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Abstract. Our work aims to study a model based on an extended variant of the stable fixtures
problem where multiple matches can be established between pairs of players, moreover preference
orders are subject to alteration due to player strategies.

1. Introduction

We present a distributed system model, incorporating an extended version of the stable fixtures
problem into a general game theoretic framework and present a dynamic game which arises upon
it. Our work is motivated by our current research on peer-to-peer applications, but it can be easily
applied to any distributed system in which selfish players are required to build bilateral bonds
among themselves (e.g. neighborhoods) guided by a global preference order (see Section 4).

2. Building up the problem definition

We consider a distributed game where I denotes the player set (|I| = n is the number of
players), S depicts the collection of strategy sets (S = (Si) for ∀i ∈ I), X function gives the player
consequences (X = (Xi) for ∀i ∈ I) on the combination of strategy sets (X : S1 × · · · × Sn → Rn).
In the following if we say that player i prefers one of her strategies to an other, it is because her
strict preference order over the consequences Xi for the given best response strategy set yields so.
In the following we define our problem starting from its roots, i.e traditional matching problems.

2.1. Stable roommate problem. The formal definition of the stable roommate (SR) problem is

to find a matching M on the setting presented above, M being a set of |I|
2

disjoint pairs of players,
which is stable if there are no two players, each of whom prefers the other to his partner in M.
Such a pair is said to block M. Player i’s strategy is si ∈ Si, Si being the set {{i, j} : j ∈ I \ {i}},
and Xi is assumed to give strict order on i’s possible pairs, termed preference list in the literature.
Following the statement of the SR problem by Gale and Shapley in [2], Irving’s [4] presents a
polynomial-time algorithm to determine whether a stable matching exists for a given SR instance,
and if so to find one such matching.

2.2. Stable fixtures problem. Irving and Scott present in [5] the stable fixtures (SF) problem,
which is a generalization of the SR problem. Formally, the notion of capacity is introduced such
that for each i ∈ I a positive integer ci, which is player i’s capacity, denotes the maximum number
of matches, i.e. pairs (i, j) in which player i can appear. i’s strategy is si ⊆ Si = {{i, j} : j ∈ {I\i}}
and Xi gives again the strictly ordered preference list on i’s matches. It is straightforward to see
that the SR problem is a special case of the SF problem when ci = 1 ∀i ∈ I, i.e. each player may
have 1 match at most. A matching M here is a set of acceptable pairs {i, j} such that for ∀i ∈ I
|{j : {i, j} ∈ M}| ≤ ci, where a pair {i, j} is acceptable if i appears in sj and j appears in si. M
is stable if there is no blocking pair, i.e. an acceptable pair {i, j} /∈ M such that

• either i has fewer matches than ci or prefers j to at least one of his matches in M; and
• either j has fewer matches than cj or prefers i to at least one of his matches in M.

[5] describes a linear-time algorithm that determines whether a stable matching exists, and if so,
returns one such matching.
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2.3. Stable exchange problem. We further extend the SF problem with the possibility of mul-
tiple matches between two given players. Therefore player i’s strategy is si ⊆ Si = {{i, j, cij} : j ∈
{I \ i}, 0 ≤ cij ≤ min (ci, cj)}, where cij (resp. ci) denotes player i’s number of matches towards
player j (resp. towards all the players). A matching M is a set of matches {i, j, cij} such that
{i, j, cij} ∈ si, {j, i, cij} ∈ sj and

∑
j:{i,j,cij}∈M

cij ≤ ci holds for ∀i ∈ I; moreover M is stable if,

likewise in the SF problem’s case, there is no blocking match, i.e. no match {i, j, c′} /∈ M, thus
c′ > cij for ∀i, j : (i, j, cij) ∈ M, such that

• either i has fewer matches than ci or Xi(i, j, c
′) is greater than Xi(· · · ) of at least one of his

matches in M; and
• either j has fewer matches than cj or Xj(j, i, c

′) is greater than Xj(· · · ) of at least one of
his matches in M;

where we denote players i and j’s c′th pairwise match’s consequence for i by Xi(i, j, c
′). In other

words, in a stable matching no two players could have a new match between themselves which
is preferred by both of them to any of their existing matches. To avoid inconsistency in the
consequence order of consecutive matches between given players, we make the following assumption:

Assumption 1. Xi(i, j, c
′) > Xi(i, j, c

′′) holds for any pair of matches between players i and j if
c′ < c′′ for ∀i, j.

2.4. Uniform stable exchange problem. We investigate a special case of the stable exchange
problem, specifically the case with uniformity on I.

Assumption 2. ci = c for ∀i ∈ I.

Let us suppose that the consequence function X and thus the preference order on S are defined
based on a player parameter set denoted by α = (αi), such that αi for ∀i ∈ I is a positive scalar of
[0, 1]. The implications of the α parameter vector on X are compacted in the following assumption
for the uniform case, i.e. when Assumption 2 holds.

Assumption 3. For ∀i ∈ I, Xi(i, j, c
′) > Xi(i, k, c′) holds for a given c′ ≤ c for any given pair

j, k ∈ {I \ i} if, and only if αj > αk. For the case αj = αk, Xi(i, j, c
′) = Xi(i, k, c′) for any c′ ≤ c.

Proposition 1. At least one stable matching exists for a given exchange problem instance corre-
sponding to Assumptions 2 and 3, and a slightly extended version of Irving’s algorithm (presented
in [5]) finds it in polynomial time.

3. Dynamic exchange game

We now introduce a more elaborate setting in which the parameter vector α, introduced previ-
ously, is considered as a strategy variable vector the players can decide on, hence influence the X
function. In this setting, the traditional matching problem becomes a game.

3.1. Problem definition. The setting relates to the uniform exchange problem with Assumptions
2 and 3.1 With the above introduced notations, a joint strategy for player i is a scalar value αi of
[0, 1] and an instance si ⊆ Si = {(i, j, cij ) : j ∈ {I \ i}, 0 ≤ cij ≤ min(ci, cj)}.

Since α is now part of the user strategy set, a dynamic game arises, which we describe in non-
cooperative game theoretic terms. Every player i ∈ I selfishly maximizes her payoff given by Pi,
in this case constructed by the αi ∈ α strategy implied cost and the consequence of strategy si,
i.e. P : α × S → Rn.

Conjecture 1. Showing the existence of the pairwise Nash equilibrium and finding it in a given
game instance is NP complete. For a Nash equilibrium, which must be a stable matching, the
Pi({α

∗
i , α

∗
−i}, {s

∗
i , s

∗
−i}) ≥ Pi({αi, α

∗
−i}, {si, s

∗
−i}) holds for any αi, si and for ∀i ∈ I, where α∗

−i

and s∗−i depict the best response counter strategy sets.

1In an extended version of the model we plan to relax the uniform c assumption, moreover we plan to consider it
as a strategy variable (along with α) by defining a joint payoff function on the whole strategy set.
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3.2. Optimal joint strategy. The optimal player strategy tuple is (α∗
i , s

∗
i ) = argi(max(Pi(α,S)))

for ∀i ∈ I with the constraint that stable matching is symmetric in s∗ = (s∗i ) for ∀i ∈ I, since every
match is pairwise. The social welfare is given by max(

∑
i∈I Pi(α,S)) also with the stable matching

constraint.

Conjecture 2. The joint optimization problems defined above are NP complete.

3.3. Heuristics. We sketch a distributed algorithm which would approximate the optimal strate-
gies in polynomial time. Our algorithm builds upon the evolutionary game theoretic framework
[3], where player decisions regarding their 2 strategic variables are interleaved.

k = 0, initial strategy set αk, initial fitness set Pk

repeat

compute stable matching Mk by Irving’s algorithm’s extended version based on sk
i =

arg maxPi(S)|αk for ∀i ∈ I, where Mk =
⋃

i∈I M
k
i , i.e. player i’s matches in Mk

compute Pk
i given αk and Mk for ∀i ∈ I

compute P̄k
−i =

∑
j∈Mk

i
Pk

j for ∀i ∈ I

for all i ∈ I do

if Pk
i < P̄k

−i then

αk+1
i := 1

|Mk
i |

∑
j∈Mk

i
αk

j

else

αk+1
i := αk

i

end if

end for

k := k + 1
until αk = αk−1

Conjecture 3. The algorithm above converges to a stable state irrespectively to the initial state,
i.e α0.

4. Applications

The motivation behind this work comes from peer-to-peer backup and storage applications. In
this context our players are peers that are characterized by their storage capacities (c) that they
share with other peers willing to reciprocate. A globally known peer profile (corresponding to the
α vector) indicates e.g. peer reliability: it is assumed to be observed, maintained and advertised
by the peer set for all participants. Here, matches represent the peer selection.

An other possible application is peer-to-peer content distribution, where α records the players’
contribution levels (e.g. ratio of uploaded and downloaded bytes) and their capacities (c) reflect
their uplink bandwidth. The matching relates to the overlay neighbor set and the uplink bandwidth
allocation. A similar approach, though without a game theoretic flavor, has been studied in [1],
where the authors relate the peer selection algorithm of BitTorrent to a b-matching problem.
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