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Abstract—For the quasi-static, Rayleigh-fading multiple-input
multiple-output (MIMO) channel with �� transmit and �� receive
antennas, Zheng and Tse showed that there exists a fundamental
tradeoff between diversity and spatial-multiplexing gains, re-
ferred to as the diversity–multiplexing gain (D-MG) tradeoff.
Subsequently, El Gamal, Caire, and Damen considered signaling
across the same channel using an �-round automatic retrans-
mission request (ARQ) protocol that assumes the presence of
a noiseless feedback channel capable of conveying one bit of
information per use of the feedback channel. They showed that
given a fixed number � of ARQ rounds and no power control,
there is a tradeoff between diversity and multiplexing gains,
termed the diversity–multiplexing–delay (DMD) tradeoff. This
tradeoff indicates that the diversity gain under the ARQ scheme
for a particular information rate is considerably larger than that
obtainable in the absence of feedback.

In this paper, a set of sufficient conditions under which a
space–time (ST) code will achieve the DMD tradeoff is presented.
This is followed by two classes of explicit constructions of ST codes
which meet these conditions. Constructions belonging to the first
class achieve minimum delay and apply to a broad class of fading
channels whenever �� � �� and either ���� or ����. The second
class of constructions do not achieve minimum delay, but do
achieve the DMD tradeoff of the fading channel for all statistical
descriptions of the channel and for all values of the parameters
��� ��� �.

Index Terms—Automatic retransmission request (ARQ), cyclic
division algebra, diversity–multiplexing–delay (DMD) tradeoff,
diversity–multiplexing gain(D-MG) tradeoff, explicit construction,
multiple-input multiple-output (MIMO) feedback, space–time
(ST) codes.
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I. INTRODUCTION

I N the quasi-static or equivalently, block-fading space–time
(ST) channel with quasi-static interval , transmit, and

receive antennas, the received signal matrix is
given by

(1)

where is the transmitted matrix drawn from an
ST code , is the channel matrix, and
is the noise matrix. The entries of are assumed
to be independent and identically distributed (i.i.d.), circularly
symmetric complex Gaussian random variables. The
entries of are drawn from a constellation whose size scales
with the signal-to-noise ratio (SNR) and the scaling factor is
chosen to ensure the energy constraint

(2)

A. ARQ Signaling

As in [1], our interest here is in signaling across the channel in
(1) using an automatic retransmission request (ARQ) protocol.
Under this protocol, each message symbol from the source is as-
sociated with a unique block of matrices, each

in such a way that it is possible to uniquely decode
the message symbol given for any ,
in particular, given just . The scalar is chosen to ensure
the energy constraint

(3)

is satisfied.
Bank of Codes: Let denote the ARQ ST code, i.e.,

the collection of matrices corresponding to all
possible message symbols. We will use to denote the
ST code truncated to rounds, i.e., the collection of
matrices corresponding to all possible message
symbols. We will refer to as the th round
ST code and to the specific codes and as the
single-round and full-length ST codes, respectively.

With each code , we associate a decoder . While
each of the decoders is permitted to decline
to decode, the decoder in contrast, is a maximum-likelihood
(ML) decoder and will always decode.

ARQ Signaling: The distinction between the ARQ ST code
and the full-length ST code is the manner

in which the sequence of matrices is used. With
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the full-length code, one always transmits the entire matrix
. With the ARQ code, one first transmits the

matrix . The presence of a noiseless feedback channel
capable of conveying one bit (ACK or NACK) of information
per ARQ round is assumed. Also assumed is the presence of
an infinite buffer at the transmitter end. At the receiver end, the
receiver applies the decoder to the corresponding
received matrix . If decoder is able to decode the under-
lying message symbol from , then an ACK is passed on to
the transmitter, otherwise, a NACK is sent. Upon receipt of an
ACK, the transmitter moves on to transmit the next message
symbol. Upon receipt of a NACK, however, the transmitter
proceeds to transmit . Upon receipt of the corresponding
received signal matrix , the receiver once again attempts to
decode the message symbol, this time applying decoder to
the concatenated signal . This process is continued until
the transmitter receives an ACK. Note that since the decoder

is an ML decoder, the transmitter will receive an implicit
ACK after the th round and hence the ARQ signaling will
never run beyond rounds.

To simplify notation, we will abbreviate and write

for . These are related by

(4)

Note that by our assumption above relating to unique decod-
ability, all the codes have the same cardinality, i.e.,

(5)

In this paper, we will assume the long-term static channel model
introduced in [1], which assumes that the matrices encoun-
tered over the rounds are identical. Under this assumption, (4)
takes on the simpler form

(6)

As in [1], the matrices associated with the transmission of
different message symbols will, however, be assumed to be sta-
tistically independent.

B. Rate and Reliability

Let denote the rate of the ARQ scheme, i.e., the average
number of bits transmitted per channel use. Let denote the
normalized rate given by

We will refer to as the spatial-multiplexing gain [2], [3]. At
times, we will also refer to as the normalized (with respect to
SNR) rate. The relationship between the multiplexing gain and
the size of the ARQ ST code will be established
in Section II. Note that our notation here differs somewhat from
that in [1], in which the rate is termed the “throughput” and
denoted by .

Fig. 1. The D-MG tradeoff of the MIMO-ARQ channel as a function of the
number � of ARQ rounds. Here � � � � �.

For a given normalized rate , let the probability of a message
symbol being decoded incorrectly at the receiver be denoted by

. We define the diversity gain as

This implies that for large SNR, decays as . In
the exponential-equality notation of [3], we will denote this by

Then under this setting, El Gamal et al. [1] showed that for
channels with Rayleigh fading, the maximum possible value

of the diversity gain at each value of spatial-multi-
plexing gain is given by

for in the range and outside the
range, where is the piecewise-linear function connecting
the points for integral values of

. The function represents the tradeoff
between the diversity and spatial-multiplexing gains, developed
by Zheng and Tse [3] for the Rayleigh-fading channel in the
absence of feedback, referred to as the diversity–multiplexing
gain (D-MG) tradeoff. Thus, represents the DMD for a
given number of ARQ rounds and is shown plotted in Fig. 1
for the case of four transmit and four receive antennas and for
varying . The bottom plot corresponding to (and hence,
no ARQ) represents the original Zheng–Tse D-MG tradeoff.

An impressive amount of recent research has culminated
in the construction of explicit ST codes that meet the optimal
D-MG tradeoff for any , , for arbitrary fading channels,
see [4]–[12] and references therein for details.

Returning to the ARQ setting, the tradeoff between diver-
sity and multiplexing gains is clearly, from Section I-B, a func-
tion of the parameter that indicates the maximum number of
ARQ rounds and is also indicative of the maximum delay
of channel uses before one is guaranteed to be in a position
to decode the transmitted message. Accordingly, the authors
of [1] term the tradeoff in the ARQ case, the diversity–multi-
plexing–delay (DMD) tradeoff. It is shown in [1], that an adap-
tation of the LAST codes [7] for the ARQ, Rayleigh-fading
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channel known as IR (incremental redundancy) LAST codes,
are optimal with respect to the corresponding DMD tradeoff.

C. Results

In this paper, a set of sufficient conditions under which an
ST code will achieve the DMD tradeoff is presented. This is
followed by two classes of explicit constructions of ST codes
which meet these conditions. Constructions belonging to the
first class achieve minimum delay and apply to a broad class
of fading channels which we label as the class of regular fading
channels and which are defined below. These constructions are
applicable whenever and either or . The
second class of constructions do not achieve minimum delay,
but do achieve the DMD of the fading channel for all statistical
descriptions of the channel and for all values of the parameters

. The second class of constructions may hence be said
to possess the approximate universality property [8].

We will say that a fading channel is regular if the associated
channel matrix is such that the density function of
the smallest eigenvalue of is finite and well-behaved
near zero, i.e., for sufficiently small, we have

Channels with Rayleigh fading, i.e., channels whose matrix
has components that are i.i.d., circularly symmetric complex
Gaussian random variables, fall into this class, as can
be verified from the expression

for the density function in the Rayleigh case, given in [17],
where , , is a normalizing
constant, and is a polynomial of degree .

The sufficiency condition for achieving the DMD tradeoff is
presented in Section II. The minimum-delay constructions are
described in Section III, while those that are approximately uni-
versal may be found discussed in Section IV. Simulation results
are presented in the final section, Section V. Most proofs are
relegated to the Appendices.

II. SUFFICIENT CONDITION FOR ACHIEVING THE

DMD TRADEOFF

We begin with a sufficient condition for an ST code to achieve
the D-MG tradeoff given and quasi-static interval .

A. A Sufficient Condition for Achieving the D-MG Tradeoff

Theorem 1: Consider an ST code with
of size . Let denote the dif-

ference of any two code-matrices drawn from . Define
. If

then is optimal with respect to the D-MG tradeoff at multi-
plexing gain for any number of receive antennas and over any
fading channel.

A proof of the theorem for the special case of the Rayleigh
fading may be found in [10]. The proof in the case of the general
fading channel, appears in [8].

B. A Sufficient Condition for Achieving the DMD Tradeoff

We begin with some definitions. At the conclusion of the
th round of transmission, the receiver examines the matrix

using decoder and then makes a decision whether to send
an ACK or a NACK. Let be the event that the received
matrix is such that upon receipt of , the receiver will send
an ACK (NACK).

Next, let be the rate in bits per channel use associated with
the th ARQ code , i.e.,

from (5).1 Let denote the corresponding normalized rate given
by

In terms of , the cardinality of the ST code is given
simultaneously by

from which it follows that

(7)

for all and, in particular, . The rates
are to be distinguished from the (average or effective) rate and
normalized rate of the ARQ scheme obtained by taking into
consideration the number of rounds of ARQ required and their
probability.

We will specifically refer to and as the single-round
and normalized single-round rates, respectively. The relation-
ship between the rates and plays a key role and will be
treated later. The normalized rate will also be called the spa-
tial-multiplexing gain of the ARQ scheme.

Let denote the probability of error of the ST code
decoded using decoder . In computing , we

consider an error to have occurred only if the decoder pro-
ceeds to decode, generates an ACK signal and the decoding is
in error. Thus, we do not consider the decoder to have made an
error if a NACK is generated. The probability of error of
the ARQ code is upper-bounded by

(8)

Although the above is a form of the union bound, we offer the
following added explanation. Consider two parallel communi-
cation systems. In the first fictitious system, the entire matrix

is transmitted corresponding to each message symbol.
At the receiver end, the bank of decoders independently

1Notice that the quantity � is clearly not always an integer. For sim-
plicity, we employ the notation � in place of the more accurate notation
�� �, keeping in line with the literature in the area. This convention is used
throughout the paper.
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examine the message symbol each based on the corresponding
fragment of the received signal and generate an ACK and a
decoded message symbol or a NACK as appropriate. The second
system is the ARQ system under study here. We assumed that
both communication systems are faced with the same realization
of channel fading coefficients and noise. Clearly, the number of
incorrect decodings by the second (ARQ) system cannot exceed
the sum of the incorrect decodings by the bank of decoders in
the fictitious system. Equation (8) now follows.

The sufficiency condition can now be stated.

Theorem 2: Let be an ST code designed for the
MIMO-ARQ channel having normalized single-round rate
and multiplexing gain . If the code , in conjunction with
receiver decoding algorithms satisfies the following.

1) , where for all
.

2) The full-length ST code is a D-MG optimal ST
code for multiplexing gain .

3)

(9)

Then

and the ST code achieves the DMD tradeoff for all ,
.

In words, the theorem asserts that if an ST-ARQ code
satisfies the requirements:

1) that with high probability there will be just a single ARQ
round and

2) the full-length ST code is optimal with respect to
the D-MG tradeoff of the channel,

3) the error probability of the th decoder applied to the
task of decoding the ST code is no larger than that
incurred by the ML decoder applied to the task of de-
coding the ST code

then will achieve the DMD tradeoff.

Proof: (Theorem 2)
a) Showing that for high SNR: For ,

let , be the probability of the transmitter
receiving a NACK in each of the first ARQ rounds. Note that

. Then from [1] the rate of the ARQ scheme and the
single-round rate are related by

(10)

The probabilities , can be upper-
bounded as follows:

The last equality follows from theorem hypotheses. It follows
now from (10) that

As a result, we have

(11)

Since and , it follows
that

(12)

as well. Thus, at large SNR, the single-round and average rates
and , respectively, as well as the corresponding normalized

versions , may be regarded as being equal.
a) Lower bound on the probability of error: Let denote

the probability of a message symbol being decoded incorrectly
when is used in conjunction with some decoding algo-
rithm. (Note that although we can have any decoding algorithm
for , has been fixed to ML.)Then we have

(13)

b) Upper bound on the probability of error: If a ARQ scheme
satisfies condition (9), from (8) we have

Using the fact that full-length ST code is D-MG optimal in con-
junction with the above bounds we have

i.e.,

from (7) and (12).

III. MINIMUM-DELAY CONSTRUCTION OF DMD OPTIMAL

ARQ ST SCHEMES

The constructions presented in this section achieve minimum
delay and can be applied whenever , the channel is a
regular fading channel, and whenever either or . All
constructions presented in this paper are based on cyclic division
algebras (CDA) and we begin with a brief review of ST code
construction from CDAs.

A. ST Codes Derived From CDAs

The construction of ST codes from division algebras was first
proposed by Sethuraman and Sundar Rajan [13].

Division algebras are noncommutative rings with identity el-
ement and inverses, i.e., each nonzero element has a multiplica-
tive inverse. CDAs have a particularly simple structure and a
general technique for the construction of a CDA can be found
in [18], [14, Proposition 11], or [19, Theorem 1]. Let be
number fields, with a finite, cyclic Galois extension of of
degree , see Fig. 2. Let denote a generator of the Galois group

. Let be an indeterminate satisfying

and

for some non-norm element , i.e., some element having
the property that the smallest positive integer for which is
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Fig. 2. Cyclic division algebra.

the relative norm2 of some element in , is . Then
the set of all elements of the form

(15)

forms a CDA with center and maximal sub-
field .

It can be verified that is a (right) vector space over the
maximal subfield . The parameter is called the index of the
CDA. An ST code can be associated to by selecting
the set of matrices corresponding to a finite subset of . The
matrix associated to an element corresponds to the left
multiplication by the element in the division algebra. Let
denote this operation, , defined by

It can be verified that is a -linear transformation of . From
(15), a natural choice of basis for the right-vector space over
is . A typical element in the division algebra

is , where the . The
matrix representation of the -linear transformation under
this basis can be shown to be [14], [19]

...
...

...
. . .

...
(16)

Our ST codes are derived from matrices of the form in (16),
where the elements are restricted to be of the form

(17)

with

odd

2The “relative norm” � ��� of an element � � is given by

� ��� � � ��� (14)

and it can be verified that � ��� � .

and where is an integral basis (i.e., a basis
as a module) for . We will refer to the underlying

-QAM-alphabet as the base alphabet of the ST
code construction. Note that . Let denote
the collection of all matrices of the form given in (16), (17).
Clearly, this code has cardinality . If it is desired to
communicate at a rate bits per channel use, then
one must choose the size of the underlying alphabet
accordingly, i.e., set

(18)

Note that . Thus

(19)

with the latter inequality following from the fact that the basis
elements have magnitude that is independent of the SNR.
Let denote the difference of any two distinct codeword ma-
trices from . A key property of this construction, estab-
lished in [10] using properties of the underlying CDA, is that

(20)

From Theorem 1, it follows that the square ST
codes constructed from CDA as described above, achieve the
D-MG tradeoff for all fading distributions.

B. Decoding Algorithm

Our minimum-delay ST constructions will be shown to be
DMD optimal when used in conjunction with a bounded dis-
tance decoder, the operation of which we will present first. Fol-
lowing this, we will present the minimum delay construction for
the cases of and , and show that these are DMD op-
timal for according to Theorem 2.

Without loss of generality, we will identify the integer set
with the collection of mes-

sage symbols. As discussed above, the ARQ scheme employs a
total of decoders corresponding to the
ARQ rounds. In our analysis, we will assume that the decoders
employed in the first rounds are bounded-distance de-
coders, operating as described below (see also Fig. 3).

The decoder employed at the end of the th round, as
stated earlier, is assumed to be an ML decoder. It is convenient
to regard the decoders as mappings.

Case (i):
• for some message symbol ,

if the codeword in corresponding
to message symbol is the unique codeword such that

where for some . Here is a
suitably chosen parameter of the bounded distance de-
coder. The receiver sends out an ACK in this case.

• in any other case indicating that the de-
coder is unable to decode with some predetermined level
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Fig. 3. Bounded-distance decoding in intermediate rounds and associated error events: (a) Transmitted code matrix is the only code-matrix within the sphere,
ACK is generated, no error. (b) No code matrix is inside the sphere, NACK is generated. (c) Two (or more) code matrices within the sphere, NACK is generated.
(d) A single code matrix which is not the transmitted matrix is within the sphere, ACK is generated, error.

of confidence to a codeword. The receiver sends out a
NACK in this case.

Case (ii):
• is the mapping corresponding to ML de-

coding, i.e., to choosing the message maximizing
. Since ML decoding

will always result in a decoding decision, implicitly an
ACK is always generated following the conclusion of
the th ARQ round causing the transmitter to move on
to transmitting the next message symbol.

The following lemma is key to our code construction.

Lemma 3: Let be an ST code for an -round multiple-
input multiple-output (MIMO)-ARQ channel and let
denote the single-round ST code as defined in Section I. Let

denote the difference of any two distinct matrices from
and set

Then, for the case when , the probability of the trans-
mitter receiving a NACK at the conclusion of the first round
from a receiver that employs the bounded-distance decoder
described previously in Section III-B, can be upper-bounded by

Proof: See Appendix A for a proof. It is in the proof of this
lemma that use is made of the fact that communication takes
place over a regular fading channel.

The theorem that follows is a restatement of Theorem 2 for
the case when the decoder is a bounded-distance decoder.

Theorem 4: Let and be
as in Lemma 3. Then the ST code achieves the optimal
DMD tradeoff for all , , if

1) Frobenius-Norm Criterion:

with for all , and
2) D-MG Optimality Criterion: The full-length ST code

is D-MG optimal, and
3) Error-Probability Criterion

Proof: Immediate from Theorem 2 and Lemma 3.

Constructions for DMD-optimal ARQ ST codes are pre-
sented for cases (i) and (ii) in Sections III-C and
III-D, respectively.

C. Construction for the Case

Let the block length be given by . The construc-
tion of DMD-optimal ARQ codes in this case is derived from
a square ST code obtained via the con-
struction in (16) with . Every codeword
is of the form

...
...

. . .
...

Now if is the desired rate of the ARQ
scheme, we set

(21)

Each round of the ARQ transmission corresponds to transmit-
ting successive columns from the matrix , i.e., during the
th round, we transmit for

, where denotes the th column of .

Example 1: Consider the case when . This
leads to the choice . Each codeword matrix

is of the form

In the above construction, we choose to be the cyclotomic
field obtained by adjoining the 16th root of unity to the rationals

, i.e., we set . It can
be shown that is a valid non-norm element. One
choice for the generator of the Galois group is
the automorphism . The elements take on
values from the ring of integers in accordance with (17).
The matrices associated with transmissions during the
two rounds of ARQ transmission are derived from above by
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selecting to be comprised of the first two and last two
columns of respectively, i.e.,

Theorem 5: The ST code constructed above for the
case achieves the MIMO-ARQ DMD tradeoff of the long-
term-static ARQ channel for under the power con-
straint (3), i.e.,

for block length .
Proof: See Appendix B.

It is shown in Section III-E that the above construction pos-
sesses the smallest possible value of delay parameter .

D. Construction for the Case

The constructions in this case, are derived from the construc-
tions of D-MG optimal rectangular ST codes presented in [10].
Two constructions of D-MG optimal ST codes were presented
in [10]: row deletion and horizontal stacking. Note that the idea
of using horizontal stacking to construct rectangular ST codes
was first presented in [4].

ARQ constructions derived from these rectangular codes
permit setting which is clearly the minimum possible.3

1) Row-Deletion ARQ Construction: As indicated above, we
set . Let , for some integer . The row-deletion
ST code for the ARQ channel is derived starting from the corre-
sponding row-deletion D-MG-optimal rectangular con-
struction [10], that is obtained as follows. An row-deleted
rectangular ST code is obtained in [10] by removing the
last rows from an square ST code of the form
given in (16). It is shown in [10] that also satisfies The-
orem 1 and is hence D-MG optimal. Suppose that has
been constructed using a division algebra having center
and maximal subfield as shown in Fig. 4(a). Each codeword

is an matrix of the form

...
...

. . .
...

(22)

We identify a set of columns of the matrix , which along
with the first column will contain all the independent variables

. Let be a degree– extension of the maximal sub-
field that has an integral basis over , as shown in
Fig. 4(b). Such an extension can always be found. We set
without loss of generality. Thus, the will lie in the in-

3The construction can be extended to the case of arbitrary � , but clearly set-
ting � � � results in minimum delay.

Fig. 4. Algebraic tower for the row-deleted ARQ construction.

tegral closure of in . Consider a column vector ob-
tained by taking a linear combination of these columns with
coefficients . Since the transmitted message symbol can
be recovered from the elements , column vector has
the same information content as does the entire ST code matrix

. Next, replace the first column of with column . The above
procedure of combining columns into the first column is an
elementary column operation that does not change either the de-
terminant or the SNR exponent of the Frobenius norm (energy)
of the ST matrix . As a consequence, it follows from
the results in [10] that this modified ST code is also
optimal with respect to the D-MG tradeoff. We now define the

ARQ ST scheme as one in which the ARQ
rounds involve transmission of the columns of the modified

ST code matrix in turn beginning with the first. The
following example illustrates this procedure.

Example 2: Consider the case when
. We start by constructing a rectangular

row-deleted D-MG optimal ST code from CDA as in [10].
Each codeword is of the form

The above construction is derived by deleting the last two rows
of a square CDA-based construction such as the one pro-
vided in Example 1. As an example, we can take ,
non-norm element and generator of the Galois group

to be the automorphism . The el-
ements take on values from the ring of integers as in
(17). To construct the ARQ ST code, we first identify the first
and the third columns as the columns that contain all in-
dependent (i.e., message-bearing) variables. Let con-
stitute an integral basis of the degree- extension
of . Perform the elementary column operation corresponding
to replacing the first column of the matrix by the sum of
times the first column and times the third column to obtain
the matrix

Our ST scheme for the MIMO-ARQ channel then simply
involves transmitting the th column, of the above
matrix during the th round of transmission.
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Theorem 6: The row-deleted ARQ ST code con-
structed above for the case when achieves the MIMO-ARQ
DMD tradeoff of the long-term static ARQ channel for
under the power constraint (3), i.e.,

for block length .
Proof: See Appendix C.

2) Horizontal-Stacking ARQ Construction: The horizontally
stacked-ARQ ST construction is very similar to that of the row-
deleted ARQ construction, except that the starting point is a hor-
izontally stacked rectangular construction [4], [10]. An
horizontally stacked rectangular construction is obtained in [10]
by horizontally stacking number of square CDA ST
codes. This construction is also D-MG optimal [10]. To con-
struct a horizontally stacked-ARQ ST code, we start from a hor-
izontally stacked rectangular construction and use elementary
column operations similar to those used in Section III-D.1 to
ensure that all independent variables are accommodated in the
first round of transmission.

Example 3: Consider the case . The
horizontally stacked rectangular construction takes on
the form

In this example, the are drawn from the ring of integers
of the cyclotomic extension according to (17). The
non-norm element is chosen and the Galois-group
generator is given by . Let be an inte-
gral basis for the field over . We arrive
at the following construction through performing an elementary
column operation on the above horizontally stacked rectangular
construction:

The horizontally stacked-ARQ construction corresponds to
transmitting the th column of the above matrix during the th
round, .

Theorem 7: The horizontally stacked-ARQ ST code
constructed above for the case when achieves the
MIMO-ARQ DMD tradeoff of the long-term static ARQ
channel for under the power constraint (3), i.e.,

with block length .
Proof: Similar to the proof of Theorem 6 provided in Ap-

pendix C.

E. Delay Optimality of the Constructions for and

The constructions of ST codes presented in this section are
of minimal delay, where by minimal, we mean that the DMD
performance cannot be improved by passing to a larger value of

delay parameter and in addition, any smaller value of will
result in DMD-performance degradation.

Theorem 8: The constructions presented for the case of
and are delay-optimal and achieve the minimum possible
block length of

Proof: See Appendix D.

Remark 1: In [1], the authors construct finite block-length
DMD optimal random Gaussian and IR-LAST codes, provided
that they respectively satisfy

and

The codes in this section, for the cases or , achieve
optimality with a significantly smaller value of .

IV. A GENERAL, APPROXIMATELY UNIVERSAL CONSTRUCTION

The construction presented in this section, which while not
guaranteeing minimum delay, has the advantage of being widely
applicable:

• the construction is approximately universal [8] and hence
generates ST codes that are DMD optimal for any statis-
tical description of the fading channel;

• can be applied both for or ;
• there are no restrictions on the number of ARQ rounds.
The construction of the code and the manner in which it is

used are quite different from that of the constructions in the
previous section. While still based on the theory of cyclic di-
vision algebras, the construction in this section is an adaptation
of the construction of approximately universal ST codes for the
block-fading channel, see [15], [23], [24]. In the construction,
the block length and we will use the integer to denote
their common value, i.e., in this section.

A. Constructing the Appropriate Cyclic Division Algebra

Let be the smallest integer such that the greater
common devisor (gcd) of equals . Let be
cyclic Galois extensions of of degrees whose Galois
groups are generated, respectively, by the automorphisms ,

, i.e.,

Let be the composite of , , see Fig. 5. Then it is known
that is cyclic and that further

Thus, every element of can be associated with
a pair belonging to .
Let be the automorphisms associated to the pairs ,

, respectively, where denotes the corresponding
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Fig. 5. Construction of the underlying cyclic-division algebra.

identity automorphism. Then are the generators of the
Galois groups , , respectively.

Let be a non-norm element of the extension . Let
be an indeterminate satisfying . Consider the -dimen-

sional vector space

We define multiplication on by setting and, as
before, this turns into a CDA whose center is and having

as a maximal subfield. Given a matrix with components
, we define to be the matrix over whose

component is given by Note that in this
case

since . Hence, if the elements underlying the
matrix are, in addition, restricted to lie in the ring of
algebraic integers of , then we have that

so that

(23)

B. ST Code Construction on the CDA

Let be the ST code comprised of the matrix rep-
resentations of the elements where are restricted
to be of the form

where are a basis for . Note that as a re-
sult, we have ensured that .

For , let be the ST code comprised
of code matrices having the block form

where, as before, accounts for SNR normalization. Thus, in
reference to our previous notation, we have .
Although defined for , the ARQ scheme will only
make use of the codes , . The extended-index
notation will, however, prove useful in the proofs. The signal
received at the end of the th ARQ round, is given by

(24)
From information-rate considerations, it follows that

so that

(25)

It follows that

(26)

C. Algorithm for Generating Acknowledgments

The generation of an ACK during the th ARQ round is based
only on whether or not the channel matrix is in outage with
respect to communication at multiplexing gain . More pre-
cisely, following transmission of the th block

an ACK is generated by the receiver if and only if the receiver
is not in outage associated with a normalized transmission rate
of , i.e., if and only if the channel matrix is such that

Theorem 9: The ST code constructed above achieves
the MIMO-ARQ DMD tradeoff of the long-term static-ARQ
channel for any values of the parameters under the
power constraint (3), i.e.,

for block length .
Proof: See Appendix E.

V. SIMULATION RESULTS

In Fig. 6, a comparison of two ARQ ST schemes is presented.
The first is the minimum-delay, CDA-based ARQ ST scheme
presented in this paper, with
where is given by the Golden code [6]. The second
scheme is the IR-LAST scheme [1] with

. In order to ensure fair comparison, we choose the
radius of the bounded distance decoder so that the effective
rates of the CDA-based scheme are no less than those of the
IR-LAST code reported in [1]. The effective rates shown in the
plot are always those of the CDA-based ARQ scheme at each
value of SNR. Also shown for comparison are plots of the co-
herent outage ( , 4 bits/channel use) and the performance
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Fig. 6. Average probability of error of CDA based ARQ ST code: � � � �

� � �, � � �.

of the full-length CDA-based Golden code. As expected, the
ARQ ST-code approaches a rate of 8 bits/channel use at high
SNR corresponding to twice the data rate of the full-length code
while maintaining a comparable error probability.

APPENDIX A
PROOF OF LEMMA 3

Let us assume without loss of generality, that corre-
sponding to message symbol is transmitted in the first round.
Let denote the corresponding received matrix. We define the
following events.

• : event that is included in a sphere of squared
radius centered around the received matrix .
We partition this event into the following two sub-events:
— : Sub-event that the squared Euclidean distance

between the matrix and its closest neighbor
is greater than . In this case, the

bounded distance decoder will decode to the correct
message and will send an ACK.

— : Sub-event corresponding to the complement of
event in . In this case, the receiver may send
either a NACK or an ACK.

• : event that , corresponding to message , is not
included in a sphere of squared radius centered
around the received matrix .

For a given channel realization , the probability of a NACK
being received at the transmitter at the end of the first round is
given by

(27)

where is the minimum squared Euclidean dis-
tance between any two distinct codewords in after mul-
tiplication by the channel matrix . Let be the minimum

eigenvalue of the matrix . Since , we can write the
first term in the preceding expression as

(28)

(29)

(30)

where in writing down (29) we have made use of the fact that
the fading channel is regular. The random variable that
appears in the second term in (27) is a chi-squared random vari-
able in dimensions. Therefore

Note that this term is independent of the channel. By choosing
, we can make this term insignificant in comparison

to , leading to

APPENDIX B
PROOF OF THEOREM 5

The proof makes use of the following lemma from [16]. Given
a complex Hermitian matrix , we will use to denote
the th ordered eigenvalue of the matrix , with the
eigenvalues arranged in increasing order, i.e.,

Lemma 10 [16]: Let be a Hermitian matrix,
be an integer such that , and denote any

-by- principal submatrix of (obtained by deleting
rows and the corresponding columns from ). For each integer

such that , we have

Proof (of Theorem 5): The optimality of will be es-
tablished by showing that it satisfies the Frobenius-norm, D-MG
optimality and error-probability criteria of Theorem 4.

D-MG Optimality Criterion: It is evident from the nature
of construction of the code that this criterion is satisfied.

Frobenius Norm Criterion: Let and let
be the single-round ST code matrix corre-

sponding to i.e., is of the form

for some particular
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Let denote the difference of any two distinct matrices
drawn from and denote the corresponding dif-
ference matrix associated with the single-round ST code. From
the property of CDA-based ST codes given in (20) with

and , we obtain

(31)

We can write

Let be the maximum eigenvalue of . Then,
we have from the energy constraint
on the ST code. Using Lemma 10, we obtain

(32)

By the arithmetic-mean geometric-mean (AM-GM) inequality,
we obtain

since . It follows then that for all
and the Frobenius-norm criterion of Theorem 4 is thus satisfied.

Error-Probability Criterion: It is enough to show from
Theorem 4 that

(33)

From the definition of the bounded distance decoder , it fol-
lows that is the probability of the event that

• is not included in a sphere of squared radius
centered around the received vector ; and

• is the unique matrix included in the sphere for
some erroneous codeword .

Thus, can be upper-bounded by the probability that
was transmitted and the additive noise was such that

is not in the sphere of the corresponding received
matrix (see Fig. 3). We thus have

where is a chi-squared random variable with de-
grees of freedom. Note that this probability applies irrespective
of the particular ST code employed. With as
before, we obtain

(34)

(35)

by choosing a large enough value of . Thus, (33) is satisfied
and the proof is complete.

APPENDIX C
PROOF OF THEOREM 6

Once again, the proof proceeds by verifying the D-MG opti-
mality, Frobenius-norm and error-probability criteria.

D-MG Optimality Criterion: This is once again evident
from the nature of construction of the ST code .

Error-Probability Criterion: This can be proven as in the
proof of Theorem 5 given in Appendix B.

Frobenius Norm Criterion: Note that the base alphabet
under consideration for the scheme is -point .
From (22) it is clear that the number of independent QAM vari-
ables in each codeword matrix is , therefore

as here. Let denote the difference matrix of
any two distinct codewords in . The entries of
lie in which is integral over . As a result, the norm

of a typical entry

in lies in and is hence lower-bounded by , i.e., from
(14) we have

(36)

Note that elementary column operations do not change the SNR
exponent of energy of the ST code matrix. Hence from (19) and
(36), we have

This leads to

From (3) and the fact that every element in either the maximal
subfield or else the extension field of has magnitude
with SNR exponent upper-bounded by that of (see (19))
it follows that the scaling factor

Therefore

Therefore, for all .

APPENDIX D
PROOF OF THEOREM 8

Constructions presented for the case when have ,
as a result of which they are delay optimal. For the case when

, the block length of our construction is . To show
that is the minimum possible delay, let us consider
a ARQ signaling ST code with . Let

denote the difference matrix of any two distinct code-
words from the ST code . If are the nonzero
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eigenvalues of , then the pairwise error probability
(PEP) [20], [21] is given as

(37)

using the arithmetic–geometric mean inequality.
From (3), we have the energy constraint

This in turn implies that

Substituting this value in (37), we obtain

(38)

Since the above lower bound on PEP is independent of ,
using (13) we can lower-bound the average codeword error
probability as

Note that the maximum value that can attain is .
Therefore, is strictly suboptimal on the DMD tradeoff
in the region . Hence, the constructions provided in the
present paper with are of minimum delay.

APPENDIX E
PROOF OF THEOREM 9

We prove the theorem by showing that the sufficient condi-
tions 1), 2), and 3) spelled out in Theorem 2 hold.

Note that under the algorithm adopted for this construction,
the event corresponds to the event that the channel matrix
is in outage for rate and hence we have that

where is the outage exponent of the corresponding
fading channel. Hence, the desired condition 1) is satisfied with

.
We will now show that the codes , all

have the property that when the channel is not in outage for rate
, that the probability of decoding error is negligible,

i.e., is of order for any integer . Given this, it follows
that

This proves the two remaining conditions 2) and 3) as it simul-
taneously shows that the error probability of any intermediate
decoder is less than that of the final decoder (condition 3)) and
that the final decoder is a D-MG optimal code for multiplexing
gain (condition 2)).

A. Error Probability When Not in Outage

We follow the approach in [15] here. We consider the PEP of
the decoder . We have

where, for , we will use to denote the
block-diagonal matrices

. . .

. . .

Here again, while the codes used in the ARQ scheme correspond
to in the range , we extend the definition to include
all in the range as this will be found useful in the
proofs to follow. Let

(39)

(40)

be an ordering of the eigenvalues of , , respec-
tively, and let be defined as before by

Using the mismatched eigenvalue bound [10], [22], we obtain

Let denote the eigenvalues of . Since
the eigenvalues of are a subset of the eigenvalues of

, we assume, without loss of generality, an ordering
of the eigenvalues such that

Then for every , we have
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where

In this derivation we have made use of the fact that the product
of the eigenvalues is equal to the determinant, the nonvanishing
determinant property enunciated in (23), the fact that the eigen-
values of a matrix are upper-bounded by the trace, and (25),
(26). We will now show that if the block-fading channel is not
in outage for rate , that for some , . If
the block-fading channel is not in outage for rate , we
must have

Let be the smallest index of for which . Then
this is equivalent to the condition

By taking the limit as we see as desired, that the prob-
ability of error is negligible in the no-outage region. Clearly,
this property bestows upon the ARQ code constructed here, the
property of being approximately universal.
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