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Abstract. This paper discusses the efficiency of audits as incentives for 
reducing free-riding in P2P storage applications, that is, lessening the number 
of peers that can store their data without contributing to the storage 
infrastructure. Audits are remote data verifications that can also be used to 
decide whether to cooperate with a given peer based on its behavior. We 
demonstrate how an audit-based strategy can dominate or outperform the free-
riding strategy by exhibiting the equilibria of our evolutionary game theoretical 
model of a P2P storage application. 
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1 Introduction 

Peer-to-peer (P2P) is an emerging technology in the storage system area whereby data 
are distributed in a self-organizing manner to multiple peers instead of using a central 
storage outsourcing server. Such a distributed storage in particular aims at 
maintaining a reliable storage without a single point of failure, although without the 
need for an expensive and energy-consuming storage infrastructure as offered by data 
centers. Peers volunteer for holding data within their own storage space on a long 
term basis while they expect a reciprocal behavior from other peers. Just like in P2P 
file sharing, cooperation incentives have to be used to prevent selfish behaviors 
whereby peers free-ride the storage system by storing data onto other peers without 
contributing to the storage infrastructure. Selfishness is however likely more attractive 
in P2P data storage since unduly gained storage might be used for an extensive period 
of time contrary to bandwidth which is related to only one file sharing operation. 
Remote data verification protocols have recently appeared (e.g., [3], [5], [6], [7], [8], 
[9], [10], and [11]) that aim at auditing peers so as to detect misbehaving ones that 
claim to hold some data which they in fact destroyed. We claim that such auditing 
protocols form the basis of an efficient cooperation incentive mechanism. Generally, 
such a mechanism is proven to be effective if it is demonstrated that any rational peer 
will always choose to cooperate whenever it interacts with another cooperative peer. 
We evaluate this mechanism using an evolutionary game model describing the 
evolution of strategies within large populations as a result of many local interactions, 
each involving a small number of randomly selected individuals. We propose in this 



paper an evolutionary game model of a P2P storage system that we use to study under 
which conditions an audit-based strategy wins over self-interested strategies. 

The rest of this paper is organized as follows: in Section 2, an outline of the P2P 
storage system is first provided. An evolutionary game model of such system is 
described in Section 3 and the solution of the model, the evolutionary stable strategy, 
is derived. Results obtained through numerical simulation experiments are finally 
analyzed in Section 4. 

2 A P2P storage system 

We consider a P2P storage system in which peers can store their personal data at other 
peers. The latter, called holders, should store data until the owner retrieves them. The 
availability and correctness of stored data is periodically checked by the owner or its 
delegates, called verifiers. However, holders or verifiers may still misbehave in 
various ways to optimize their own resource usage.  

We assume that the storage application enforces a random selection of holders and 
verifiers (for instance using the method outlined in [13]). This strategy aims at 
preventing collusions between peers trying to gain an unfair advantage out of the 
storage system. Behavior assessment relies on an audit-based verification (see [13] for 
more details) of the cooperation of peers as holders. This assessment is the basis for 
deciding whether to accept to store or to audit another holder on behalf of a given 
peer. Audits result from the execution of a remote data possession protocol (see [4]) 
periodically performed by verifiers. A peer chooses to cooperate with other peers that 
have proven to be reliable in the past based on audits. 

One-stage or repeated games model interactions that only involve the participants 
to the storage of one piece of data. Modeling the storage of multiple data as a one-
stage game would lead to overly complex games otherwise. In contrast, an 
evolutionary game makes it easy to model the macroscopic aspects of such 
interactions occurring within populations of peers. An evolutionary game model 
describes interactions between randomly chosen players, thus practically portraying 
the random selection of holders and verifiers in the audit-based approach outlined 
above. 

3 Evolutionary game 

We propose in this paper an evolutionary game model of a cooperative storage system 
with which we endeavor to evaluate under which conditions peers using the audit-
based strategy will dominate the system.  

3.1 Game model  

In the proposed system, an owner stores data replicas at r holders. It appoints m 
verifiers for its data replica that will periodically check storage at holders.  



The system is modeled as an evolutionary game. According to Friedman [1], “an 
evolutionary game is a dynamic model of strategic interaction with the following 
characteristics: (a) higher payoff strategies tend over time to displace lower payoff 
strategies; (b) there is inertia; (c) players do not intentionally influence other players’ 
future actions”. 

 
One-stage game: The one-stage game represents an interaction between one data 
owner, r data holders, and m verifiers randomly chosen. Thus, the considered game 
players are an owner, r holders, and m verifiers. The one-stage interaction consists of 
several phases: 
- Storage phase: the owner stores data at the r holders. At this phase, holders may 

decide to keep data stored or to destroy them depending on their strategy (see next 
paragraph “Evolutionary game”). Holders that crash or leave the system without 
any notice are considered as defectors contrary to our previous work [14]. 

- Delegation phase: the owner sends verification information to the m verifiers in 
order to be able to periodically check data at holders. Whether to cooperate with 
the owner in verifying data is determined by each verifier’s strategy (see next 
paragraph “Evolutionary game”). 

- Verification phase: a verifier can decide whether the holder has been cooperative 
based on the results of a verification protocol such as [3] and take potential action 
depending on its strategy. A verifier whose strategy is to cooperate will send the 
owner the results it obtained by auditing the holder. A non-cooperative verifier 
may mimic a cooperative strategy by sending a bogus result. Verifiers are not 
more trusted than other peers and may lie about verification, for instance reporting 
an absence of response to a challenge for a cooperative holder. A verifier might 
also be framed by a malicious holder trying to make it appear as a non-cooperative 
verifier. Some verifiers may also crash or leave the system, and be unable to 
communicate results of verifications. The owner therefore cannot determine with 
certainty whether a verifier chose to adopt a cooperative strategy. One negative 
result from a verifier is also not enough for the owner to decide that the holder is 
non cooperative. Such a notification may however be used as a warning that the 
holder may have destroyed its data. Based on such a warning, the owner would 
replicate the endangered data, therefore maintaining or even increasing storage 
reliability to his advantage.  

- Retrieval phase: the owner retrieves its data from the r holders. If one holder 
destroyed the data, the owner decides on potential action towards that holder 
depending on its strategy (see next paragraph “Evolutionary game”). 

Data storage is a long-term process during which several peers may have been 
storing data from multiple owners; we define the evolutionary game that models our 
P2P storage application as a sequence of a random number of such simultaneous one-
stage interactions. 
 
Evolutionary game: Our proposed game is similar to the game in [2] where players 
have either the role of the donor or the role of the recipient. The donor can confer a 
benefit b to the recipient, at a cost -c to the donor. We consider three roles in our 
game: owner, holder, and verifier; any peer may play several of these roles throughout 
the game. In a one-stage game, the owner is considered a recipient, the r holders and 



m verifiers are donors. The owner gains b if at least one holder donates at a cost –c; 
however if no holder donates then the owner gains βb if at least one verifier donates at 
a cost –αc (α≤1) for each verifier. The latter case corresponds to the situation where 
the cooperative verifier informs the owner of the data destruction, and then the owner 
may replicate its data elsewhere in the network thus maintaining the security of its 
data storage.  

Holders and verifiers have the choice between cooperating, which we call 
interchangeably donate, or defecting: 
- Cooperation whereby the peer is expected to keep others’ data in its memory and 

to verify data held by other peers on behalf of the owner. 
- Defection whereby the peer destroys the data it has accepted to hold, and also 

does not verify others’ data as it promised to. 

The peers’ strategies that we consider for study are: 
- Always cooperate (AllC): the peer always decides to donate, when in the role of 

the donor. 

- Always defect (AllD): the peer never donates in the role of the donor. 

- Discriminate (D): the discriminator donates under conditions: if the discriminator 
does not know its co-player, it will always donate; however, if it had previously 
played with its co-player, it will only donate if its co-player donates in the 
previous game. This strategy resembles Tit-For-Tat but differs from it in that 
both the owner (the donor) and its verifiers may decide to stop cooperating with 
the holder in the future. 

3.2 Observations  

Let’s consider a scheme (see Fig. 1) inspired from epidemic models which categorize 
the population into groups depending on their state [12]. Two states are distinguished: 
“not known” and “known” states. Because of the random selection of holders and 
verifiers among all peers and given the presence of churn, there are always nodes 
potentially in the “not known” state.  

 

Fig. 1. System dynamics 

We denote the number of peers that a given peer in average does not know at a 
certain time t by D and the number of peers that it knows on average at time t by K. 



Peers that may join the system are peers who were invited by other members with a 
fixed invitation rate λ. Peers are leaving the system with a fixed departure rate of µ. 
The rate σ designates the frequency of encounter between two peers, one of them 
being the holder (i.e., the probability that a peer knows about the behavior of another 
peer). 

We denote the total number of peers in the storage system - excluding the 
observing peer - as n = D + K. The dynamics of K and D are given by the following 
equations: ��
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Since n = D + K: ��
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Let q be the probability that the discriminator knows what a randomly chosen co-
player chose as a holder strategy in a previous one-stage game (the discriminator 
being an owner or verifier in that game). The probability q is equal to K/n, hence: ��
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At time t=0, the set of peers in state K is empty. Over time, peers in state D enter 
state K with rate σ. A new peer joining the system is assigned state D meaning that 
initially q(0)=0. The result of the above differential equation is thus: 
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The limit of q(t) when t → ∞ is σ/( σ+ λ). If we consider a system without churn 
(λ=0), the limit becomes 1. 

3.3 Fitness  

We respectively denote the frequency (i.e., fraction in the population of playing peers) 
of strategies AllC by x, AllD by y, and D by z. The expected values for the total payoff 
obtained by the three strategies are denoted by UAllC, UAllD and UD, and the average 
payoff in the population by: 

� � � � ����� 
 � � ����� 
  � �� 
The average payoffs that are also called fitness for each strategy are defined in the 

following.  
At time t, a participating peer will have r times more chances to be chosen as a 

holder and m times more chances to be chosen as verifier than to be chosen as an 
owner.  

A peer playing the strategy ALLC will always cooperate: it will donate at a cost –c 
if it is chosen as a holder or at a cost –αc if it is chosen as a verifier. It will gain a 
benefit b if it is chosen as an owner and at least one of its data holders is not a 



defector, otherwise, it may gain a benefit βb if at least one of its verifiers is not a 
defector.  

����� � �!" � #$" 
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A peer playing the strategy ALLD will never cooperate, so it will never donate. It 

will gain a benefit b if it is chosen as an owner and at least one of its data holders is 
not any of these types: a defector (type occurs with frequency, i.e., probability y) or a 
discriminator that knows the peer (type occurs with probability qz on average). 
Otherwise, the peer may gain a benefit βb if at least one of its verifiers is not of any of 
the former two types.   
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A peer playing the strategy D will always cooperate if it does not know the 

recipient or the latter was cooperative in a previous interaction. It will donate at a cost 
–c if it is chosen as a holder or at a cost –αc if it is chosen as a verifier. It will gain a 
benefit b if it is chosen as an owner and at least one of its data holders is not a 
defector, otherwise, it may gain a benefit βb if at least one of its verifiers is not a 
defector.  �� � �"�! 
 #$��1 � ��� 
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Strategies with higher fitness are expected to propagate faster in the population and 
become more common. This process is called natural selection. 

3.4 Replicator dynamics  

The basic concept of replicator dynamics is that the growth rate of peers taking a 
strategy is proportional to the fitness acquired by the strategy. Thus, the strategy that 
yields more fitness than the average fitness of the whole system increases, and vice 
versa. We will use the well known differential replicator equations: ��
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3.5 Evolutionary stable strategy  

A Strategy is said to invade a population of strategy players if its fitness when 
interacting with the other strategy is higher than the fitness of the other strategy when 
interacting with the same strategy. An evolutionarily stable strategy (ESS) is a 
strategy which no other strategy can invade if all peers adopt it. 

Case x≠0, y=0, z≠0: This case corresponds to a fixed point in the replicator 
dynamics, which means that a mixture of discriminating and altruistic population can 
coexist and are in equilibrium. 



Case x≠0, y≠0, z=0: In this case, the replicator dynamics of both altruistic and 
defector populations are: ��
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The population of defectors wins the game and the ESS is attained at x=0 and y=1. 
Case x=0, y≠0, z≠0:  There is an equilibrium point for which defectors and 

discriminators coexist (x=0, y=y0, z=z0) which corresponds to: ��
�� � � 

�� � 0 

The equilibrium point is then solution of the following equation: "�! 
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Table 1 describes equilibrium values in some particular cases. More cases for 
equilibrium values will be examined in Section 4. 

Table 1. Finding the equilibrium for x=0, y≠0, z≠0. 

Conditions y0 z0 
r=1, m=0, b≠c, 
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��� min :max :%	 � "�	 
 ��
�% � "�	 , 0> , 1> min ?max ? "�

�% � "�	 , 0@ , 1@ 

r=0, m=1, b≠c, 
���� �23456 �

��� min ?max ?'%	 � $"�	 
 ��
�'% � $"�	 , 0@ , 1@ min ?max ? $"�

�'% � $"�	 , 0@ , 1@ 

r=1, m=1,  ���� �23456 1 min :max :"�1 
 $� � %
'% , 0> , 1> min :max :�1 
 '�% � "�1 
 $�

'% , 0> , 1> 

 
Case x≠0, y≠0, z≠0: There is one stationary point (x=0, y=y0, z=z0) for which 

defectors will exploit and eventually deplete all cooperators. The amount of defectors 
will first increase, and then converges to the equilibrium where there is either 
coexistence with discriminators, or winning over them, or losing to them depending 
on storage system parameters.  

4 Numerical evaluation 

The evolutionary game is simulated with a custom simulator using the differential 
equations of subsection 3.4, and within several scenarios varying storage system’s 
parameters.  

Initial frequency of strategies: Fig. 2 shows the frequency of cooperators and 
defectors over time, and demonstrates that with time cooperators will be eliminated 
from the system by these defectors. The presence of discriminators in the system does 



not prevent cooperators from being evicted from the system; however, discriminators 
and defectors will converge to an equilibrium where both coexist (see Fig. 3). 

  

Fig. 2. Frequency of cooperators vs. defectors over time. m=5, r=7, β=0.1, α=0.001, λ=0.01, 
σ=0.05, b=0.05, c=0.01, x(0)=0.9, y(0)=0.1, and z(0)=0. 

This equilibrium is perturbed by the injection of a large population of defectors, as 
illustrated in Fig. 4 (by varying the initial frequency of z). If discrimination becomes a 
minor strategy in the population (frequency ≤ 0.1), it is completely eliminated from 
the system. However, if a small population of defectors is injected, discriminators 
converge to the same equilibrium. So, there are two equilibria that are determined by 
the initial population of discriminators:  (x=0, y=1, z=0) and (x=0, y=y0, z=z0).  

 

Fig. 3. Frequency of the three strategies over time. m=5, r=7, β=0.1, α=0.001, λ=0.01, 
σ=0.05, b=0.05, c=0.01, x(0)=0.6, y(0)=0.1, and z(0)=0.3. 
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The discriminators do not win over defectors, because the latter may still have a good 
payoff if they interact with some discriminators that do not know them yet, for 
instance for discriminators that just entered the system, or defectors that just joined in. 
Additionally, defectors do not always win over the discriminators because there are 
discriminators that already know them and that always choose to defect with them. 
The figure shows also a little decrease in the frequency of discriminators before 
converging to the equilibrium. The decrease is due to the fact that discriminators act 
as cooperators in the beginning of the game since they do not know the behavior of 
defectors yet.  

  

Fig. 4. Frequency of discriminators over time varying z(0). m=5, r=7, β=0.1, α=0.001, 
λ=0.01, σ=0.05, b=0.05, c=0.01, and x(0)=0. 

Number of verifiers and replicas: Varying the number r of data replicas or the 
number m of verifiers changes the equilibrium point. Increasing r favors defectors 
(see Fig. 5a).  

 
(a)                                                    (b) 

Fig. 5. Frequency of discriminators at equilibrium varying (a) r and m. r=7, m=5, β=0.1, 
α=0.001, λ=0.01, σ=0.05, b=0.05, c=0.01, x(0)=0, y(0)=0.5, and z(0)=0.5. 
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This is because the fitness gain of discriminating owners is overwhelmed by the 
fitness loss that results from data storage cost -c that is always paid by discriminating 
holders. Increasing r increases data reliability, thus increasing chances of having the 
benefit b. But, this benefit is perceived by both populations of discriminators and 
defectors without favoring one over the other.  
 
Increasing m decreases the equilibrium value of discriminators frequency (see Fig. 
5b). This is due to the fact that increasing m increases the cost of data verification -αc. 
This cost is just paid by discriminating verifiers. That’s why increasing m reduces 
their fitness. Fig. 6 also illustrates the fact that increasing the probability of encounter 
σ leads to an increase in the equilibrium value of discriminators’ frequency because 
more discriminators get acquainted with more defectors. 

 

Fig. 6. Frequency of discriminators at equilibrium varying the probability of encounter σ. 
m=5, r=7, β=0.1, α=0.001, λ=0.01, b=0.05, c=0.01, x(0)=0, y(0)=0.5, and z(0)=0.5.   

Churn: The peer arrival rate λ affects the probability q, and hence the equilibrium 
point of the game (see Fig. 7). For a low churnout value (small λ), the frequency of 
discriminators at equilibrium is high; whereas for a high churnout value (large λ) the 
frequency at equilibrium decreases. For high churnout, peers are not able to get 
acquainted with all peers since there are always new peers in the system, and 
defectors may take advantage of the lack of knowledge of discriminators about the 
system to gain benefit and remain in the game. For a system without churnout (λ=0), 
discriminators win against defectors that are eliminated from the game. 

 
Fig. 7. Frequency of discriminators at equilibrium varying the arrival rate λ. m=5, r=7, 

β=0.1, α=0.001, σ=0.05, b=0.05, c=0.01, x(0)=0, y(0)=0.5, and z(0)=0.5. 
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Benefit and cost: Fig. 8 depicts the impact of the benefit b and of the cost c on the 
frequency of discriminators at equilibrium. The figure shows that b and c have 
opposite effects on the equilibrium frequency of discriminators: increasing b increases 
the frequency whereas increasing c makes it decrease. If the storage cost is small, it 
will be compensated by the benefit. In contrast, if the storage cost is high (c≥0.3×b), 
discriminators cannot cope with this high cost and they will be eliminated from the 
system by defectors. 

 
Fig. 8. Frequency of discriminators at equilibrium varying the ratio c/b. m=5, r=7, β=0.1, 

α=0.001, λ=0.01, σ=0.05, b=0.05, x(0)=0, y(0)=0.5, and z(0)=0.5. 

Summary: Simulation results prove that there exist parameter values for which 
discriminators, who use an audit-based mechanism, may win against free-riding 
defectors. Discriminators are not hopeless when confronting defectors, even if the 
latter may dominate altruists (always cooperate strategy). At the equilibrium of the 
game, both discriminators and defectors may coexist if there is churn in the system 
otherwise discriminators will dominate. The replication rate r and the number of 
verifiers m decreases the frequency of discriminators at the equilibrium for a small 
value for r. Additionally, a costly storage or an increase in the number of verifications 
performed reduce this frequency.  

5 Conclusion 

In this paper, we validated an audit-based strategy as an evolutionary stable strategy 
under some conditions as the basis for a P2P storage system. The results obtained 
show that such a strategy wins over a free-riding strategy in a closed system. Given 
reasonable constraints, they also show that this strategy can coexist with free-riders, 
and even achieve a high frequency. The fact that cryptographic primitives exist that 
make the implementation of appropriate audit mechanisms possible without 
unrealistic network bandwidth requirements is noteworthy for practical 
implementation. We are currently investigating other security issues of P2P storage 
systems, notably those raised by maliciousness. 
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