
The Ff -Family of Protocols for RFID-Privacy and Authentication

Erik-Oliver Blass1, Anil Kurmus1, Refik Molva1, Guevara Noubir2, and Abdullatif Shikfa1

1EURECOM, Sophia Antipolis, France and 2Northeastern University, Boston, USA

Abstract. Ff is a family of lightweight and privacy-preserving authentication protocols for RFID-systems.
Contrary to related work, Ff offers user-adjustable authentication and privacy without requiring a complex
cryptographic hash function or non-volatile state on the tag. At the core of Ff is a lightweight keyed hash
function that allows the reader to identify and authenticate a tag by iterative elimination of the entries in
its database through a few rounds of verifications. The security of Ff is analyzed against algebraic and
statistical attacks, attacks based on the LPN technique, and also with respect to recently highlighted SAT-
solving approaches. The feasibility of the scheme is discussed through an estimation of the hardware cost
and of the protocol performance based on a specific instance of the Ff family.

1 Introduction
Di Pietro and Molva [11] introduced a privacy-preserving authentication protocol for RFID tags called
“DPM”. However, the DPM-protocol suffers from some weaknesses: based on an algebraic approach,
an adversary is able to compute 2

3 of the secret key bits shared between reader and tag and also break
the tag’s privacy, cf., Soos [28], van Deursen et al. [31]. Inspired by the DPM-protocol, we propose a
family of new low-cost authentication protocols for RFID tags that provide key secrecy and privacy.
The protocols and underlying keyed-hashing functions are designed to withstand known attacks.
The major contributions of this paper are:

– We propose the new Ff family of protocols which is designed to be secure against algebraic at-
tacks, statistical attacks, LPN attacks [21], and the recently highlighted SAT-solving approach [2].
To reason about Ff ’s security, we present a universal algebraic, linearization attack-framework.

– As oppposed to a common assumption in related work, e.g., [1, 11, 26, 27, 29, 34], Ff does not
rely on complex cryptographic hash functions like SHA-1: Ff itself achieves the purpose of an
extremely lightweight hash function. Similarly, the reader does not need to be able to compute
SHA-1, but can also be resource restricted, e.g., an embedded device. Nevertheless with Ff ,
authentication as well as privacy can be assured with an arbitrary, user-adjustable level of security.

– Contrary to, e.g., [1, 26, 27, 29], Ff does not require the existence of a non-volatile state on tags.
– Finally, the Ff -protocols are complete, i.e., a valid, legitimate tag will always be identified by

the reader as a valid tag – in contrast to, for example HB+ [19] and variants, where this is only
guaranteed within a certain probability.

After introducing our system- and adversary model in Section 2, Section 3 presents an overview
of the Ff -family of privacy-preserving authentication protocols as well as one example instance,
Ff∆

, that we propose. The rest of the paper will argue for the security of Ff and Ff∆
in particular:

Section 4 discusses statistical properties, Section 5 discusses algebraic properties of Ff including
resistance against algebraic attacks, LPN attacks, and SAT-solving attacks.

2 System Model and Assumptions
An RFID-“system” consists of n tags and a single reader. For the sake of simplicity, we call a tag TID,
i.e., TID is the unique name or ID of a tag. Each tag TID shares a different secret, e.g., a key KTID

,
with the reader. The reader stores n different tuples (TID,KTID

) as entries in its database D, n = |D|.
For better comparison, we set n to a typical value, i.e., n = 216 as in [11].

The setup, i.e., the simple application, used in this paper is a reader in front of a closed (and
locked) door. The reader will unlock and open the door, if and only if it can identify a tag TID ∈ D

using a communication protocol. As soon as a tag is within the reader’s wireless communication
range, the reader starts a protocol run with the tag. Here, a protocol run is a single execution of the
protocol, i.e., a pass through one instance of the protocol. During the protocol run, the reader uses its
database D, to finally identify the tag’s ID at the end of the protocol run.

RFID tags are severely restricted in terms of computational resources, cf., EPC Global Gen. 2
Class 1 tags [15]. They feature only a couple of thousands Gate Equivalents (GE) [19, 20], thus the
implementation of complex hash functions like SHA-1 (requiring 10, 641 GE [5]) is impossible. Tags
are read-only and assumed to be passive, without a battery.

As opposed to prior work, we also assume the reader to be resource restricted: in many real world
application scenarios, a reader is neither permanently connected to a high-performance back-end sys-
tem to forward a tag’s reply for authentication to, nor does the reader feature a high-performance CPU.
Instead, we assume the reader to be equipped with a microcontroller-based CPU. So, the reader is not
capable of doing complex computations, e.g., SHA-1 computations, on all elements of its database.
As a result, strong, cryptographic hash functions are not available for RFID protocol design.

2.1 Adversary model
The adversary model in this paper is based on the definitions of Vaudenay [32], referring in par-
ticular to the non-narrow strong adversary. We assume an active, man-in-the-middle-like adversary.
The adversary can not only listen to all wireless communication between reader and tags, but also
block, exchange, or modify ongoing communication. He can also temporarily put a tag into a quality
time [30] phase, by drawing a tag into his possession. During this phase, he can query the tag a finite,
reasonable number of times, i.e., send messages to and receive answers from the tag. Reasonable
means that the adversary cannot exceed more operations than typical “security margins”. For exam-
ple, he can query only � 264 times. He can also send and receive messages to and from the reader a
finite, reasonable number of times.

Theoretically, the adversary might also compromise tags, i.e., read-out their secrets, re-program
them, and even destruct tags. However, we assume tags to be stateless, and in the Ff family of pro-
tocols, tags do not share any keys or secret information, not even partially. Consequently, there is
no gain in compromising or destroying tags for the adversary. In the sequel of this paper, we will
therefore not consider tag compromise or destruction.

2.2 Security Goals
In our RFID-system, we want to provide two security goals: (1) Authentication and (2) Privacy.
Authentication Authentication means that, after execution of the protocol, i.e., one protocol run, the
reader can identify a legitimate tag with certainty. By corollary, authentication means that an intruder
cannot impersonate any legitimate tag at the reader using the protocol. The adversary thus should
succeed only with negligible probability in making the reader authenticate some tag TID ∈ D in
a protocol execution, without that TID takes part in this protocol execution. This can be called the
soundness of authentication [10]. Similar, completeness means that if some tag TID ∈ D takes part in
a protocol run with the reader, and the adversary does not modify or block the tag’s message to the
reader, the reader should never reject this tag, i.e., always open the door for a valid tag.
Privacy While authentication aims at assuring the security of tag identification, privacy focuses on
hiding the identity of tags from the adversary. Generally, a passively eavesdropping adversary or an
active adversary exchanging messages with a tag should not be able to identify it. It must not be able
to find out the ID TID of any legitimate tag. Furthermore, the adversary must not be able to trace or
link tags: if the adversary eavesdrops communication or exchanges messages with any two tags TID

and TID′ on two different occasions, he must not be able to tell whether TID = TID′ .

3 A Family of Privacy-Preserving RFID Authentication Protocols
The scope of this paper is a family of RFID protocols that allow for the identification of tags by
readers in a privacy-preserving manner. The basic idea behind the family or framework of protocols
we focus on is described in the following. (1) A tag TID provides the reader with a series of one-way
results computed over its key KTID

. (2) The reader compares these one-way results with the entries
of its database D: using the key included in each entry, the reader identifies the entry in its database
whose series of one-way results matches all the one-way results received by the tag.

The reason for such a setup is to keep the complexity for tag and reader low while still trying
to make the reader quickly “converge” to a single entry in its database. Instead of one pass through
the whole database D with a very expensive hash function, our scheme is based on multiple passes
(“rounds”) on a database of decreasing size with a lightweight hash function.

N

R1, w1= F(R1, N, KTID
), R2, w2= F(R2, N, KTID

), Rq, wq= F(Rq, N, KTID
)

Tag TID

 KTID

Reader
D

for i=1 to q

 for each entry K’ in D

 if F(Rj, N, K’) ! wi
 then eliminate K’ in D

 endfor

endfor

Return the remaining entry of D

(a) Round-based tag identification

t Bits

… …

… … …

f f

…

f …

…

…

F

lt Bits

t Bits

t Bits

K=

R=

r
1

r
2 r

l

k
1

k
2 k

l

(b) Computation of Ff (K, R)

Fig. 1. Ff protocol scheme

3.1 Overview: Round-Based Identification
Figure 1(a) depicts a typical message flow based on this protocol framework. In the first protocol
message, the reader transmits the random challenge N as required for replay protection. In the
second message, the tag TID replies with q pairs (Ri,wi) whereby (Ri) is a random number and
wi := F (Ri, N, KTID

) is the result of a one-way function computed over Ri, N , and the tag’s secret
identification key KTID

. We call each pair (Ri, wi = F (Ri, N, KTID
)) a round in this context. In

order to identify the tag, the reader computes w′
i := F (Ri, N, K ′) using the identification key K ′

of tag T ′ included in each tag’s entry of its database. The entry (T ′,K ′) in D for which the received
values wi and the one computed by the reader w′

i matches for 1 ≤ i ≤ q yields the tag’s identity.
As it is the core of this family of protocols, function F has to fulfill some critical requirements:
1.) Efficiency: F must be less complex than a strong hash function, because if F were comparable

to a hash function, there would not be an advantage over simple hash-based authentication protocols.
2.) Security and Privacy: even though F discloses some information about the secret key of

the tag as all one-way hash functions do, retrieving the key and doing impersonation (authenticity),
identifying a tag, or guessing the link between two different protocol runs (privacy) with the same tag
should be practically infeasible.

3.) Identification Rate: the received value of F and the one computed by the reader should be
different with a non-negligible probability for the entries in the reader’s database that do not match
the tag; in other words: if KTID

6= K ′, then F (Ri, N, KTID
) 6= F (Ri, N, K ′) with a non-negligible

probability. Ideally, this probability should be close to 50% to give good identification rate and to

protect the privacy of tags. If two tags reply to one query with the same outputs or different outputs
in half of the cases, the adversary does not gain any information whether the tags are the same or not.

3.2 The Ff Protocol Family
Referring to the above overview on round-based identification, we now present Ff in more detail.
With Ff , reader and tag TID share not only one key KTID

, but also a second key K ′
TID

. Consequently,
the reader stores tuples (TID, {KTID

,K ′
TID
}) in its database D. (Parameters {d, l, t}mentioned below

are system security parameters and will be discussed later.)

1. Each protocol run, i.e., single execution of the protocol, starts with the reader sending a nonce.
Reader → Tag: N0 ∈ GF (2lt)

2. The tag (TID) replies with a single message that is split into q rounds as follows:
Tag → Reader:
1. (R1

1, R
2
1, . . . , R

d
1),

Ff (KTID
, Ra1

1) + Ff (K ′
TID

, N1)
2. (R1

2, R
2
2, . . . , R

d
2),

Ff (KTID
, Ra2

2) + Ff (K ′
TID

, N2)
· · ·

q. (R1
q , R

2
q , . . . , R

d
q),

Ff (KTID
, R

aq
q) + Ff (K ′

TID
, Nq),

with Rv
u, Nu,KTID

,K ′
TID

∈ GF (2lt), ai ∈ {1 . . . d}, q ∈ IN, Ff : GF (2lt)×GF (2lt) → GF (2t).
In every round i, ai is chosen randomly by the tag. So, TID sends in each round i, 1 ≤ i ≤ q, not

only one random value Ri, but each time d random values R1
i , . . . , R

d
i . Also per round, TID randomly

selects one of these values, Rai
i , 1 ≤ ai ≤ d and sends Ff (KTID

, Rai
i) + Ff (K ′

TID
, Ni) along with

the random values to the reader. So you can see that in the Ff protocol family, wi = F (Ri, N, KTID
)

of Fig. 1(a) is split into wi = Ff (KTID
, Rai

i) + Ff (K ′
TID

, Ni), and Ri of Fig. 1(a) is split into
(R1

i , . . . , R
d
i).

Reader-Side Identification of a Tag After sending N0, the reader receives a message from TID

containing q tuples ((R1
i , . . . , Rd

i), wi). Using these tuples, the reader “strikes out” keys in D to
eventually reduce D to one single key, similar to Fig. 1(a). For each i, 1 ≤ i ≤ q, the reader verifies
all remaining keys as follows: for the jth remaining entry (Tj , {KTj ,K

′
Tj
}) ∈ D, he computes the

equations:
Ff (KTj , R

1
i) + F (K ′

Tj
, Ni)

?= wi

Ff (KTj , R
2
i) + F (K ′

Tj
, Ni)

?= wi

· · ·
Ff (KTj , R

d
i) + F (K ′

Tj
, Ni)

?= wi

If and only if all of the above equations are invalid, the entry (Tj , {KTj , K ′
Tj
}) is removed from

D and the reader continues with the next round i + 1 and the reduced database. The idea is that after
q-rounds, there will be only 1 tag remaining in D. We call this kind of identification of a single tag
converging to a single entry. You can already see that Ff provides completeness: for data sent from a
valid tag, at least one equation will always hold. Therefore, a valid tag will never be removed from D
and never be rejected from the reader.

The reason behind not simply sending wi = Ff (KTID
, Rai

i), but instad wi = Ff (KTID
, Rai

i)+
Ff (K ′

TID
, Ni) to the reader during round i is to protect against replay attacks – the tag’s reply depends

on the initial nonce N0 sent by the reader. In Ff , we derive all Ni from N0 as explained in the sequel.

Using a PRNG Sending (R1
i , . . . , R

d
i) to the reader in every round i will generally give an adversary

the opportunity to mount chosen-plaintext-attacks on the tag’s key by modifying the message sent by
the tag. Also, as a tag is in communication range only for a limited time, the amount of data that can
be transferred is limited. Depending on system parameters q, d, l, t, this limit might be exceeded such
that the tag can not authenticate itself. To overcome both problems, we therefore derive subsequent
Rj

i from previous Rj
i using a pseudo-random-number-generator PRNG. More formally, we compute:

Rj
i := PRNG(Rj−1

i), if j > 1, and R1
i := PRNG(Rd

i−1). Now, the tag only needs to draw and send
one single (real) random number, Rd

0, to the reader. This reduces the opportunity for the adversary to
precisely modify subsequent Rs, as he is able to choose only the first random Rd

0. Also, data volume
that is wirelessly sent to the reader shrinks from (qd) · |R| bits to |R| bits. Still within the protocol, the
tag computes all pseudo-random numbers Rj

i , 1 ≤ j ≤ d for each round i and then (really) randomly,
i.e., indeterministically, chooses one ai and computes wi := Ff (K, Rai

i) + F (K ′, Ni).
In conclusion, the second protocol message, TID’s reply, looks as follows: (Rd

0, w1, w2, . . . , wq).
Using received Rd

0 and PRNG, the reader can also compute the subsequent pseudo-random numbers.
Note: We do not care about the secrecy or predictability of the internal state of PRNG, but

only require (pseudo-)random properties for the Rs for statistical purposes as discussed in the next
sections. Therefore, we can safely use a cheap LFSR to derive R with “good enough randomness”.
Both, the tag and the reader will use Rd

0 as the seed, the first internal state of the LFSR and derive
subsequent Rj

i from it.
The above also holds for the Ni required for replay-protection: Ni+1 := PRNG(Ni), with the

original N0 received from the reader. This also protects against chosen-plaintext attacks where the
adversary would choose subsequent N .

Relation between Ff and f Furthermore in our family of protocols, Ff is made of small fan-in
functions f , f : GF (2t)×GF (2t) → GF (2t), as follows: Ff (K, R) =

∑l
i=1 f(ki, ri).

Here, “+” equals the XOR “⊕”. Generally, keys K and random nonces R (or N) are each of size
(l · t) bits. Throughout this paper, we will group subsequent bits of a key or nonce into l so called
symbols: K = (k1, . . . , kl), R = (r1, . . . , rl). Each of the l symbols consists of t bits. By writing ki,j

or ri,j , we denote the jth bit of the ith key symbol or random symbol, respectively. These relations
are shown in Fig. 1(b). For the security and privacy reasoning in the following sections, let us also not
consider Ff (K, Rai

i) + Ff (K ′, Ni) in each round, but focus only on Ff (K, Rai
i). For the discussion

on statistical and algebraic properties of Ff and its strength against attacks, this is sufficient.

3.3 Implementation Proposal: Ff∆

One suitable instance of the f function could be f∆(ki, ri) as proposed in the following. System
parameters are d = 8, t = 4, l = 64, q = 60, and the LFSR for PRNG has an internal state of σ = 64
bits. The exchanged N0 and Rd

0 will be used as the LFSR’s initial internal state. So, f∆ works on
inputs ki, ri ∈ GF (24) and outputs an element in GF (24), f∆ : GF (24)×GF (24) → GF (24). The
output of f∆ is represented as 4 output bits, i.e., f∆(ki, ri) = {f∆1 , f∆2 , f∆3 , f∆4}. These output
bits are separately defined as follows:

f∆1(ki, ri) := ri,1ki,1 + ri,2ki,2 + ri,3ki,3 + ri,4ki,4 + ri,1ri,2ki,1ki,2

+ri,2ri,3ki,2ki,3 + ri,3ri,4ki,3ki,4

f∆2(ki, ri) := ri,4ki,1 + ri,1ki,2 + ri,2ki,3 + ri,3ki,4 + ri,1ri,3ki,1ki,3

+ri,2ri,4ki,2ki,4 + ri,1ri,4ki,1ki,4

f∆3(ki, ri) := ri,3ki,1 + ri,4ki,2 + ri,1ki,3 + ri,2ki,4 + ri,1ri,2ki,1ki,4

+ri,2ri,3ki,2ki,4 + ri,3ri,4ki,1ki,3

f∆4(ki, ri) := ri,2ki,1 + ri,3ki,2 + ri,4ki,3 + ri,1ki,4 + ri,1ri,3ki,3ki,4

+ri,2ri,4ki,2ki,3 + ri,1ri,4ki,1ki,2

We choose f∆ to be non-linear in both, the bits of the key symbol and the bits of the random
symbol, and to hold all other required security properties as discussed in Sections 4 and 5. Also, com-
putation of f∆(ki, ri) can be implemented quite efficiently: per output bit of f∆, 13 multiplications
in GF (2) (boolean AND) and 6 additions (boolean XOR) are required. Using figures as stated in [3],
one output bit can be implemented in 34.5 GE, so f∆ can be implemented using a total of 138 GE. To
compute Ff∆

out of the outputs of f∆, we need a 4 bit register to store temporary data, which comes
in at 48 GE. The LFSR with σ = 64 bits of state requires 768 GE. We can get along with only one
LFSR to derive the Rs and Ns, if we use the LFSR alternately. Therefore, we have to store both, the
current Rd

i and Ni, 1 ≤ i ≤ q of round i, in RAM. So, a total of 128 bits of RAM, i.e., 192 GE are
required for this. Finally, K and K ′ need to be wired to f∆, which uses a total of 512 GE.

The above sums up to a total of 1, 658 GE. This is far less than current implementations of strong
hash functions alone, e.g., SHA-1 with already ≈ 10, 000 [5], not even taking storage of the secret
key into account. We clearly confirm that our computation of Ff∆

with 1, 658 GE is naive, because
one typically needs some kind of “multiplexing” logic around Ff∆

, but we estimate the total gate
count to be≈ 2, 000 for Ff∆

. In conclusion, the implementation of Ff∆
is perfectly feasible with low

cost RFID tags using current technology.
With an assumed data rate of ≈ 70 Kbps [12] between and EPC-class tag and a reader, the tag

can send up to 70 kbit to the reader if it is in the reader’s distance for ≈ 1 second. The tag’s message
to the reader consists of Rd

0 and w1, . . . , wq. With σ = 64, |Rd
0| = 64 bit, and q · t = 240 bit are

required for the wi. In total, the tag needs to send 304 bit to the reader which, in conclusion, should
be feasible for today’s RFID communication.

The rest of this paper will argue for Ff∆
’s security. To improve readability, we moved all mathe-

matical proofs to Appendix 8.

4 Statistical Properties of Ff

In this section, we discuss the required properties of “low-cost” or “low-complexity” hash functions
Ff to prevent classical statistical attacks and to prevent the formation of key equivalence classes, i.e.,
we discuss key in-distinguishability and balanced output.

Key Equivalence Two keys are said to be equivalent, if they can never be distinguished when hashed
with any random input. To guarantee that an RFID tag can be uniquely identified and cannot be
impersonated with any other tag, it is important to guarantee the non-existence of equivalence classes
of keys with respect to Ff .

Theorem 1. A hashing function Ff has no indistinguishable keys (no equivalent keys) if the underly-
ing t bit elementary hashing function f satisfies conditions (1). More formally stated:

∀ki 6= kj ∈ GF (2t)
∃h1, h2 ∈ GF (2t), h1 6= h2

∃r ∈ GF (2t) s.t. f(ki, r) + f(kj , r) = h1

∃r′ ∈ GF (2t) s.t. f(ki, r
′) + f(kj , r

′) = h2

 (1)

⇒

∀K 6= K ′ ∈ GF (2lt)∃R ∈ GF (2lt) s.t.
F (K, R) 6= F (K ′, R)

See Appendix 8 for the proof.
The f∆-function holds the property above. Consider any two key symbols k 6= k′ ∈ GF (24) of

larger keys K 6= K ′, then we will show that there exists at least one pair of random numbers r, r′ such
that f∆(k, r)+f∆(k′, r) = h1, f∆(k, r′)+f∆(k′, r′) = h2, and h1 6= h2. If k 6= k′, then they differ in
at least one bit, i.e., the ith bit. Consider r to be r := (0, 0, 0, 0), all bits of r are zero. Looking only at
the ith output bit f∆i the following equation holds, f∆i(k, r)+f∆i(k

′, r) = h1i = 0. The ith bit of h1

is 0. Consider r′ to be r′1 := 1, r′j := 0, j 6= 1, so the first bit of r′ is 1, the rest is 0. Looking only at the
ith output bit f∆i the following equation holds, f∆i(k, r′) + f∆i(k

′, r′) = h2i = ki + k′i = 1 6= h1i .
So, h1 6= h2. In conclusion, there are no equivalent keys in Ff∆

.

Probability of (In-)Distinguishability It is quite important that the probability for which two differ-
ent keys can be distinguished from each other with any R is close to 50%: on the one hand, this helps
the reader to identify a tag in its database much more quickly. On the other hand, it is important to
have Ff produce the same output for two different keys with 50% for each R, to protect tags’ privacy:
the adversary must not be able to distinguish between two tags. Let fi denote the restriction of f to
its ith output bit (1 ≤ i ≤ t), HD denotes the Hamming distance.

Theorem 2. The set of random values for which two keys are indistinguishable is bounded as follows.

∃δ ∈ [0, 1
2)∀k 6= k′ ∈ GF (2t)

1
2 − δ ≤ Pr[f1≤i≤t(k, r) 6= f1≤i≤t(k′, r)] ≤ 1

2 + δ
⇒

∀K 6= K ′ ∈ GF (2lt)
1
2 − (2δ)t·HD(K,K′) ≤ Pr[F (K, R) 6= F (K ′, R)] ≤ 1

2 + (2δ)t·HD(K,K′)

See Appendix 8 for the proof.
In conclusion, this means that with a sufficient key-length, the probability of Ff to have a different

output between two keys or not is bound to 50% for any R, regardless of f . This allows the reader to
eventually distinguish between two tags and “converge” during its identification process to a single
tag, providing completeness.

Function f∆ holds the left hand side of the implication in Theorem 2: looking at each output bit
i, we computed the bias of output f∆i over all 16 possible inputs to be ≤ 25%. So, δ = 0.25. In Ff∆

,
with two completely random keys K, K ′, each of size lt = 256 bit, t = 4, the term (2δ)t·HD(K,K′)

becomes negligible small, 2−512, so Pr[F (K, R) 6= F (K ′, R)] is very close to 50%.

Balanced Output Balanced output is an important statistical property that Ff needs to satisfy. Even
a slight imbalance or bias in the output allows an adversary to characterize a tag based on the prob-
ability distribution of it’s output. A tag can be characterized by pi, 1 ≤ i ≤ t, i.e., the probability of
outputting value 1 (or 0) at output bit i. A secure function Ff should have equal values of pi = 1

2 .
The family of Ff that we are considering converges towards a balanced output as the key length is
increased. Similar to Yao’s XOR-Lemma [18], if the underlying f provides sufficient balance for
each of the bits, XORing over a large number of f outputs allows the bias to converge exponentially
to 0. So, to insure output balance with high probability, we give the following sufficient condition
that should hold for a non-negligible fraction of the key symbols ki: for a given key symbol ki, the
dimension of the vector space spanned by the elements {f(ki, r)|r ∈ GF (2t)}, is equal to t.

For f∆, consider the 4 key symbols ki, k1 = (1, 0, 0, 0), k2 = (0, 1, 0, 0), k3 = (0, 0, 1, 0),
k4 = (0, 0, 0, 1) – they make of 25% of all key symbols. We construct the 4 random symbols
r′ki

, r′′ki
, r′′′ki

, r′′′′ki
: with r′ki

, all bits are 0, and the ith bit is 1. With r′′ki
, all bits are 0, and the (ith − 1)

mod 4 bit is 1. With r′′′ki
, all bits are 0, and the (ith − 2) mod 4 bit is 1. With r′′′′ki

, all bits are 0, and
the (ith − 3) mod 4 bit is 1. Consequently, {f∆(ki, r

′
ki

), f∆(ki, r
′′
ki

), f∆(ki, r
′′′
ki

), f∆(ki, r
′′′′
ki

)} gives,
{(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)} , a basis spanning a t = 4-dimensional vector-space.
With l = 64, Ff∆

’s output is balanced.
As the random R are chosen by the tag, indistinguishability and balanced output provide privacy

against statistical attacks: the adversary cannot statistically distinguish or characterize any two tags.

Convergence-Rate and Anti-Impersonation Security A mandatory property of Ff should be to
allow the reader to converge to a single key in his database quickly, generally accept valid tags (com-
pleteness), but still prevent an adversary to do an impersonation attack.

As shown before, the output of Ff is balanced. So, for each tuple of random numbers R1
i , . . . , R

d
i

and hash output Ff (K, Rai
i) that is sent during each of the q rounds of the protocol from the tag, the

probability that a key K ′ 6= K in the reader’s database D is removed is: Premove(t, d) := (2t−1
2t)d.

With the original size of the database n = |D|, the number of invalid keys K ′ 6= K that are still
valid after q rounds shrinks to n′, i.e., every invalid key is still valid with (1 − Premove(t, d))q. So,
n′ = (n−1) ·(1−Premove(t, d))q and therewith n′ = (n−1) ·(1−(1− 1

2t)d)q. With Ff∆
, n = 216 as

in [11], n′ ≈ 2−60, so all invalid keys have been removed after q = 60 rounds. Note that with the Ff

protocols a valid tag sending data to the reader will never be removed from D. Thus, Ff is complete.
The adversary might try to randomly impersonate at least one tag, e.g., to open a door, by ran-

domly impersonating any valid key in the database. The probability that he successfully imperson-
ates, Psuccess(t, d, q, n), can be computed by using the probability Pinvalid(t, d, q) that one key in D is
not valid after q rounds of sending random data, i.e., it fails on at least one round: Pinvalid(t, d, q) :=
1−(1−Premove(t, d))q = 1−(1−(1− 1

2t)d)q, and finally Psuccess(t, d, q, n) := 1−Pinvalid(t, d, q)n.
With Ff∆

, Psuccess ≈ 2−64, so statistical impersonation is unlikely.

5 Algebraic Properties of Ff

In this section, we present a framework for algebraic reasoning about the Ff family of protocols. We
use this to show why the Ff -family can withstand typical algebraic linearization attacks.

First, we show that any t bit output keyed-hashing function f can be linearized using a potentially
larger, linearized key. A careful analysis of the dimension of the vector space generated with the
coefficients of the linearized form allows a compaction of the key. This result can be generalized
to the larger class of Ff keyed-hashing functions. Therefore, any instance of Ff is equivalent to an
inner-product of a random-vector and a key-vector each of at most l symbols length.

Key Linearization and “Expansion-Compaction” Small fan-in keyed hash functions can be ex-
panded-compacted, i.e., first expanded into a linearized expression and then compacted in a smaller
expression that captures all security properties of the original keyed hash function.

Theorem 3. Let Ff (K, R) be a t bit keyed-hashing function (GF (2t)×GF (2t))l → GF (2t) defined
as Ff (K, R) =

∑l
i=1 f(ki, ri) where f : GF (2t)×GF (2t) → GF (2t), and K = (k1, . . . , kl), R =

(r1, . . . , rl) ∈ (GF (2t))l. Ff (K, R) can be linearized into:

1. Ff (K, R) =
∑L

j=1 ERjEKj where L = ls or L = l(s − 1) + 1, s < 2t, ERj = u(rj) ∈
GF (2t), EKj = v(kj) ∈ GF (2t),

2. the vectors (ER1, . . . , ERL) generate a vector space of dimension L,
3. it is sufficient for an adversary to know the expanded key (EK1, . . . , EKL) to compute Ff (K, R).

See Appendix 8 for the proof.
(EK1, . . . , EKL) is called the expanded-compacted key of a tag’s original secret key K.
By its design, looking at and expanding-compacting any output bit f∆i adds three new monomials

per key symbol which results in s = 4 + 3 = 7 and L = l · s = 448.

Algebraic attacks on Ff authentication protocols As of Theorem 3, we now can (without loss of
generality) focus on linearized Ff functions, i.e., any function can be rewritten as the dot product
K ·R, Ff (K, R) = K ·R, with K, R ∈ GF (2Lt). Let K, R be to such vectors of L symbols of t bits
each. K denotes a key and R a random input. (K · R) ∈ GF (2t) denotes the dot product. Algebraic
attacks now work as follows: an adversary eavesdropping to communication can derive the following
type and only the following type of equations, because we are operating in a finite field:

(K ·R1
1 − w1) · (K ·R2

1 − w1) · · · (K ·Rd
1 − w1) = 0

(K ·R1
2 − w2) · (K ·R2

2 − w2) · · · (K ·Rd
2 − w2) = 0

...
...

(K ·R1
q − wq) · (K ·R2

q − wq) · · · (K ·Rd
q − wq) = 0

(2)

(Note that listening to more than one protocol run or by initiating communication with the tag
multiple times, the adversary can get more than q rounds of output and derive more than q equations.)

Generally, the adversary can compute K by solving this system of equations. However, we will
now show that with a careful choice of L, t, d solving this system of equations becomes computation-
ally infeasible. Each equation of system (2) can be expanded in a sum of monomials of degree at most
d. Each equation in round i can be rewritten as:

∑
1≤j≤d

1≤c1≤c2≤···≤cj≤l
Ci,c1c2···cjkc1kc2 · · · kcj = (wi)d

The adversary linearizes monomials of degree > 1, by substituting each with a new variable, i.e.,
a new monomial of degree 1. We now call Γ the matrix of coefficients Ci,c∗ , and W is the vector
of (wi)d. Ordering the linearized monomials according to a lexicographic order and renaming their
vector as Y , we obtain the following equation: Γ · Y = W

To get the key bits K, the adversary computes Y by inverting matrix Γ . The complexity of in-
version depends on the number of (linearized) monomials. Theorem 4 bounds the total number of
possible monomials U . U represents the number of columns (unknowns) in matrix Γ .
Theorem 4.

d∑
j=1

(
L

j

)
≤ U ≤

d∑
j=1

(
L + j − 1

j

)
(3)

See Appendix 8 for the proof.

Corollary 1. As long as d ≤ L/2, U increases exponentially with d. Therefore, an adversary needs
an exponential number (in d) of equations and spends an exponential computational effort to compute
the tag’s key.
See Appendix 8 for the proof.

Applying parameters of Ff∆
, l = 448, d = 8, results in a system of linear equations with U ≥ 255

and around 2132 computational complexity for matrix inversion (≈ O(U2.4)) and rank computation.
Ff∆

therefore has 132 bits of security against impersonation through matrix inversion as well as
privacy attacks through rank computation (as that could allow an attacker to decide if two sets of

equations are from the same tag). So, Ff∆
is safe against algebraic attacks. While there might be op-

timizations to such algebraic attacks, we believe they will not improve the computational complexity
by a significant amount.

Learning Parity with Noise (LPN) The adversary might look at each of the t output bits of Ff ,
generate a Learning Parity with Noise Problem [19], and then use an efficient method to compute
key bits: sending d random numbers R and one output(-bit) Ff (K, Rai

i) on one of these Rs in each
round is similar to sending Rs as well as output bits that are randomly flipped with a certain bias.
Yet, we are convinced that by carefully choosing an appropriate key size (lt) and picking a non-linear
function f such as f∆ will make attacks as in Levieil and Fouque [21] infeasible for the following

reason: generally, the time- and memory complexity of these attacks rise with 2O(
|K|

log |K|), |K| being
the key size. However to apply LPN-based attacks, the adversary will have to linearize a non-linear f
first. This will introduce new monomials such that the key size “virtually” increases – in the case of
Ff , if you rewrite a non-linear f as a linear one, f(k, r) =

∑s
j=1 uj(r)vj(k), as shown above, key

size |K| will become |K| = l · s, s < 2t. Given a non-linear f , this key size can become much higher
than |K| = (lt), which makes LPN-attacks infeasible.

With Ff∆
, the LPN-bias is ε = 1− (1

d + 1
2

d−1
8) ≈ 44%. Linearization of f∆ will introduce 3 new

monomials per key symbol, such that |K| rises to 64 · (4 + 3) = 448 bits. This will result in a time-
and memory complexity between � 266 and � 2130, cf., Levieil and Fouque [21]. So, Ff∆

is secure
against LPN attacks.

SAT-Solving Recently, a lot of attention has been drawn to the use of SAT-solvers in cryptography [2,
7–9, 13, 14, 22–25]. Therefore, we also attacked Ff∆

using the SAT-solver MiniSat [16]. Due to space
restrictions, we only present a summary of our findings, refer to the technical report [4] for full details.
The basic idea of using a SAT-solver is to convert the equations an adversary can set up to Conjunctive
Normal Form (CNF) and then use a SAT-solver to solve the CNF. We carefully implemented the attack
by means of above publications and used the following parameters for best performance results. For
a detailed explanation refer to Bard et al. [2], Eibach et al. [13, 14], McDonald et al. [23, 24]. The
optimal grouping threshold was 77%, cutting number was 4, shuffling number was 16, we overdefined
the system of equations by twice the number of unknowns.

In conclusion, MiniSat was unable to compute any key bits: already with a key size of 24 bits,
MiniSat did not stop in any “reasonable” amount of time (2 hours) on an Intel Xeon at 1.87GHz.
We infer from this that SAT-solving appears not to be appropriate for computing keys of HMAC-like
systems where the system of equations is very dense, as already mentioned by Bard et al. [2]. With
Ff∆

, due to its balanced output, sparsity/density is around β ≈ 50%. For the same reason, guessing
variables did not improve performance. In conclusion, Ff∆

is secure against SAT-solving attacks.

6 Related Work
Many recently proposed solutions for RFID-authentication and -privacy require usage of a strong, but
expensive cryptographic hash function on the tag. Also, most of these protocols have been shown to
be insecure or leak privacy.

For example in [29], the tag just sends the HMAC of the reader’s challenge, keyed with the
pairwise secret key, back to the reader. To protect against replay attacks, challenges need to be of
ascending order, otherwise the tag rejects the challenge. So in addition to an HMAC, a non-volatile
state is required on the tag which, in many scenarios, might not be feasible or simply too expensive
for a tag. This protocol is also prone against DoS-attacks and has been shown to leak privacy, see [20].

The protocol of [34] uses a strong and expensive hash function and an HMAC-like computation
for identification of a tag. This, however, does not protect against replay attacks from the adversary:
as there is no nonce from the reader involved in the protocol, an adversary receives always the same
response on subsequent interactions with the same tag. This helps the adversary to identify a single
tag breaking privacy, cf., [26].

Using a tree-based setup, [26] distributes O(log n) secret keys to each tag. This authentication
with O(log n) complexity, i.e., “walking down” the tree of secrets until one tag is uniquely defined.
Yet, besides requiring a complex hash function, the amount of memory required on a tag for this
scheme might be infeasible in many scenarios. Also, privacy of this scheme is weak, as shown in
[1]. Finally in contrast to Ff this scheme is not secure against tag compromise, as tags share some
of the secrets of other tags. To overcome these weaknesses, [1] proposes the OSK/AO protocol using
hash-chains, an idea originally proposed in [27]. Yet, OSK/AO is also known to leak privacy, cf., [20],
requires an expensive hash function and a state on the tag.

With the HB+ protocol of [19], the tag XORs a biased “noise-bit” to the response before sending
the response to the reader. The reader can then compute the tag’s original response by solving the
Learning Parity with Noise (LPN) problem. Yet, this scheme and also many variants are known to
be insecure or leak privacy, cf., [17, 21]. Also note that with HB+ and all variants based on LPN-
schemes [33], there will always be a potentially non-negligible probability that a valid tag gets rejected
by the reader – HB+ is not complete.

7 Conclusion
This paper presented the Ff family of privacy-preserving authentication protocols. Ff uses a simple,
round-based setup, where the tags send the results of evaluating random numbers using small fan-
in functions to the reader. The main advantage of Ff is its extreme low cost: compared to related
work, it does not require a cryptographically strong, expensive hash function. One sample instance
Ff∆

can be implemented on a tag using less than 2, 000 gates, yet offering 64 bit security against
statistical impersonation attacks, � 66 bit against LPN, and 132 bit against algebraic attacks. Also,
experiments indicate that SAT-solving attacks are computationally infeasible. Generally, Ff offers
arbitrary, user-adjustable levels of soundness and identification rate, and even completeness.

Acknowledgments: The authors wish to thank Olivier Billet for pointing at and discussing Learn-
ing Parity with Noise attacks.

References

[1] G. Avoine, E. Dysli, and P. Oechslin. Reducing time complexity in rfid systems. In Proceedings of Selected Areas in
Cryptography, pages 291–306, Kingston, Canada, 2005. ISBN 978-3-540-33108-7.

[2] G.V. Bard, N.T. Courtois, and C. Jefferson. Efficient methods for conversion and solution of sparse systems of low-
degree multivariate polynomials over gf(2) via sat-solvers. In ECRYPT workshop on Tools for Cryptanalysis, Krakow,
Poland, 2007. http://eprint.iacr.org/2007/024/.

[3] L. Batina, J. Lano, N. Mentens, B. Preneel, I. Verbauwhede, and S.B. Oers. Energy, performance, area versus security
trade-offs for stream ciphers. In Proceedings of ECRYPT Workshop, SASC – The State of the Art of Stream Ciphers,
pages 302–310, Brugge, Belgium, 2004.

[4] E.-O. Blass, A. Kurmus, Refik Molva, Guevara Noubir, and Abdullatif Shikfa. The Ff -family of protocols for rfid-
privacy and authentication. Cryptology ePrint Archive, Report 2008/476, 2008. http://eprint.iacr.org/
2008/476.pdf.

[5] Y. Choi, M. Kim, T. Kim, and H. Kim. Low power implementation of sha-1 algorithm for rfid system. In Proceedings
of Tenth International Symposium on Consumer Electronics, pages 1–5, St. Petersburg, Russia, 2006. ISBN 1-4244-
0216-6.

[6] Colin Cooper. On the rank of random matrices. Random Structures and Algorithms, 16(2):209–232, 2000. ISSN
1042-9832.

[7] N.T. Courtois and G.V. Bard. Algebraic cryptanalysis of the data encryption standard. In Lecture Notes in Computer
Science, Cryptography and Coding, pages 152–169, 2007. ISBN 978-3-540-77271-2.

[8] N.T. Courtois, G.V. Bard, and David Wagner. Algebraic and slide attacks on keeloq. In Fast Software Encryption,
Luxembourg City, Luxembourg, 2008. http://eprint.iacr.org/2007/062.

[9] N.T. Courtois, K. Nohl, and S. O’Neil. Algebraic attacks on the crypto-1 stream cipher in mifare classic and oyster
cards, 2008. http://eprint.iacr.org/2008/166.pdf.

[10] I. Damgård and M. Østergaard. Rfid security: Tradeoffs between security and efficiency. In Proceedings of RSA
Conference, pages 318–332, San Francisco, USA, 2006. http://eprint.iacr.org/2006/234.pdf.

[11] R. Di Pietro and R. Molva. Information confinement, privacy, and security in rfid systems. In Lecture Notes in
Computer Science, Volume 4734, pages 187–202, 2007. ISBN 978-3-540-74834-2.

[12] D.M. Dobkin. The RF in Rfid: Passive UHF Rfid in Practice: Passive UHF RFID in Practice. Elsevier, 2007. ISBN
0750682094.

[13] T. Eibach, E. Pilz, and S. Steck. Comparing and optomising two generic attacks on bivium. SASC 2008 – The State
of the Art of Stream Ciphers, 2008. http://www.ecrypt.eu.org/stvl/sasc2008/SASCRecord.zip.

[14] T. Eibach, E. Pilz, and G. Vlkel. Attacking bivium using sat solvers. In International Conference on Theory and
Applications of Satisfiability Testing, SAT 2008, pages 63–76, Guangzhou, China, 2008. ISBN 978-3-540-79718-0.

[15] EPCglobal. Epcglobal standards and technology, 2008. http://www.epcglobalinc.org/standards/.
[16] N. En and N. Srensson. An extensible sat-solver. In Proceedings of Theory and Applications of Satisfiability Testing,

pages 502–518, Santa Margherita Ligure, Italy, 2004. ISBN 978-3-540-20851-8.
[17] H. Gilbert, M. Robshaw, and H. Sibert. Active attack against hb+: a provably secure lightweight authentication

protocol. IEE Electronic Letters, 41(21):1169–1170, 2005. ISSN 0013-5194.
[18] O. Goldreich, N. Nisan, and A. Wigderson. On yao’s xor-lemma. Technical report, Electronic Colloquium on Com-

putational Complexity, 1995. TR95–050, http://www.wisdom.weizmann.ac.il/∼oded/PS/yao.ps.
[19] A. Juels and S. Weis. Authenticating pervasive devices with human protocols. In Proceedings of Annual International

Cryptography Conference, pages 293–308, Santa Barbara, USA, 2005. ISBN 3-540-28114-2.
[20] A. Juels and S.A. Weis. Defining strong privacy for rfid. In PerCom Workshops, pages 342–347, White Plains, USA,

2007. ISBN 978-0-7695-2788-8.
[21] E. Levieil and P.-A. Fouque. An improved lpn algorithm. In Proceedings of Conference on Security and cryptography

for networks, pages 348–359, Maiori, Italy, 2006. ISBN 3-540-38080-9.
[22] F. Massacci. Using walk-sat and rel-sat for cryptographic key search. In Proceedings of the Sixteenth International

Joint Conference on Artificial Intelligence, pages 290–295, 1999. ISBN 1-55860-613-0.
[23] C. McDonald, C. Charnes, and J. Pieprzyk. Attacking bivium with minisat, 2007. http://www.ecrypt.eu.

org/stream/papersdir/2007/040.pdf.
[24] C. McDonald, C. Charnes, and J. Pieprzyk. An algebraic analysis of trivium ciphers based on the boolean satisfiability

problem, 2007. http://eprint.iacr.org/2007/129.
[25] I. Mironov and L. Zhang. Applications of sat solvers to cryptanalysis of hash functions. In Proceedings of Inter-

national Conference of Theory and Applications of Satisfiability Testing – SAT 2006, pages 102–115, Seattle, USA,
2006. ISBN 3-540-37206-7, http://eprint.iacr.org/2006/254.

[26] D. Molnar and D. Wagner. Privacy and security in library rfid: issues, practices, and architectures. In Proceedings of
Conference on Computer and Communications Security, pages 210–219, Washington, USA, 2004. ISBN 1-58113-
961-6.

[27] M. Ohkubo, K. Suzuki, and S. Kinoshita. Cryptographic approach to privacy-friendly tags. In Proceedings of RFID
Privacy Workshop, Cambridge, USA, 2003. http://www.rfidprivacy.us/2003/agenda.php.

[28] M. Soos. Analysing the molva and di pietro private rfid authentication scheme. In RFIDSec, Budapest, Hungary,
2008. http://events.iaik.tugraz.at/RFIDSec08/.

[29] G. Tsudik. Ya-trap: yet another trivial rfid authentication protocol. In Proceedings of International Conference on
Pervasive Computing and Communications Workshops, Pisa, Italy, 2006. ISBN 0-7695-2520-2.

[30] T. van Deursen and S. Radomirovic. Attacks on rfid protocols, 2008. http://eprint.iacr.org/2008/310.
[31] T. van Deursen, S. Mauw, and S. Radomirovic. Untraceability of rfid protocols. In Proceedings of 2nd Workshop on

Information Security Theory and Practices. Smart Devices, Convergence and Next Generation Networks, pages 1–15,
Seville, Spain, 2008. ISBN 978-3-540-79965-8.

[32] S. Vaudenay. On privacy models for rfid. In Proceedings of International Conference on the Theory and Application
of Cryptology and Information Security, pages 68–87, Kuching, Malaysia, 2007. ISBN 978-3-540-76899-9.

[33] S.A. Weis. Hb+ protocol information page, 2008. http://saweis.net/hbplus.shtml.
[34] S.A. Weis, S.E. Sarma, R.L. Rivest, and D.W. Engels. Security and privacy aspects of low-cost radio frequency

identification systems. In Security in Pervasive Computing, pages 201–212, Boppard, Germany, 2003. ISBN 3-540-
20887-9.

8 Proofs of Sections 4 and 5
Theorem 1

Proof. Assume that there are two keys, K, K ′ ∈ GF (2lt) such that ∀R ∈ GF (2lt), F (K, R) =
F (K ′, R), we will show that K = K ′. Looking at the ith symbols ki and k′i, we can rewrite
F (K, R) = F (K ′, R):

∀ri ∈ GF (2t),∀rj ∈ GF (2t){
f(ki, ri) + f(k′i, ri) =∑

j 6=i f(kj , rj) +
∑

j 6=i f(k′j , rj)

}
(4)

By construction, we know that for function f , if ki 6= k′i, then ∃h1, h2, r, r
′ ∈ GF (2t), h1 6=

h2 such that f(ki, r) + f(k′i, r) = h1 and f(ki, r
′) + f(k′i, r

′) = h2. However, from Equation 4,
this implies

∑
j 6=i f(kj , rj) +

∑
j 6=i f(k′j , rj) being equal to h1 and h2 simultaneously, which is

impossible. Therefore, ki has to be equal to k′i.

Theorem 2

Proof. We first consider functions with one bit output (t = 1). The proof is by induction on l.
Case t = 1, Induction Basis (l = 1): In this case, K = k1 and K ′ = k′1, F (K, R) = f(k, r), and

F (K ′, R) = f(k′, r). If k1 = k′1, the interval bounding the distinguishability probability becomes
[−1

2 , 3
2], which is always true. If k1 6= k′1, HD(K, K ′) is equal to 1, and the theorem hypothesis gives

Pr[F (K, R) 6= F (K ′, R)] ∈ [12 − δ, 1
2 + δ] ⊆ [12 − 2δ, 1

2 + 2δ].
Case t = 1, Inductive Step: Let the induction hypothesis be that the theorem is true for l, and

let K, K ′ be two keys of length l + 1 symbols. Denote by K l (resp. K ′l), the subkeys (k1, . . . , kl)
and (k′1, . . . , k

′
l), respectively.

If kl+1 = k′l+1: then HD(K, K ′) = HD(K l,K ′l) and Pr[F (K, R) 6= F (K ′, R)] = Pr[F (K l, R) 6=
F (K ′l, R)]. Since, from the induction hypothesis Pr[F (K l, Rl) 6= F (K ′l, Rl)] ∈ [12−(2δ)HD(Kl,K′l), 1

2+
(2δ)HD(Kl,K′l)], then it is trivial that the desired property is true for l + 1.

If kl+1 6= k′l+1: from the initial assumption about the function f , ∃ε1 ∈ [−δ, δ] such that
Pr[f(kl+1, rl+1) 6= f(k′l+1, rl+1)] = 1

2+ε1. From the induction hypothesis, ∃ε2 ∈ [−(2δ)HD(Kl,K′l),

(2δ)HD(Kl,K′l)] such that Pr[F (K l, Rl) 6= F (K ′l, Rl)] = 1
2 + ε2. We also have (from the definition

of F): Pr[F (K, R) 6= F (K ′, R)] = Pr[F (K l, Rl) + f(kl+1, rl+1) 6= F (K ′l, R) + f(k′l+1, r
′
l+1)].

Because F and f functions take only 0 and 1 values, and the ri are independent random variables,
the following holds: Pr[F (K, R) 6= F (K ′, R)] =
Pr[F (K l, Rl) 6= F (K ′l, R)] · Pr[f(kl+1, rl+1) = f(k′l+1, rl+1)] + Pr[F (K l, Rl) = F (K ′l, R)]

·Pr[f(kl+1, rl+1) 6= f(k′l+1, rl+1)]

= (1
2 + ε2)(1

2 − ε1) + (1
2 − ε2)(1

2 + ε1) = 1
2 − 2ε1ε2

Since, ε1 ∈ [−δ, δ], ε2 ∈ [−(2δ)HD(Kl,K′l), (2δ)HD(Kl,K′l)], and HD(K, K ′) = HD(K l,K ′l)+1,
then we obtain the final result: Pr[F (K, R) 6= F (K ′, R)] ∈ [12 − (2δ)HD(K,K′), 1

2 + (2δ)HD(K,K′)].
Case t > 1. The generalization to t > 1 is straightforward since it is sufficient that F (K, R)

differs from F (K ′, R) on at least one out of t bits of output. With t output bits, the bounding inter-
val tightens by a power of t. Note that a tighter bound on the distinguishability probability can be
obtained, if we consider the output as a single symbol of t bits.

Theorem 3
To prove Theorem 3, we first prove the following Lemma 1.

Lemma 1. Any function f : GF (2t)×GF (2t) → GF (2t) can be linearized into:

1. f(k, r) =
∑s

j=1 uj(r)vj(k) where s ≤ 2t, and uj(r), vj(k) are polynomials from GF (2t) →
GF (2t),

2. the vectors (u1(r), · · · , us(r)) generate a vector space of dimension s,
3. it is sufficient for an adversary to know the linearized key (v1(k), · · · , vs(k)) to compute f(k, r).

Proof. The function f(k, r) can be interpolated into a multivariate polynomial of degree (2t−1) in k
and r. In case of t = 1, this is the same as the Algebraic Normal Form (ANF) of f . One way to make
it explicit would be by Lagrange interpolation. Developing the polynomial into a sum of monomials
in k and r, we obtain:

f(k, r) =
∑

0≤i,i′≤2t−1

Ci,i′ · ri′ki (5)

where Ci,i′ is uniquely defined by function f . This expression can be rewritten as:

f(k, r) =
∑

0≤i≤2t−1

(
∑

0≤i′≤2t−1

Ci,i′r
i′) · ki (6)

This is basically the dot product (
∑

0≤i′≤2t−1 Ci,i′r
i′)i=0···2t−1 · (ki)T

i=0···2t−1.
Now consider E, the space generated by vectors V = (

∑
0≤i′≤2t−1 Ci,i′r

i′)i=0···2t−1, whose
coordinates are the coefficients of monomials ki. V has 2t coordinates. Let s ≤ 2t be the dimension
of E and (u1(r), · · · , us(r)) be a basis. Therefore, V can be rewritten as a linear combination of the
basis vector defined by a matrix A s.t.: V = (u1(r), · · · , us(r)) ·A. We can then reformulate f(k, r)
as follows:

f(k, r) = V · (ki)T
i=0···2t−1

= [(u1(r), · · · , us(r)) ·A] · (ki)T
i=0···2t−1

= (u1(r), · · · , us(r)) · [(ki)i=0···2t−1 ·AT]T (7)

Let (v1(k), · · · vs(k)) denote [(ki)i=0···2t−1 · AT] and replacing it in (7), we then conclude that
f(k, r) can be compacted into a sum of s terms:

f(k, r) =
s∑

j=1

uj(r)vj(k) (8)

where vj(k) results from the linear combination of the monomials in (5). Finally using Equation (8),
it is clear knowledge of the key k is equivalent to knowledge of its expanded form (v1(k), . . . , vs(k)).

Lemma 1 can be generalized to Ff functions composed of l functions f as follows. Note that
now the dimension of the vector space V becomes (ls) or l(s − 1) + 1. Therewith, we now proof
Theorem 3.

Proof. From Lemma 1, we have: f(k, r) =
∑s

j=1 uj(r)vj(k). For a given f function, we consider
the following two cases: (1) one function vj(k) = c is a constant function of k, (2) all function vj(k)
are non-constants. These are the only two possible cases, because if two (or more) functions vj , and
vj′ were constants, then: uj(r)vj(k) + uj′(r)vj′(k) = [uj(r)c + uj′(r)c′] = u′′j (r) · v′′(k), where
v′′(k) is a constant function of the key, and more importantly, the f would have been compacted to
(s− 1). Therefore, at most one vj function is a constant.

In case (1), w.l.o.g, we can assume that function vs(k) = c is the constant function. Thus,

Ff (K, R) =
l∑

i=1

f(ki, ri) =
l∑

i=1

s∑
j=1

uj(ri)vj(ki) =
l∑

i=1

s−1∑
j=1

uj(ri)vj(ki) +
l∑

i=1

us(ri) · c.

We can write Ff (K, R) =
∑L

h=1 ERhEKh, where L = l(s − 1) + 1, ERh = uj(ri) and EKh =
vj(ki), for h = (i− 1)(s− 1) + j, and ERl(s−1)+1 =

∑l
i=1 us(ri) · c; EKl(s−1)+1 = 1.

In case (2),

Ff (K, R) =
l∑

i=1

f(ki, ri) =
l∑

i=1

s∑
j=1

uj(ri)vj(ki)

We can write Ff (K, R) =
∑L

h=1 ERhEKh, where L = ls, ERh = uj(ri) and EKh = vj(ki), for
h = (i− 1)s + j.

In both cases, from the properties of ui(ri), we can deduce that (ER1, . . . , ERL) generate a
vector space of dimension L. Finally, knowing the values of vector (EK1, . . . , EKL), would allow
an adversary to compute function Ff , because the ERh are public and depend only on the publicly
known random input.

Theorem 4
Proof. The number of monomials of degree j, 1 ≤ j ≤ d, where each key symbol is used at most
once, e.g., k1 · · · kj , is

(
L
j

)
. This number can already be reached in a field where the maximum order

of an element is 1: for example in GF (2). Thus, this is a lower bound.
The number of monomials of degree j, 1 ≤ j ≤ d, where each key symbol is used at most j times,

e.g., k1 is used 3 times in k3
1 · k2 · · · kj−2, is

(
L+j−1

j

)
. In the general case, this is an upper bound.

In conclusion, we derive these bounds on U :
d∑

j=1

(
L

j

)
≤ U ≤

d∑
j=1

(
L + j − 1

j

)
(9)

Corollary 1
Proof. A lower bound on

(
L
d

)
is given by:(

L

d

)
=

d−1∏
i=0

L− i

d− i
≥

(
L

d

)d

(10)

(Because: ∀i, d, L : 0 ≤ i ≤ d− 1 < L implies (L− i) · d ≥ (d− i) · L.)

Inequalities (9) and (10) imply U ≥
∑d

j=1

(
L
j

)
≥

∑d
j=1

(
L
j

)j
, hence the number of monomials

of the system rises exponentially with d. On a side note, inverting matrix Γ will require U linearly
independent observations. Assuming that the random input values Rj

i lead to a random matrix Γ ,
then using only a small number of extra equations, e.g., less than 5, we can obtain with overwhelming
probability a maximum rank matrix Γ , cf., [6].

