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Abstract—In this paper we analyze the sum rate of zero-forcing
(ZF) precoding in MISO broadcast channels with limited feed-
back, transmit correlation and path loss. Our analysis assumes
that the number of transmit antennas M and the number of users
K are large, while their ratio remains bounded. By applying re-
cent results from random matrix theory we derive a deterministic
equivalent of the signal-to-interference plus noise ratio (SINR)
and compute the sum rate maximizing number of users as well
as the limiting sum rate for high signal-to-noise ratios (SNR),
as a function of the channel errors and the channel correlation
pattern. Simulations show that theoretical and numerical results
match well, even for small system dimensions.

I. INTRODUCTION

The capacity achieving precoding strategy of the Gaussian
MIMO broadcast channel based on the non-linear dirty-paper
coding (DPC) technique [1]. But so far no efficient prac-
tical algorithm implementing the optimal DPC scheme has
been proposed. Therefore, low complexity linear precoding
strategies have gained a lot of attention since they achieve
a large portion of the rate region at moderate complexity. A
classical linear interference mitigating scheme is zero-forcing
(ZF) precoding which has first been analyzed in the context
of MIMO broadcast channels in [2].

In this contribution we consider a system where both the
number of transmit antennas M and the number of users K
are large but their ratio β(M),M/K is bounded. We extend
the models of [3]–[5] by considering imperfect channel state
information at the transmitter (CSIT), transmit correlation as
well as different path losses of the users. With the aid of
recent tools from random matrix theory (RMT), we derive
a deterministic equivalent of the signal-to-interference plus
noise ratio (SINR) of ZF precoding which is independent
of the individual channel realizations. From the deterministic
equivalent of the SINR we determine the sum rate maximizing
number of users.

Notation: In the following boldface lower-case and upper-
case characters denote vectors and matrices, respectively. The
operators (·)H, tr(·) and, for X of size N×N , Tr(X), 1

N trX
denote conjugate transpose, trace and normalized matrix trace,
respectively. The expectation is E[·] and diag(x1, . . . , xN ) is
the diagonal matrix with elements xi on the main diagonal.

The N×N identity matrix is IN and =[z] is the imaginary
part of z∈C.

II. MATHEMATICAL PRELIMINARIES

Definition 1 (Deterministic Equivalent): Let {XN : N =
1, 2, . . . } be a set of complex random matrices XN of size N×
N . For some functional f we define a deterministic equivalent
m◦

XN
of mXN

, f(XN ) as any series m◦
X1

,m◦
X2

, . . . such
that

mXN
−m◦

XN

N→∞−→ 0 (1)

almost surely.
In present work we are interested in deterministic equivalents
of expressions of the form

mBN ,QN
(z) = TrQN (BN − zIn)−1 (2)

where QN ∈Cn×n is a Hermitian positive definite matrix and
BN ∈Cn×n is of the type

BN = T1/2
N XNRNXH

NT1/2
N (3)

where RN ∈ CN×N is nonnegative definite Hermitian,
TN ∈ Cn×n is diagonal and XN ∈ Cn×N is random with
independent and identically distributed (i.i.d.) entries of zero
mean and variance 1/n. In the course of the derivations, we
will require the following result,

Theorem 1: [6, Theorem 1] Under the above model for
BN where TN and RN , QN have uniformly bounded spectral
norm (w.r.t. N ), as (n, N) grow large with ratio β(N),N/n
such that 0 < lim infN β(N) ≤ lim supN β(N) <∞. Define
mBN ,QN

(z) as in (2). Then, for z∈C\R+,

mBN ,QN
(z)−m◦

BN ,QN
(z) N→∞−→ 0 (4)

almost surely, where m◦
BN ,QN

(z) is defined as

m◦
BN ,QN

(z) = TrQN (c(z)TN − zIn)−1 (5)

with c(z) = TrRN

(
IN +

1
β

e(z)RN

)−1

(6)

and e(z) is the unique solution of

e(z) = TrTN (c(z)TN − zIn)−1 (7)



with positive imaginary part if =[z]>0, of negative imaginary
part if =[z] < 0, and real positive if z < 0. Moreover e(z) is
analytic on C\R+ and of uniformly bounded module on every
compact subset of C \R+. Note that mBN

(z) , mBN ,IN
(z)

is the Stieltjes transform [7] of the eigenvalue distribution of
BN .

III. SYSTEM MODEL

Consider the MISO broadcast channel composed of one
central transmitter equipped with M antennas and of K
single-antenna receivers. Assume M > K and narrow-band
communication. Denoting yk the signal received by user k, the
concatenated received signal vector y=[y1, . . . , yK ]T∈CK at
a given time instant reads

y =
√

MHx + n (8)

with transmit vector x ∈ CM , channel matrix H ∈ CK×M

and noise vector n∼CN (0, σ2IK). The transmit vector x is
obtained by linear precoding x = Gs, where s∼CN (0, IK)
is the symbol vector and G = [g1, . . . ,gK ] ∈ CM×K is the
precoding matrix. The total transmit power is P >0, hence

tr(E[xxH]) = tr(GGH) ≤ P. (9)

In this paper we consider ZF precoding i.e.

G =
ξ√
M

ĤH
(
ĤĤH

)−1

, (10)

where Ĥ is the estimated channel matrix available at the
transmitter and the scaling factor ξ is set to fulfill the power
constraint (9). From (9) we then obtain

ξ2 =
P

1
M tr

(
ĤHĤ

)−1 =
P

mĤHĤ(0)
,

P

Ψ̄
. (11)

The received symbol yk of user k is given by

yk = ξhH
k (ĤHĤ)−1ĥksk + ξ

K∑
i=1,i 6=k

hH
k (ĤHĤ)−1ĥisi + nk

where hH
k and ĥH

k denote the kth row of H and Ĥ, respectively.
The SINR γk,zf of user k can be written in the form

γk,zf =
|hH

k (ĤHĤ)−1ĥk|2

hH
k (ĤHĤ)−1ĤH

[k]Ĥ[k](ĤHĤ)−1hk + Ψ̄
ρ

(12)

where ĤH
[k] =[ĥ1, . . . , ĥk−1, ĥk+1, . . . , ĥK ]∈CM×(K−1) and

ρ = P/σ2 denotes the signal-to-noise ratio (SNR). The sum
rate Rsum is given by

Rsum =
K∑

k=1

log (1 + γk,zf) [nats/s/Hz]. (13)

Under the assumption of a rich scattering environment the
correlated channel can be modeled as [8]–[10]

H = L1/2XΘ1/2 (14)

where X ∈ CK×M has i.i.d. zero-mean entries of variance
1/M , Θ ∈ CM×M is the nonnegative definite correlation

matrix at the transmitter with eigenvalues λ1, . . . , λM , ordered
as λ1 ≤ . . . ≤ λM , and L = diag(l1, . . . , lK), with entries
ordered as l1 ≤ . . . ≤ lK , contains the user channel gains,
i.e. the inverse user path losses. Note that in (14) the entries
of X are not required to be Gaussian. We assume ‖Θ‖ to
be uniformly bounded from above with respect to M , i.e.
adding more transmit antennas does not significantly increase
the correlation between them.

Moreover, we suppose that only Ĥ, an imperfect estimate
of the true channel matrix H, is available at the transmitter.
The channel gain matrix L as well as the transmit correlation
Θ are assumed to be slowly varying compared to the channel
coherence time and are assumed to be perfectly known to the
transmitter. We therefore model Ĥ as

Ĥ = L1/2X̂Θ1/2 (15)

with X̂ =
√

1− τ2X + τQ (16)

where Q∈CK×M is the matrix of channel estimation errors
containing i.i.d. entries of zero mean and variance 1/M , and
τ ∈ [0, 1]. The parameter τ reflects the amount of distortion
in the channel estimate Ĥ. Furthermore, we suppose that X
and Q are mutually independent as well as independent of the
symbol vector s and noise n. A similar model for imperfect
CSIT has been used in [11]–[13].

IV. DETERMINISTIC EQUIVALENT OF THE SINR

In the following we derive a deterministic equivalent γ◦k,zf

of the SINR γk,zf of user k for ZF precoding. That is, γ◦k,zf

is an approximation of γk,zf independent of the particular
realizations of X and Q.

In [6] we derived a deterministic equivalent for regularized
ZF (RZF) precoding. The same techniques as for RZF, cannot
be applied for ZF, since by removing a row of Ĥ the matrix
ĤHĤ becomes singular. Therefore, we adopt a different
strategy and derive the SINR γk,zf for ZF of user k and
β > 1 as γk,zf = limα→0 γk,rzf . The result is summarized in
the following theorem.

Theorem 2: Let β >1 and γk,zf be the SINR of user k for
ZF precoding. Then

γk,zf − γ◦k,zf
M→∞−→ 0 (17)

almost surely, where γ◦k,zf is a deterministic equivalent of γk,zf

and given by

γ◦k,zf =
1− τ2

lkτ2Ῡ◦ + Ψ̄◦

ρ

(18)

with

Ψ̄◦ =
1
βc̄

TrL−1 (19)

Ῡ◦ =
c2/c̄2

β − c2/c̄2
TrL−1 (20)

c2 = TrΘ2

(
IM +

1
c̄β

Θ
)−2

(21)



where c̄ is the unique solution of

c̄ = TrΘ
(
IM +

1
c̄β

Θ
)−1

(22)

By Jensen’s inequality c2/c̄2 ≥ 1 with equality if Θ = IM .
The computation of (18) involves the evaluation of only one
fixed-point equation, given by (22).

Corollary 1: Let Θ= IM and L= IK then γ◦k,zf takes the
explicit form

γ◦zf , γ◦k,zf =
1− τ2

τ2 + 1
ρ

(β − 1) (23)

Proof of Corollary 1: By substituting Θ= IM and L=
IK into (22), c̄ is explicitly given by c̄ = (β − 1)/β. Since
c2/c̄2 =1 we have Ψ̄◦=Ῡ◦=1/(β − 1).

Proof of Theorem 2: The SINR γk,rzf of user k of RZF
for large (K, M) is given by [6]

γk,rzf =
l2k(1− τ2)m2

A

lkΥ(1− τ2[1− (1 + lkmA)2]) + Ψ(α)
ρ (1 + lkmA)2

(24)
where A = X̂HLX̂ + αΘ−1 and

mA , mA(0) = TrA−1 (25)

Υ = mA − αTrΘ−1A−2 (26)

Ψ(α) = TrĤHĤ
(
ĤHĤ + αIM

)−2

(27)

The underlying strategy is as follows: The terms in the SINR
of RZF that depend on α, i.e. mA, Υ and Ψ, are expanded
around α = 0. Subsequently we take the limit γk,zf =
limα→0 γk,rzf . Finally, we find the deterministic equivalent
γ◦k,zf .

We expand mA =TrA−1 around α=0 as follows

mA
(a)
=

1
α

TrΘ− 1
αM

trĤΘĤH(ĤĤH + αIK)−1 (28)

(b)
≈ 1

α
TrΘ− 1

αM
trĤΘĤH

[
(ĤĤH)−1 − α(ĤĤH)−2

]
(29)

where (a) follows from the matrix inversion lemma (MIL) and
in (b) we rewrite the inverse in terms of a Taylor series of order
2 around the point α=0. In step (b) it is necessary to assume
that β > 1 to assure that the maximum eigenvalue of matrix
(ĤĤH)−1 is bounded for all large M . For αTrΘ−1A−2 we
obtain

αTrΘ−1A−2 ≈ 1
α

TrΘ− 1
αM

trĤΘĤH(ĤĤH)−1

+
α

M
trĤΘĤH(ĤĤH)−3. (30)

Substituting (29) and (30) into (26) and taking the limit α→0,
we obtain

Ῡ = lim
α→0

Υ =
1
M

trĤΘĤH
(
ĤĤH

)−2

. (31)

Replacing mA, Υ and Ψ(α) in (24) with (29), (31) and Ψ̄=
Ψ(0), respectively, we have

γk,zf = lim
α→0

γk,rzf =
1− τ2

lkτ2Ῡ + Ψ̄
ρ

. (32)

Now we derive a deterministic equivalent Ψ̄◦ and Ῡ◦ for Ψ̄
and Ῡ, respectively.

Applying Theorem 1 we find Ψ̄◦ s.t. Ψ̄−Ψ̄◦ M→∞−→ 0 almost
surely, as

Ψ̄◦ = m◦
ĤĤH(0) =

1
βc̄

TrL−1, (33)

where c̄ is defined in (22).
In order to find Ῡ◦ notice that, we can diagonalize Θ in (31)

s.t. Θ=Udiag(λ1, . . . , λM )UH and still have i.i.d. elements
in the kth column x̂′k of X̂U. Denoting C=ĤĤH and C[k] =
Ĥ[k]ĤH

[k] − λkL1/2x̂′kx̂
′H
k L1/2 and applying [14, Lemma 2.2]

twice, equation (31) takes the form

Ῡ =
1
M

M∑
k=1

λ2
k

x̂′Hk L1/2C−2
[k] L

1/2x̂′k
(1 + λkx̂′Hk L1/2C[k]L1/2x̂′k)2

. (34)

Applying [14, Lemma 3.1] together with TrC−1
[k] −

TrC−1 M→∞−→ 0 [6], we obtain

Ῡ− 1
β

TrLC−2 1
M

M∑
k=1

λ2
k

(1 + λk
1
β TrLC−1)2

M→∞−→ 0 (35)

almost surely. To determine a deterministic equivalent
mC,L(0)◦ for mC,L(0) = TrLC−1, we apply Theorem 1 as
for (33). For TrLC−2 we have

TrLC−2 = mC2,L(z) =
∂mC2,L(z)

∂z z=0
= m′

C,L(0). (36)

The derivative of mC,L(0)◦ is a deterministic equivalent of
m′

C,L(0), so that applied to (35), we have a deterministic

equivalent Ῡ◦, s.t. Ῡ− Ῡ◦ M→∞−→ 0 almost surely, that verifies

Ῡ◦ =
c2/c̄2

β − c2/c̄2
TrL−1 (37)

where c̄ and c2 are defined in (22) and (21), respectively.
Finally, we obtain (18) by substituting Ψ̄ and Ῡ in (32) by
their respective deterministic equivalents (33) and (37), which
completes the proof.

V. ASYMPTOTICALLY OPTIMAL NUMBER OF USERS K

In general, for fixed Θ, L, ρ and τ2, consider the problem
of finding the optimal number of users K?◦ (or equally
β?◦=M/K?◦), such that the approximated sum rate R◦sum ,∑K

k=1 log(1 + γ◦k,zf) is maximized, i.e.

β?◦ = arg max
β>1

1
β

∫
log

(
1 + γ◦k,zf

)
dFL(l), (38)

where we suppose that the user channel gains lk are distributed
according to some probability distribution function FL. By



setting the derivative of (38) w.r.t. β to zero, we obtain the
implicit equation

β

∫ ∂γ◦k,zf
∂β dFL(l)

1 + γ◦k,zf

=
∫

log
(
1 + γ◦k,zf

)
dFL(l). (39)

Thus, β?◦ is the solution to (39).
In the special case of Θ=IM and L=IK , the SINR γ◦k,zf

is given in Corollary 1 and the solution to (39) has an explicit
form. For equation (39) we obtain

aβ

1 + a(β − 1)
= log (1 + a(β − 1)) (40)

where a= 1−τ2

τ2+ 1
ρ

. Denoting

w(β) =
a− 1

a(β − 1) + 1
and x =

a− 1
e

, (41)

we can rewrite (40) as

w(β)ew(β) = x. (42)

Notice that w(β) = W(x), where W(x) is the Lambert W-
function defined as z = W(z)eW(z), z ∈ C. Therefore, by
solving w(β)=W(x) we have

β?◦ =
(

1− 1
a

) (
1 +

1
W(x)

)
. (43)

For τ ∈ [0, 1], β > 1 we have w ≥ −1 and x ∈ [−e−1,∞).
In this case W(x) is a single-valued function. If τ = 0, we
obtain the results in [5]. Note that only rational values of β
are meaningful in practice.

If the transmit antennas are spaced sufficiently apart the
major loss in sum rate is due to path loss, cf. Figure 1.
Therefore, it is of interest to characterize the sum rate gap
R∆ between a user distribution FL and equally distant users
L=IK . For a fixed β and with τ2 =0, we have

R∆ = K log
(

1 + ρ(β − 1)
1 + ρ

Ψ̄◦

)
. (44)

Although Ψ̄◦ induces a significant loss in sum rate, we still
have a linear scaling of the sum rate with SNR [dB] because
Ψ̄◦ is independent of the SNR. Since Θ has only a minor
impact on R∆, for reasonable antenna separations, we obtain
for Θ=IM and asymptotically high SNR

Rlim
∆ = lim

ρ→∞
R∆ = K log TrL−1. (45)

From (45) we notice that Rlim
∆ is solely depending on the

distribution of the channel gains L. As an example we suppose
that the K users are uniformly distributed on a ring of maximal
and minimal radius rmax and rmin, respectively. Furthermore,
denoting dk the distance from user k to the transmitter,
we apply the exponential path loss model (indicated by the
notation L 6=IK) i.e. lk =κd−α

k where κ is chosen s.t. E lk =1
for given rmax, rmin and α. This normalization ensures a fair
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Fig. 1. ZF, sum rate vs. SNR with M = 32, β = 2 simulation results are
indicated by circle marks with error bars indicating one standard deviation in
each direction.

comparison to the scenario L = IK . Assuming rmax � rmin,
we obtain

Rlim
∆ ≈ K log

(
4

α2 − 4

)
+ (α− 2)K log

(
rmax

rmin

)
. (46)

Therefore, the sum rate gap Rlim
∆ increases with α and

log rmax for a fixed rmin.

VI. NUMERICAL RESULTS

In our simulations all results are averaged over 10,000
independent Rayleigh block-fading channel realizations.

The transmit correlation is assumed to depend only on the
distance dij , i, j = 1, 2, . . . ,M between antennas i and j
placed on a uniform circular array (UCA). Thus, (Θ)ij =
J0(2πdij/λ) [15], where J0 is the zero-order Bessel function
of the first kind and λ is the signal wavelength. To ensure that
λM grows slower than O(M), we suppose that the distance
between adjacent antennas d = di,i+1 is independent of M ,
i.e. as M grows the radius of the UCA increases.

Furthermore, we consider that the users are distributed
uniformly on a ring with rmax =500m and rmax =35m with
α=3.5, [16] (“Suburban Macro”) and κ s.t. TrL=1.

Figure 1 compares the sum rate performance of the approx-
imated sum rate to Monte-Carlo simulations. We observe, that
the expressions derived for large (K, M) lie approximately
within the band of two standard deviations of the simulation
results even for finite (K, M). Therefore, the approximation
derived in Theorem 2 are accurate and can be applied to
concrete optimization problems for the multi-user downlink
channel. For high SNR, the sum rate loss due to path loss is
given by (46), Rlim

∆ ≈75 [bits/s/Hz], corresponding well to the
simulation results.

Figure 2 compares the optimal number of users K?◦ in
(43) to the optimal number of users K? obtained from Monte-
Carlo simulations. More precisely K? is the number of users
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K <M that maximizes the ergodic sum rate, when distributed
uniformly over the ring defined above. It can be observed that
K?◦ predicted by the asymptotic results does fit well even
for finite dimensions. Moreover, introducing correlation and
path loss leads to larger dispersion of the optimal K over the
selected SNR range.

Figure 3 depicts the impact of the number of served users
on the ergodic sum rate. It can be observed that K?◦ achieves
most of the sum rate even for finite (K, M) and thus, is a good
choice for the user allocation at the transmitter. Moreover,
we observe that adapting the number of users is beneficial
compared to a fixed K. From Figure 2 we identify K =8 as a
good choice (for τ2 =0.1) and, as expected, the performance
is optimal in the medium SNR regime and suboptimal at low
and high SNR. The situation changes by adding correlation
and path loss. Since K =8 is highly suboptimal for low and
medium SNR (cf. Figure 2) we observe a significant loss in
sum rate in this regime.

VII. CONCLUSION

In this paper we derived deterministic equivalent of the
SINR of ZF precoding by applying recent results from random
matrix theory. These approximations are shown to be very
accurate even for finite dimensions and thus provide useful
tools for many engineering applications. In particular the
approximated sum rate enabled us to derive expressions for
the optimal number of users in the cell and to characterize the
impact of a spatial user density on the achievable sum rate.
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