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Abstract—Modern VLSI decoders for low-density parity-
check (LDPC) codes require high throughput performance while
achieving high energy efficiency on the smallest possible footprint.
In this paper we present a valuable optimization to the processing
step known as syndrome check. After each decoding iteration the
updated posterior values are used to verify the validity of the
codeblock and halt the decoding task. We partition this task
and perform it on-the-fly in order to speed up the total task
latency and eliminate hardware components. We present results
for applying this technique to an LDPC decoder for the IEEE
802.11n standard.

Keywords—LDPC codes; iterative decoding; syndrome calcu-
lation; throughput enhancement

I. INTRODUCTION

Modern communication standards are increasingly adopting

low-density parity-check (LDPC) codes [1] as the choice for

forward error correction. These codes display outstanding

error-correction performance and are usually decoded by an

iterative algorithm that allows the use of highly parallel

architectures. High-throughput and low power operation are re-

quired for state-of-the-art mobile devices that may incorporate

the use of these codes. Wireless communication and magnetic

storage are among the most prominent target applications

currently intended for such codes.

In this paper, we propose to optimize one recurrent task that

is performed within each decoding iteration. Syndrome check

or verification is performed in order to check the validity of

the obtained codeblock and hence decide whether to continue

or halt the decoding process. This task corresponds to the

evaluation of all the parity-check constraints imposed by the

parity-check matrix. We propose to perform this check on-

the-fly so that a partially unsatisfied parity-check constraint

can disable a potential useless syndrome verification on the

entire parity-check matrix. We identify as benefits from this

technique the elimination of several hardware elements, a

reduction on the overall task latency and an increase on system

throughput.

One form of the proposed technique has been identified

in [2] for the purpose of improving the energy-efficiency of

a decoder. This technique nevertheless is sub-optimal in the

error-correcting sense as it introduces undetected codeblock

errors. The contributions of our work include the assumptions

for this technique and a performance analysis, along with

a proposal to recover the performance loss. Furthermore,

we identify the main benefit of such technique to be the

enhancement of the system throughput.

The paper is organized as follows: Section II presents LDPC

codes and the iterative decoding. Section III outlines the

proposed syndrome check method and its performance. In

Section IV the system level impact is presented along with

results for a VLSI architecture. Section V concludes the paper.

II. LDPC CODES

Low-density parity-check codes are linear codes charac-

terized by a sparse parity-check matrix H . The number of

nonzero elements in H is relatively small compared to the

dimensions M×N of H . For such matrix there are M parity-

check constraints over N code symbols. A valid codeblock c

satisfies the condition:

H · c
T = S = 0 , (1)

where S is referred to as the syndrome. Indeed the condition

S = 0 suggests that no further decoding iterations are

necessary. Typically a maximum number of iterations is set to

define an unsuccessful decoding operation. Several works like

[3] and the references therein have proposed methods for early

stopping of the decoding operation. These methods mainly

monitor variables of the decoding process in order to make

predictions about the possibility for convergence but introduce

computational overheads and some loss in the error-correction

performance.

These codes are usually decoded by iterative message-

passing algorithms. In [4] a generalization for the decoding of

sparse parity-check matrix codes was performed. This work

consolidated several concepts that have greatly optimized the

decoding process, such as a merger of messages to save on

memory requirements and layered-scheduling that exploits so-

called architecture-aware codes. The decoding algorithm is

called the turbo-decoding message-passing (TDMP) algorithm.

At the core of TDMP decoding lies a soft-input soft-output

(SISO) message computation kernel. Several choices of SISO

kernels offer tradeoffs on computational complexity and error-

correction performance. In [5] a comparison is performed in

terms of energy efficiency among the most prominent SISO

kernels.

The messages involved in these SISO kernels are given in

the form of log-likelihood ratios (LLRs). For every received

code symbol (we address binary codes) x the corresponding

LLR is given by:
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Fig. 1. Example parity-check constraints

L(x) = log
P (x = 0)

P (x = 1)
(2)

where P (A = y) defines the probability that A takes

the value y. An LLR in this context provides a measure

of reliability (the LLR magnitude) of a decision on the

value of x (the LLR sign). The decoding process starts with

channel observations corresponding to each received code

symbol in the form of LLRs, referred to as intrinsic messages.

Throughout the decoding process new messages are calculated

from independent code constraints, called extrinsic messages.

During each decoding iteration the total sum of intrinsic and

extrinsic messages provides the posterior messages, where

a hard-decision upon each posterior message indicates the

decoded code symbol.

III. SYNDROME CHECK

A hard-decision vector on the posterior messages is re-

quired after each decoding iteration in order to calculate

the syndrome. Syndrome calculation involves the product in

equation (1), but this is equivalent to evaluate each parity-

check constraint (each row in H) with the corresponding code

symbols. Figure 1 shows an example correspondance between

the code symbols, the parity-check matrix and the parity-check

constraints.

The parity-check constraints are usually of even parity and

the ⊕ operation corresponds to the modulo-2 addition. The

arguments of each constraint correspond to the hard-decision

of each LLR (sign). A nonzero syndrome would correspond

to any parity-check constraint resulting in odd parity. This

condition suggests that a new decoding iteration must be

triggered. The calculation of the syndrome in this way is

synonymous to the verification of all parity-check constraints

and indeed we refer to this as only syndrome check.

The typical syndrome check requires a separate memory for

the hard-decision symbols, a separate unit for the syndrome

calculation (or verification of parity-check constraints) and

indeed consumes time in which no decoding is involved.

A. Proposed Method

Works like [6] and [7] have shown how the LLR values

evolve within the decoding process. Depending upon the

operating signal-to-noise ratio (SNR) regime these values will

initially fluctuate or enter right away a strictly monotonic

behavior. Figure 2 shows the simulated LLRs magnitude

evolution of an instance of decoding the quasi-cyclic LDPC

code defined in [8], for code length 648 and coding rate 1/2

over the AWGN channel at an SNR Eb/N0 = 1.5dB.

Fig. 2. LLRs magnitude evolution as a function of decoding iterations

Based upon the behavior of the LLRs we propose to perform

the syndrome check on-the-fly in the following way: each

parity-check constraint is verified right after each row is

processed. Algorithm 1 outlines the proposed syndrome check

within one decoding iteration for a parity-check matrix with

M rows.

Algorithm 1 On-the-fly syndrome check

1. Decode each row i (or a plurality thereof for parallel

architectures)

2. Evaluate each parity-check constraint PCi by performing

the ⊕ operation on the hard-decision values

3. Verification:

if (PCi = 1) then

Disable further parity-checks verification

else

if (i = M) then

Halt decoding: valid codeblock found

end if

end if

Because of the structure of architecture-aware LDPC codes

[9] and quasi-cyclic LDPC codes like the ones defined in [8]

it is possible to process several rows of H in parallel. In

this work we focus on the task that is performed between

decoding iterations. For the proposed syndrome check there

are two extreme cases regarding the latency between iterations.

The worst-case scenario corresponds to the case when all

individual parity-checks are satisfied but at least one from

the last batch to process fails, in which case a new decoding

iteration is triggered. The best-case scenario is when at least

one of the first rows’ parity-check fails, this disables further

rows’ parity-check verification and the next decoding iteration

starts right after the end of the current one. The difference with

the typical syndrome check is that it is always performed and

it necessarily consumes more time as it involves the check of

the entire H . Figure 3 shows the timing visualization of these

scenarios and the evident source for latency reduction of the

decoding task.
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Fig. 3. Timing visualization for two consecutive decoding iterations

TABLE I
DECISION OUTCOMES OF THE PROPOSED SYNDROME CHECK

on-the-fly typical Outcome
syndrome check syndrome check decision

Pass Pass Hit

Pass Fail False Alarm

Fail Pass Miss

Fail Fail Hit

B. Performance Analysis

A closer examination of the proposed syndrome check re-

veals the possibility for special scenarios. Indeed the proposed

syndrome check does not correspond to equation (1) since the

parity-check constraints are evaluated sequentially and their

arguments (LLR sign) could change during the processing

of the rows. Due to this there is a possibility where the

decision taken by the on-the-fly strategy might not be the

correct one at the end of the decoding process. Table I shows

the possible outcomes of the decision taken by the proposed

strategy in contrast to the typical syndrome check. A Pass

condition is synonymous to the condition S = 0. A false

alarm outcome corresponds to the case when all parity-check

constraints were satisfied, indeed halting the decoding task

during any iteration as a valid codeblock has been identified

(when in fact a final typical syndrome check would fail).

On the other hand a miss outcome arises when during the

last iteration (maximum iteration limit) a single parity-check

constraint failed, rendering the codeblock as invalid (when in

fact the typical syndrome check would pass). Both outcomes

are the result of at least one LLR fluctuation right before the

last row processing.

From this set of possible outcomes the probability PH for

the proposed syndrome check to be correct can be expressed

by:

PH = 1 − (PFA + PM )

= 1 − (PP PCBE + (1 − PP )(1 − PCBE)) (3)

where PFA is the probability of a false alarm, PM is the

probability of a miss , PCBE is the probability of a codeblock
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Fig. 4. Decision outcome rates from the proposed syndrome check

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No in dB

B
E

R
/F

E
R

 

 

Typical syndrome check

On−the−fly syndrome check

Validated on−the−fly syndrome check

Fig. 5. Error-correction performance comparison

error and PP is the probability of the proposed syndrome

check to pass.

Based upon the analysis and observations by [6] and [7]

the LLRs monotonic behavior is guaranteed for the high SNR

regime, in this regime the outcome decision would be a hit

with probability 1. Nevertheless as the SNR regime degrades

the inherent fluctuations of the LLRs at the beginning of the

decoding process may cause the decision to be a miss or a

false alarm with nonzero probability. In Figure 4 we show the

outcome of the decoding of 105 codeblocks using the same

simulation scenario as in Figure 2 with code length 1944 and

code rate 1/2 in order to observe the rate at which a miss and

a false alarm may occur on the low SNR regime.

Even though the hit rate is at all times at least two

orders of magnitude greater than a miss or a false alarm

it is important to address their occurrence. A miss result

would trigger an unnecessary retransmission in the presence

of an automatic repeat request (ARQ) protocol, while a false

alarm result would introduce undetected codeblock errors.

This indeed represents some concerns that must be analyzed

on an application-specific context, as for example a wireless

modem for [8] is not likely to operate at such low SNR because

of the required minimum packet-error rate performance.
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Fig. 6. False alarm and miss outcomes detection

The error-correction performance is affected by the false

alarm outcomes. In Figure 5 we compare the simulated bit

and frame error rates of the typical syndrome check and the

proposed method, this corresponds to the same simulation

scenario from Figure 4. Depending upon the target application

the performance loss may not be tolerated, therefore we

address the ways in which this situation can be circumvented.

Detection of the miss and false alarm outcomes can be

performed in two ways:

1) Validating the result provided by on-the-fly syndrome

check by calculating the typical syndrome check.

2) Allowing an outer coding scheme to detect such con-

ditions: e.g., a cyclic redundancy check (CRC) that

typically follows a codeblock decoding.

We propose to detect both miss and false alarm outcomes

by validating the final calculated syndrome (in on-the-fly

fashion) while executing the first iteration of the following

codeblock. Figure 6 depicts both situations. In this way an

ARQ protocol can react to a false alarm outcome and also

avoid an unnecessary retransmission under the presence of a

miss outcome. The performance is fully recovered, shown in

Figure 5 as validated on-the-fly syndrome check.

IV. SYSTEM LEVEL IMPACT AND RESULTS

In Figure 7 we show a top level view for a canonical LDPC

decoder based upon the decoding strategy proposed in [4].

From this it is evident that the proposed syndrome check

strategy does not require dedicated elements for the syndrome

calculation/verification step. In fact in order to implement the

syndrome check in on-the-fly fashion each processing unit is

augmented by a marginal set of components. Figure 8 shows a

serial processing unit from the canonical decoder architecture

driven by a SISO kernel, the added syndrome check capability

is also shown. Synthesis results on CMOS 65nm technology

showed that the area overhead due to the syndrome check

capability is only 0.65% for a BCJR-based processing unit

(the SISO kernel is the modified BCJR algorithm described in

[4]).

If the false alarm and miss outcomes are to be detected by

the proposed method in section III-B, then the syndrome check

circuitry must be replicated and the hard-decision memory

in Figure 7 must be kept. As can be observed the imple-

mentation of on-the-fly syndrome check must be evaluated
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Fig. 7. Canonical decoder architecture
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Fig. 8. Processing unit with syndrome check option

on an application-specific context: decoder operating range,

outer multilevel coding schemes and ARQ protocols, logic

and memory overheads, etc...

The main benefit of the proposed syndrome check is the

speedup of the overall decoding task. The processing latency

per decoding iteration for P processing units is given in

number of cycles by:

τc = mb ×
Z

P
× Lc (4)

where a quasi-cyclic LDPC code (e.g., in [8]) defines H

as an array of mb blockrows of Z rows per blockrow. In this

case P rows are processed concurrently. Lc is the number

of cycles consumed during the decoding task, where decoding

and syndrome verification take place. This value depends upon

the number of arguments to process per row, memory access

latencies and syndrome verification duration. It is the latter

time duration where our proposal exhibits advantages in terms

of speedup. A reduction in the overall task latency improves

as well the decoder throughput, given by:

Γ =
N × R × fclk

I × τc

(5)

where I is the total number of iterations, R the coding rate

of the N code symbols and fclk the operating frequency.

The main benefit from the proposed strategy is the reduction

in the time consumed during the syndrome check when the

decoding process is far from reaching convergence. It could

be argued that the syndrome check may very well be disabled

during a preset number of initial iterations, but still this tuning

must be done offline or shall depend upon extraneous variables

as the SNR. Estimating these variables provides sensible over-

heads. Figure 9 shows the obtained average latency reduction
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Fig. 9. Average latency reduction for the syndrome check process and overall decoding task speedup

of the syndrome check process compared to the typical one as

a function of operating SNR. A total of three use cases with

different code lengths are shown, for a code rate of 1/2 in

Figure 9a and code rate 5/6 in Figure 9b. The low SNR region

provides the best opportunities for syndrome check latency

reduction since LLRs fluctuate quite often in this region, i.e.,

a higher decoding effort renders useless the initial syndrome

verification.

Indeed what this strategy is doing is speeding up a portion

of the decoding task. With the use of Amdahl’s law [10] it is

possible to observe the overall speedup of the decoding task

based upon the obtained latency reduction of the syndrome

check. The overall speedup is a function of the fraction

Penhanced of the task that is enhanced and the speedup

Senhanced of such fraction of the task:

Soverall =
1

(1 − Penhanced) + Penhanced

Senhanced

(6)

Figure 9 shows as well the average speedup obtained as

a function of operating SNR for the same test cases, these

results consider that the syndrome check process corresponds

to 35% of the overall decoding task per iteration. Amdahl’s law

provides an upper bound for the achievable overall speedup,

1.53 for this setup. The average speedup is higher for the

code rate 1/2 case since the parity-check matrix contains more

rows than the code rate 5/6. For the former case the achieved

speedup ranged from 84% to 96% of the maximum achievable

bound, this corresponds to enhancing the decoder throughput

by a factor of 1.28 and 1.48 respectively.

V. CONCLUSION

An alternative method for performing the syndrome check

of the iterative decoding of LDPC codes has been presented.

By partitioning the calculation among the rows of the parity-

check matrix several advantages have been identified. On-

the-fly syndrome check reduces the number of hardware

components on a VLSI architecture, offers a speedup in the

overall decoding task and improves accordingly the decoding

throughput. We analyzed the possible scenarios in which this

technique may potentially provide erroneous outcomes regar-

ding the validity of a codeblock and proposed how to handle

these cases such that there is no error-correction performance

loss. Such situations arise nevertheless at a very low rate and

on the low SNR regime. Results from a decoder for the codes

defined in IEEE 802.11n provided a speedup of up to a factor

of 1.48 at a cost of less than 1% in logic area overhead for a

65nm CMOS process.
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