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Abstract— 1 In this paper, we propose to use complex orthog-
onal space-time block coding (COSTBC) in analog transmission
with application to channel feedback. We prove that an equivalent
complex orthogonal channel can be generated by COSTBC and
then the matched filter bounds on the signal-to-noise ratio via
multiple-input multiple-output channels are achieved by maximal
ratio combining (MRC). Simulation shows that COSTBC-MRC
analog schemes outperforms spatial-multiplexing oriented analog
schemes and uncoded random vector quantization schemes with
respect to mean-squared errors (MSE).

I. INTRODUCTION

Continuous-amplitude discrete-time transmission, which is
called analog transmission, is an interesting alternative for the
feedback of channel knowledge. In the case of quasi-static
multi-input multi-output (MIMO) channels, space-time coding
considerations with issues of diversity and spatial multiplexing
arise also for analog transmission. Using analog transmission
and linear coding for channel feedback to obtain the channel
state information at the transmitter (CSIT) has been studied
in [1]–[4] and so on. In [1], Tejera and Utschick present that
analog linear coding can do better on the distortion decay
rate comparing to the other two possible digital approaches
via a single-input single-output (SISO) channel subject to the
constraint of limited delay. In [2], Marzetta and Hochwald
propose to use linear analog modulation for feeding back chan-
nel information in frequency-division duplex (FDD) systems.
The studied scenario is multi-user single-input multi-output
(MU-SIMO), where no transmit diversity possibility exists
due to incoordination among users. In [3], we suppose to
use spatial-multiplexing space-time block coding (SMSTBC)
to do analog channel feedback via a peer-to-peer MIMO
channel and compare two channel feedback schemes with
zero-forcing (ZF) receivers. Such a full-multiplexing coder
without exploitation of transmit diversity is fast but is not
optimum with respect to mean-squared error (MSE).

For linear coding in analog transmission, the matched filter
bound (MFB), which refers to maximum spatial diversity
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combining, is different to the one in digital transmission in
the light of affected objects. It is well-known that in digital
transmission, MFB is an exponentially upper bound on the
probability of error [5] and can be achieved by orthogonal
space-time coding with maximum likelihood (ML) detection
or other means. For linear receivers in analog transmission,
MFB is a factor coefficient upper bound on SNR which closely
relates to MSE.

If the equivalent channel constructed by an actual channel
and a code is complex orthogonal, as which Alamouti space-
time code for two transmit antennas [6] can make, the MFB
on SNR can be easily achieved by employing maximal ratio
combining (MRC) at the receiver. This motivates us to search
a family of STC for any transmit antenna number, which
can make equivalent channels complex orthogonal by linear
processing. Fortunately, we find that such equivalent channels
can be generated by the rate 1/2 complex orthogonal space-
time block coding (COSTBC) and in [7], Tarokh et al. have
given a generalization of COSTBC designs, which can be
implemented to MIMO systems for arbitrary transmit antenna
number. Consequently, the optimum spatial diversity perfor-
mance of linear analog transmission is achieved, although it
sacrifices spatial multiplexing.

Note that the quantization error of numerical computation
and binary storage at transceivers are neglected in this paper.

Remark: in the following text, X† denotes the conjugate
transpose transformation, XT denotes the transpose trans-
formation, X∗ denotes the conjugate transformation, ||X||2F
denotes the square of the Frobenius norm, and <(X) denotes
taking real part of X .

II. CHANNEL MODEL, MFB AND COSTBC

In this section, we present the linear channel model and the
MFB on SNR for MIMO systems. We prove that an equivalent
complex orthogonal channel is generated by COSTBC and
the MFB on SNR is achieved by unbiased COSTBC-MRC
and COSTBC-LMMSE. Moreover, we provide solutions for
special cases of applying COSTBC to channel feedback.

A. Channel model

Assume a frequency-flat block-Rayleigh-fading additive-
white-noise MIMO channel with Nt inputs and Nr outputs.



The channel model is represented by

y = Hx + n (1)

where H is the channel matrix of size Nr×Nt, x is the length
Nt vector of transmitted symbols subject to the transmit power
constraint Pt per symbol-period, n is the length Nr vector
of additive white noise whose elements are independently
identical distributed CN (0, σ2

n) r.v.’s, and y is the length Nr

vector of received symbols.

B. MFB

Under the assumption that a Lb-symbol block code is
used to transmit Ls continuous-amplitude source symbols,
the total energy for the received block at the receiver should
be LbPt||H||2F under the assumption of maximum spatial
diversity combining. In order to combine maximum diversity,
each source symbol should be transmitted from all transmit
antennas, which means there are at least Nt − 1 replicas per
source symbol. Thus, the matched filter bound on SNR per
source symbol

SNRMFB =
LbPt||H||2F

NtLsσ2
n

. (2)

C. About COSTBC

Constructing equivalent complex orthogonal channels:
Theorem 1: Complex orthogonal space-time coding gen-

erates an equivalent complex orthogonal channel matrix for
MISO systems.

Proof: Suppose for transmitting a length k real row
vector s, we have a Nt × k (Nt ≤ k) rate 1 real orthogonal
space-time code (OSTBC) ONt,k, which can be generated
from the general OSTBC design in [7],

ONt,kOT
Nt,k = ||s||2INt . (3)

Then, according to [7], if elements of s are complex
numbers, a rate 1/2 complex orthogonal space-time code
(COSTBC) GNt,2k can be constructed by ONt,k and its
conjugate O∗Nt,k

,

GNt,2k =
( ONt,k O∗Nt,k

)
. (4)

By using GNt,2k, the channel model via a MISO channel
can be represented by
(

y(1) y(2)
)

= h
( ONt,k O∗Nt,k

)
+

(
n(1) n(2)

)
,

(5)
where

y(1) = hONt,k + n(1), (6)

y(2) = hO∗Nt,k + n(2). (7)

It can also be written as(
y(1)T

y(2)†

)
= H ′sT +

(
n(1)T

n(2)†

)
(8)

where H ′ is the equivalent 2k× k channel matrix that can be
represented by

H ′ =
(

Ha

H∗
a

)
. (9)

Then,
H ′†H ′ = 2H†

aHa. (10)

From (10), we can straightforwardly deduce if Ha is complex
orthogonal, then H ′ is complex orthogonal as well. Then
complex orthogonality of Ha is to be proved first.

From (5), (8) and (9), we have

sHT
a = hONt,k. (11)

If s is real, by multiplying each side’s conjugate part on both
sides of the equation above, in the light of (3), we get the
following equation for any h and real s,

sHT
a H∗

asT = ||h||2||s||2
= s||h||2sT .

(12)

Thus,
HT

a H∗
a = ||h||2INt , (13)

i.e. Ha is complex orthogonal. Hence, from (10)

H ′†H ′ = 2||h||2INt
, (14)

i.e. the equivalent channel matrix H ′ is complex orthogonal.

MRC receiver: A MIMO channel is composed of Nr sub
MISO channels. By COSTBC at the transmitter, under the
assumption that the receiver knows perfect CSI, matched filters
based on equivalent complex orthogonal sub-channel matrices
are employed at each receive antenna. By MRC, their outputs
are summed up. Supposing for the i-th receive antenna, the
received signal vector is yi and the equivalent channel matrix
is H′

i, after unbiased MRC, we get

ŝT =
1

2||H||2F

N∑

i=1

H
′†
i

(
y

(1)
i

T

y
(2)
i

†

)
. (15)

By (8) and (14), we see that

ŝT = sT +
1

2||H||2F

N∑

i=1

H†
i

(
n

(1)
i

T

n
(2)
i

†

)
. (16)

LMMSE receiver: Using a LMMSE receiver based on
equivalent MISO subchannels, under the assumption of i.i.d.
additive white Gaussian noises and i.i.d. white Gaussian source
symbols, we get

ŝT =
1

Nt

ρ + 2||H||2F

N∑

i=1

H
′†
i

(
y

(1)
i

T

y
(2)
i

†

)
(17)

where ρ is the transmit SNR, Pt/σ2
n.

By analyzing (16) and (17), we see that the receive SNRs
of both receivers achieve the matched filter bound on SNR,

SNRMFB =
2Pt||H||2F

Ntσ2
n

. (18)

when Nr > ρ(NtNr): In terms of [7, Theorem 4.1.2],
for constructing a rate 1 real OSTBC for k symbols from the
generalized orthogonal design, transmit antenna number must
be not greater than ρ(k) which is the number of matrices
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Fig. 1. The diagram of the COSTBC-MRC analog feedback scheme

in a Hurwitz-Radon family of k. In the application to
analog channel feedback, supposing there are NtNr channel
coefficients to be fed back and Nt > ρ(NtNr), we can
construct a COSTBC by repeating the parameters T times
to make Nt ≤ ρ(TNtNr) and then regard the vector after
repetition as a TNtNr-length source vector. Mean estimation
(ME) is used to recover transmitted channel coefficients after
equalization. Although the feedback interval is prolonged, the
total transmit energy is manifolded T times and the SNR of
such a scheme thus achieves the MFB on SNR as well.

III. APPLICATION TO THE ANALOG CHANNEL FEEDBACK

In this section, we detail an analog feedback scheme applied
COSTBC-MRC and analyze its performance with respect to
MSE.

A. Scheme Description

Fig.1 presents the block diagram of the COSTBC-MRC
analog feedback scheme.

We assume the transmitter A has Na antennas and the
receiver B has Nb antennas, all noises are additive and the
channel is quasi-static. The training interval is Qh symbol-
periods. The space-orthogonal Na × Qh training matrix S is
transmitted from A to B under the transmit power constraint
Pa. Namely,

SS† =
QhPa

Na
INa . (19)

The Nb ×Na transmit channel matrix H can be written in
the form of a NaNb-length row vector

h =
(

H(·,1) · · · H(·,Nb)

)
(20)

where H(·,i) is the channel coefficient row vector of the MISO
subchannel for the i-th receive antenna at B. Hence, we can
write the training-signal-transmission model as

r = h




S O
. . .

O S


 + zb (21)

where zb is the additive noise vector.




S O
. . .

O S


 is a

block-diagonal matrix composed of Nb S, which is denoted
by S′ in the following.

The least-square estimator (LSE) based on training is em-
ployed at B to estimate H (h),

Ĥ =
Na

QhPa
RS†, (22)

i.e.,
ĥ =

Na

QhPa
rS′†. (23)

At A, the channel information of feedback channel G is
obtained by LSE as well. The channel coefficients of H are
fed back from B to A. We suppose that channel coefficients
are linear coded by COSTBC, scaled to the block transmit
power constraint at B and then fed back to A, i.e., the direction
of the source vector is transmitted in a linear way, and the
scaling factor aĥ is fed back in a non-linear reliable way to
de-scale linear fed-back channel coefficients for reobtaining
the magnitude of the source vector.

In the diagram in Fig.1, the matrix U at B is composed of
l identity matrices,

U =
(

INaNb
· · · INaNb

)
, (24)

which in fact does repetition on h corresponding to system
requirement. After the repetition, the inter-media row vector
θĥ is generated,

θĥ = ĥU . (25)

We notice that
UUT = lINaNb

. (26)

Hence, at A, the final result ̂̂
h can be obtained by

̂̂
h =

1
l
θ̂ĥUT . (27)

Remark: For transmitting an analog (discrete-time
continuous-amplitude) complex symbol, such as x = xc+jxs,
the corresponding signal waveform s(t) at a transmit antenna
can be expressed as

s(t) = <[(xc + jxs)g(t)ej2πfct] (28)

where xc and xs are the information-bearing signal ampli-
tudes, g(t) is the signal pulse and fc is the carrier frequency.

B. Estimation Error

We assume the transmitter perfectly knows the scaling factor
by nonlinear feedback and the imperfectness of estimated H
at A is due to white additive noises in phases of transmitting
the training matrix for estimating H , linearly feeding back
channel coefficient and transmitting the training matrix for
estimating G. The noises are respectively denoted as Za, Zb,
Zg in the form of matrix, and as za, zb, zg in the form of row
vector. Suppose the feedback interval T is 2lNaNb symbol-
periods.



After LSE at B,
ĥ = h + h̃ (29)

where
h̃ =

Na

QhPa
zbS

′†. (30)

Since the energy of source information after COSTBC
is 2lNb||ĥ||2 and the block transmit power constraint is
2lNaNbPt, the scaling factor

aĥ =

√
NaPb

||ĥ||2
. (31)

For the i-th receive antenna at A, the equivalent feedback
channel model is

(
y

(1)
i

T

y
(2)
i

†

)
= aĥG′

iθ
T
ĥ

+


 z

(1)
a,i

T

z
(2)
a,i

†


 (32)

where the 2lNaNb × lNaNb matrix G′
i is the equivalent

complex orthogonal channel matrix of G(·,i).
Considering the feedback-channel state information known

at A is also imperfect, after de-scaling and MRC, from (15),
we get

θ̂T
ĥ

=
1

2aĥ||Ĝ||2F

Nb∑

i=1

Ĝ
′†
i

(
y

(1)
i

T

y
(2)
i

†

)
. (33)

Then, from (27) and (33), the equivalent matrix of estimate
error

eT = ̂̂
h

T

− hT

=
Na

QhPa
S′∗zT

b −
1

2l||Ĝ||2F
U

( Na∑

i=1

Ĝ′†
i G̃′

iU
T ĥT

− 1
aĥ

Na∑

i=1

Ĝ′†
i


 z

(1)
a,i

T

z
(2)
a,i

†




)
(34)

where Ĝ′
i is the equivalent matrix of channel estimate gi and

G̃′
i is the equivalent matrix of g̃i. Since Ĝ′

i = G′
i+G̃i, Ĝ′

i and
G̃′

i are also complex orthogonal matrices of size 2lNaNb ×
lNaNb.

For simplicity, we assume there is no error in estimating
G, i.e. G̃ = 0, and noises za and zb are white additive with
variance σ2

za
and σ2

zb
respectively. Under this assumption, the

average mean-squared error per channel coefficient

ε2 =
E||e||2
NaNb

=
Naσ2

zb

QhPa
+

NaNbσ
2
za

T ||G||2F a2
ĥ

=
Na

Qhρt
+

Nb

T ||G||2F ρf

(
||H||2F +

N2
aNb

Qhρt

)
(35)

where ρt = Pa/σ2
zb

, ρf = Pb/σ2
za

, and T = 2lNaNb. It
indicates that by increasing SNRs, the training interval or the
feedback interval can decrease MSE on the imperfect CSIT,
which corresponds to common sense.

0 5 10 15 20
10

−3

10
−2

10
−1

10
0

SNR(dB)

A
v
e

ra
g

e
 M

S
E

 

 
COSTBC−MRC
COSTBC−LMMSE
SMSTBC−ZF
SMSTBC−LMMSE

Fig. 2. Graph of COSTBC vs. SMSTBC in analog feedback. MIMO 4× 2,
training lengths Qh = Qg = 10, the feedback interval T = 32 symbol
periods, ρt = ρf = ρg , Mont Carlo runs = 10,000 times.

IV. COMPARE TO OTHER FEEDBACK METHODS

In this section, we compare our COSTBC-MRC analog
feedback scheme to several other feedback schemes by sim-
ulation results. It is illustrated that COSTBC-MRC has the
lowest MSE amongst them.

A. Compare to Spatial-Multiplexing STBC Analog Feedback
Methods

Another space-time coding technique for analog transmis-
sion is the spatial-multiplexing STBC. That is, for Nt transmit
antennas, Nt independent data symbols are one-to-one trans-
mitted per symbol period and no specific codebook exists.
In the case of a long transmit interval, for achieving smaller
MSE, symbols are to be repeated and then at the receiver,
mean estimation is to be done after equalization.

Under the assumption that the channel state information
is known at the receiver and the source symbols are i.i.d.
zero-mean r.v.’s, zero-forcing (ZF) or linear mean-square
error (LMMSE) equalization methods can be employed at
the receiver to recover transmitted symbols. Note that ZF
equalization is subject to the constraint that the transmit
antenna number Nt must not be greater than the receiver
antenna number Nr; LMMSE equalization is subject to the
constraint that the receiver is supposed to know the spatial
covariance matrices of noises.

In Fig.2, we plot curves of average MSE per channel coeffi-
cient of COSTBC and SMSTBC analog feedback schemes. We
consider three noises, – the noise in estimating the feedback
channel G, the noise in estimating the transmit channel H at
the receiver, the noise in feeding back the channel estimate
Ĥ . We assume all elements of noise and channel matrices
are symmetric CN (0, 1) r.v.’s. For simplicity of plotting, three
SNRs are supposed to be equal. The curves are generated by
10,000 Mont Carlo runs.



It shows that COSTBC analog feedback schemes have
about 1.6dB advantage over SMSTBC schemes in MSE at
20dB SNR. There is merely the trivial difference between
MSE curves of COSTBC-MRC and COSTBC-LMMSE when
SNR is pretty low; when SNR is decent, it is hardly to see.
Considering doing LMMSE requires more information at the
receiver, we thus suggest the COSTBC-MRC analog feedback
scheme for linear analog transmission.

B. Compare to Random Vector Quantization Transmission

In recent literature, random vector quantization (RVQ),
as a digital way, is widely used to feed back the channel
information (see [8], [9], etc.). An interesting analogy between
RVQ and linear analog transmission is both of them can only
be used to transmit an analog vector’s direction (here, we
assume source symbols in linear analog systems are scaled to
the transmit power constraint). That is, to rebuild the source
vector, its magnitude is supposed to be transmitted in another
way.

For comparing RVQ to COSTBC analog transmission with
respect to MSE, assuming the magnitude is genie-aided trans-
mitted to the receiver for rebuilding the analog vector, our
criterion to select an index i from the unit vector quantization
codebook W is to select a codeword wi which satisfies
wi = arg maxw∈W <

(
h
||h||w

†
)

and h is the row complex
analog vector to be transmitted. This criterion is derived from

||h−w||2 = ||h||2
(

2− 2<
(

h

||h||w
†
i

))
. (36)

In Fig.3, we compare the COSTBC-MRC analog transmis-
sion technique to the RVQ technique with respect to MSE
by simulation. Assume a length 2 complex vector is to be
transmitted during an interval of 4 symbol periods by b bits
per symbol via a 2 × 2 MIMO channel. A unit random
vector codebook W of size 22b is generated. The index is
selected according to the aforementioned criterion, divided
into 2 symbols and mapped to the constellation. Generated
constellation points are transmitted after COSTBC. The max-
imum likelihood detection is employed at the receiver. For
simplicity and fairness, no channel coding and labeling is
considered here for RVQ methods, which we call uncoded.
Thus, for uncoded RVQ methods, not only quantization error
exists but decision error exists as well.

From Fig.3, we can see that an adaptive RVQ scheme has
advantage over fixed RVQ schemes due to characteristics of
MSE curves of RVQ methods. For an adaptive RVQ, with
increasing SNR, the codebook becomes larger and larger and
the constellation becomes denser and denser. But even for an
uncoded adaptive RVQ sheme, our simulation shows that it is
at least 4.7dB inferior to the COSTBC-MRC analog scheme
in terms of MSE in the scenario we set, although the digital
way is of significantly greater complexity.

V. CONCLUSION

We have proposed to apply rate 1/2 complex orthogonal
space time block coding (COSTBC) to analog transmission.
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Fig. 3. COSTBC vs. RRVQ in transmitting continuous-amplitude symbols.
MIMO 2× 2, the complex analog vector’s length = 2, the transmit interval
T = 4 symbol periods, Mont Carlo runs = 20,000 times.

Such a space-time coding method can generate an equivalent
complex orthogonal channel for a MISO channel and thus
achieves the matched filter bound on SNR for analog trans-
mission over a MIMO channel. We present a detailed channel
information analog feedback scheme applied COSTBC-MRC
and analyze its MSE to indicate how factors work in such a
scheme. The COSTBC-MRC method are compared to several
other possible analog and RVQ (digital) methods and it shows
that COSTBC-MRC has the lowest MSE amongst them.
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