
sidered applications or set of applications. Thus, we can safely
remove the non relevant features without accuracy degradation
which reduces the computational cost of the classification.

TABLE VI
THE PERCENTAGE OF TRUE POSITIVES(TP) AND TRUE NEGATIVES (TN)
OF HTTP FLOWS USING ALL THE FEATURES(BEFORE SELECTION) AND

ONLY THE FEATURES SELECTED BY THE ALGORITHM

after selection before selection
TP TN TP TN

All HTTP 99% 99% 98% 99%
Web 98% 97% 98% 97%

HTTP streaming 83% 84% 83% 84%
HTTP Chat 94% 98% 94% 98%

D. P2P Application

In this section, we focus on the p2p applications observed
in our datasets. In Table VII, we present results for the MS-I
trace. Logistic regression achieves very good performancefor
p2p as a group as well as for eDonkey. Gnutella achieves a
lower TPs ratio, which can be explained by the small number
of Gnutella flows in our data set (only 223 flows, see Table IV).
However, even in this case, we limit the risk of misclassifying
a (non Gnutella) flow as Gnutella as the TNs ratio is very high.
The only risk is to miss a small fraction of actual Gnutella
transfers.

As pointed in the previous section, the set of features used is
not diverse enough to discriminate BitTorent from the rest of
the p2p applications, which leads to poor classification scores.

Like for the case of HTTP streaming, we leave for future
work the search of additional features to better discriminate
BitTorrent traffic using our method to test the effectiveness of
potential candidates.

TABLE VII
THE PERCENTAGE OF TRUE POSITIVES(TP) AND TRUE NEGATIVES (TN)

OF P2PFLOWS USING ALL THE FEATURES(BEFORE SELECTION) AND

ONLY THE FEATURES SELECTED BY THE ALGORITHM

After selection Before selection
TP TN TP TN

All P2P 96% 95% 96% 95%
eDonkey 97% 96% 97% 95%

BitTorrent – – 67% 68%
Gnutella 83% 98% 83% 98%

E. Cross-site Evaluation

We performed a cross-site evaluation where, for each case
(application or set of application), we train the classifier, using
the selected features given in Table V, on one trace, e.g., MS-I
and apply it on the other trace, e.g., R-III. Such a validation is
important for practical usage of any classifier as it verifies
whether the statistical model we build is representative of
application and does not incorporate site dependent data.

We present the full cross-site results for our two traces in
Table VIII. We did not present results for BitTorrent, due toits
poor performance observed in the single site case. We observe
good performance in all cases. The only exception is Gnutella
when training is done on MS-I and testing on R-III. This is
because we have only 223 Gnutella flows in trace MS-I, we
apparently miss part of the diversity of this class. Note that
when training and testing is done in the other direction, the
TP ratio reaches 84%, as now we have a higher diversity in
the training set. While this result was to be expected in the
case of HTTP applications, it constitutes a major achievement
in the case of p2p applications as it was demonstrated in [14]
that a data overfitting issue could occur with p2p applications.
The latter stems from the fact that the classifier learns ports
used by p2p applications of local users, which then fool the
classifier when the set of local users is changed. We attribute
the good performance observed here with logistic regression
to the quantization technique used for the port number that
gets rid of specific port values but simply check if the two
ports correspond to well-known ports or not.

To further investigate this hypothesis, we applied again
logistic regression for each trace and for the cross site test



using the initial port number rather than its quantized version.
As expected, we observed slightly worse performance on a
trace basis and significant performance decrease in the cross
site case. A striking example is the one of Gnutella whose
TPs ratio decreases from 83% to 70% on R-III trace when
no discretization is applied and from 84% to 42% when the
logistic regression algorithm is trained on R-III and applied to
MS-I.

As a conclusion, the ability of logistic regression to handle
qualitative and not only quantitative values as well as per
application feature selection enables us to minimize the risk
of data over-fitting in cross site studies that were observedin
previous work.

TABLE VIII
THE PERCENTAGE OF TRUE POSITIVES(TP) AND TRUE NEGATIVES (TN)

IN CROSS CASE

R-III to MS-I MS-I to R-III
TP TN TP TN

All HTTP 98% 99% 99% 99%
Web browsing 95% 91% 98.5% 96%

HTTP Streaming 80% 81% 90% 82%
HTTP Chat 75% 98% 75% 98%

All P2P 94% 91% 90% 95%
eDonkey 97% 95% 94% 96%
Gnutella 84% 98% 22% 99.7%

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a novel on-line classification
algorithm based on the logistic regression model. It is a
flexible classification framework that overcomes important
weaknesses of state of the art methods proposed so far. We
have validated the performance of the proposed methods using
ADSL traffic traces obtained from a major French ISP. This
method incorporates the following new features:

• It automatically selects the best possible subset of distinct
features relevant to each (family of) application(s).

• It can be used for application based or protocol based
classification. For instance, it can classify all P2P file-
sharing at once, or focus on one of them only, e.g.,
eDonkey.

• It can handle both quantitative and qualitative features,
while current approaches are able to handle quantitative
features only. This is important as some features might
be more useful when considered as qualitative rather than
quantitative information.

• It can be made resilient to the data over-fitting problem
encountered in cross-site studies: it can be trained on data
collected on one location and used for traffic data from
other sites. This turns out to be a very useful feature for
companies or ISPs managing several sites.

• It has a constant and low computational cost as logistic
regression boils down to comparing a linear combination
of the flow features with a fixed threshold to take its
classification decision.

• It can work in real-time as it needs to consider features
extracted from the first four data packets of a transfer
only to take an accurate classification decision.

We consider a number of future extensions to this work.
We intend to carry a systematic study of selective features
for key applications like BitTorrent or HTTP streaming with
our method. Also, we have considered TCP traffic only so far.
However with the growing trend of UDP traffic, we would like
to generalize the method to handle UDP traffic as well.
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