
Design of extensible component-based groupware

Jakob Hummes (hummes@eurecom.fr) and Bernard Merialdo

(merialdo@eurecom.fr)
Eurecom, 06904 Sophia Antipolis, FRANCE

Abstract. Tailoring is identi�ed as a key requirement for CSCW applications. One
major tailoring mechanism is the extension of an application at run-time to change

its behavior.

This article shows how synchronous CSCW component-based applications can
be designed to be extensible at run-time. We propose to split the act of tailoring

into two steps: the design-time customization of new components in visual builder
tools and their insertion into the running application. Thus the customization tool

is not required to be part of the application.
This article presents a new design pattern for extensibility and gives several

examples based on that pattern. With the help of the pattern extensible application
frameworks can be systematically created from a non-extensible application design.

The di�erent possibilities to place insertion points into the application design are

discussed with respect to exibility and ease of deployment. Finally, we present the
advantages and limitations of this approach.

Keywords: tailoring, customization, extensibility, design pattern, Java Beans

1. Introduction

Human beings interact in di�erent situations and their cooperative

actions depend on the context. Rather than following a prede�ned

schedule of events, people tend to act spontaneously in creative phases.
In general, it is not foreseeable how people work together; therefore, it is

not always possible to de�ne in advance which artifacts are adequate to

support their cooperative process. A CSCW system that reects these

observations must allow the creation and insertion of new cooperative

modules and artifacts.

Inserting new functionality into a running application is an act of

tailoring. Tailoring is recognized in the CSCW literature as the key

requirement for a system to adapt to di�erent cooperative contexts

(Malone et al., 1995; Trigg and B�dker, 1994). For Bentley and Dourish

(1995), \support for customization is support for innovation".

This article focuses on one important subset of tailoring: the ability

to insert new functionality into an application and thus to change the

behavior of the system. New functionality can be discovered by an

extensible application at initialization time. It is harder to design ap-

plications that can be extended at run-time. Even harder is the design of

c 1998 Kluwer Academic Publishers. Printed in the Netherlands.

JCSCW.tex; 15/12/1998; 15:56; p.1

2

extensibility at run-time in distributed interactive applications, such as

synchronous groupware. This article presents a general design pattern

to solve the latter problem.

Component-based frameworks are currently being investigated as a

means to gain reusability on all layers and to adapt to change. Until

recently, software engineering has focused on the development of code,

which is reusable and extensible during the design phase. That focus has

evolved towards the development of �nished modules of code which can

be reused and customized by the end-user. System modi�cations and

extensions which were once strictly in the domain of the programmer

are now being shifted into the domain of the end-user. This article ap-

plies the �ndings of framework research to the construction of tailorable

CSCW systems, which allow the insertion of extensions on demand by

the end-user. The code of the extensions is distributed on demand to

every participant of the group; thus the extensions do not need to
be pre-installed. Our approach provides the possibility to extend an

application without terminating an ongoing cooperation.

The goal of this article is to demonstrate how component technology

supports an e�cient way of constructing extensible CSCW applica-

tions. Component models allow one to reason on di�erent levels of

abstraction depending on the composition level (Stiemerling and Cre-

mers, 1998). We focus on the component model Java Beans and its

supporting integrated development tools (IDE), which let the user

create and customize components visually. The user may assemble

components into larger composite components using the visual rep-

resentation provided by an IDE rather than writing lines of code.

Programmers can design the components and accompany them with

special customizers to facilitate customization at design-time. In the

extreme case, a new component can be assembled by only using drag

and drop operations, so that even end-users can accomplish the task of

creating new components.

By using only the standard and widely used Java and Java Beans

technologies for their realization, our concepts become applicable and

usable by other groupware developers.

If not otherwise stated, we will refer throughout the article to tailor-

ing as the activities by the end-user to modify and extend the applica-

tion at run-time. In contrast we use the term design-time customization

to denote modi�cations at design-time.

The tailoring support for extending a running program is split into

two di�erent support-systems, the customization and the insertion sup-

port. Figure 1 illustrates our approach. In the �rst step, an end-user

uses an o�-the-shelf visual builder tool to customize a component at

design-time. This component is then, in a second step, inserted into the

JCSCW.tex; 15/12/1998; 15:56; p.2

3

S ystem Border

Visual Builder Tool: IDE

Running CSCW application Running CSCW application

A

B

C

D

E

D

E

D

E

Figure 1. The two-step approach to tailor a CSCW application.

running distributed CSCW application. Decoupling the customization

tool for the components from the actual CSCW application has the

following advantages for the developer:

� The product can be earlier delivered, because the tailoring func-

tionality is not built into the product.

� The developer can save resources, because a proprietary tailoring

tool needs not to be developed.

� General o�-the-shelf IDEs are continuously improved by third party

vendors.

The end-users pro�t from the decoupling as well. They can use their

favorite builder tool for that component model and do not need to

accustom to a new tool for every application. We will show that stan-

dard visual programming tools can be used e�ciently by end-users to

perform tailoring of CSCW applications.

2. Relevant Previous Work

The work described in this article is based and inuenced by the re-

search in di�erent domains. Relevant for this work are the publications

about tailorability in general and its signi�cance for CSCW; about

framework design, component technology and design pattern evolving

JCSCW.tex; 15/12/1998; 15:56; p.3

4

from object-oriented software engineering; but also about new organiza-

tional forms by the business science and coordination theory under the

umbrella of \virtual organizations". All approaches have in common

that they focus on evolving systems; they di�er from their points of

view. This paper tries to synthesize some of the �ndings.

2.1. Tailoring

Tailoring is de�ned as the activity of modifying the appearance and

behavior of an application at run-time by the end-user (Malone et al.,

1995; M�rch, 1997; Trigg and B�dker, 1994). Tailoring support is nor-

mally built into the application, so that the user does not need a

separate tool. In contrast to this de�nition, this article proposes a

two-step approach, which uses customization at design-time to gain

tailorability at run-time.

Before explaining our approach in greater detail, we give a brief

overview of tailoring. M�rch (1997) distinguishes three levels of tailor-

ing. The levels are classi�ed by the design distance which is experienced

by the end-user during tailoring. The �rst level, customization at run-

time, allows to modify the appearance of presentation objects and

to change their attributes. The second level allows the integration of

new components or commands by composition of existing functionality

within the application. The third level allows the extension of an ap-

plication by adding new code. Generally speaking, with an increasing

level the tailoring possibilities for a user increase, but also become more

complex. To overcome the design distance, M�rch (1995) proposes to

use so called \application units". Application units consist of three

parts: a presentation-object, which is the user-interface, a rationale
that provides meta-information about the intended use, and the actual

implementation.

Tailoring beyond the �rst level involves end-user programming. End-

user programming facilities can be o�ered by the application framework

itself, such as in the \radically tailorable" tool for CSCW, Oval (Malone

et al., 1995). The end-user can write small scripts, which are interpreted

by the application, as in applications of the Microsoft O�ce suite

(Solomon, 1995). But end-user programming can also be separated from

the application and done in a general purpose language. Afterwards,

the written functionality is inserted into the application at anticipated

hooks. Since programming in a general purpose language is regarded as

being hard for an end-user, she or he must be supported by high level

tools for this task. Visual builder tools like IBM's Visual Age for Java

o�er an even higher abstraction than scripting languages and are thus

usable by end-users (Weinreich, 1997). We will follow this approach.

JCSCW.tex; 15/12/1998; 15:56; p.4

5

On the level of programming languages, the possibility to reect

and introspect code is viewed as enabling technology to write tai-

lorable software; reection in component models is used to support

self-representation (Stiemerling and Cremers, 1998). Reection can also

be viewed as a design pattern (Buschmann et al., 1996). Dourish pro-

poses a reective model for collaborative systems (Dourish, 1995) and

implemented the toolkit Prospero for CSCW (Dourish, 1996) using

this model to express meta-information and to allow the change of

the behavior of the underlying toolkit. Component models, such as

JavaBeans and DCOM, o�er reection capabilities and meta-data on

components (Krieger and Adler, 1998); our approach uses these ca-

pabilities to automate interface negotiation and to o�er the end-user

an easy-to-handle user-interface to tailor components within a visual

builder tool.

2.2. Frameworks: Towards extensible applications

A framework is a skeleton of cooperating classes that forms a reusable

implementation. An application framework de�nes the overall architec-

ture of the applications that are created by adapting the framework.

Framework-based applications are adapted by extending the framework

at explicit hooks also known as \hot spots" (Pree, 1994).

Frameworks are currently successfully employed for general purpose

software units, such as graphical user interfaces, system infrastruc-

ture, and middleware integration frameworks; also application domain

speci�c frameworks are emerging.

Frameworks are distinguished into white-box and black-box frame-
works (Fayad and Schmidt, 1997). Object-oriented white-box frame-

works use inheritance to o�er the developer extension facilities. To

insert extensions into white-box frameworks the developer must un-

derstand the class hierarchy and derive new classes which have to be

relinked with the framework. Black-box frameworks use object compo-

sition and delegation instead. Black-box frameworks anticipate exten-

sions by de�ning interfaces and providing hooks to insert new objects.

Applications that can be extended at run-time need hooks like black-

box frameworks. Unfortunately, designing frameworks { and especially

black-box frameworks { is substantially harder than designing an ap-

plication. However, the hot spots for a framework can be designed and

implemented stepwise by a sequence of generalization transformations

(Schmid, 1997). Since applications using a framework must conform to

the framework's design and model of collaboration, the framework en-

courages developers to follow speci�c design patterns (Johnson, 1997).

JCSCW.tex; 15/12/1998; 15:56; p.5

6

In the other direction, developers can use design patterns to generalize

an object-oriented application into a framework (Schmid, 1995).

2.3. Component Technology

In the �eld of software engineering, component based software de-

velopment is seen as a major factor to facilitate reuse. Components

can be purchased from third party vendors, customized and assembled
within a component model. Examples for major component models are

Microsoft's Distributed Component Object Model (DCOM) and SUN's

component model for Java JavaBeans (JavaSoft, 1996). The component

technology is predicted to acquire a signi�cantly increasing impor-

tance (Kiely, 1998). Furthermore distributed component platforms are

emerging, which allow interaction between components across system

boundaries (Krieger and Adler, 1998).

A component is an independent \unit of software that encapsulates

its design and implementation and o�ers interfaces to the outside, by

which it may be composed with other components to form a larger

whole" (D'Souza and Wills, 1998). Frameworks provide a reusable con-

text for components (Johnson, 1997). Components become most pow-

erful within black-box frameworks, where they can be used to extend

the hot spots.

2.3.1. Java Beans

The examples in this article are implemented using JavaBeans, the

component standard for Java.

The speci�cation for JavaBeans outlines that \a Java Bean is a

reusable software component that can be manipulated visually in a
builder tool" (JavaSoft, 1996). Beans are self-descriptive Java classes

that follow design patterns that let builder tools or applications intro-

spect a bean. Properties reect the accessible state of a bean. The Java

Beans component model uses an event mechanism to interconnect the

beans. A bean sends an event to all beans that have registered their

interest in that event. The standard distinguishes two extraordinary

states in the life-cycle of a bean: A bean can be manipulated in an IDE

at design-time or behave like an ordinary object during run-time.

Properties and events can be manipulated within visual builder

tools. The JavaBeans standard o�ers additional associated classes for

each bean, which contain meta-information about the bean including

special customizers and property editors to support a more intuitive

interaction with the developer.

The component-based approach together with visual integrated de-

velopment environments (IDEs) directly support our goal to be able

JCSCW.tex; 15/12/1998; 15:56; p.6

7

to customize an existing application at design-time and to be able

to build new similar applications by reusing the components. Beans

with associated customizers allow even non-programmers to customize

applications in an intuitive way. The easy grasp is achieved by the use

of graphical and form-based editors within the IDEs.

2.4. Design Patterns

Design patterns help one to reason about recurring design problems.

Object-oriented design patterns describe \communicating objects and

classes that are customized to solve a general design problem in a

particular context" (Gamma et al., 1994). Patterns abstract from the

used programming language and provide a basis for reusable design

building blocks: \Design patterns are the micro-architectural elements

of frameworks" (Johnson, 1997).

Design patterns are surprisingly useful to detect the hot-spots in an

application design and to transform it into a domain-speci�c frame-

work design (Schmid, 1995). Actually, the idea of hot spots was �rst

introduced as a meta-pattern for framework design (Pree, 1994). In

the domain of CSCW and user-interface design some patterns are well-

known, such as the distributed versions of the Model-View-Controller
and Presentation-Abstraction-Control patterns (Buschmann et al., 1996).

Syri (1997) describes the use of the Mediator pattern to design tai-

lorable cooperation support in CSCW systems.

To design CSCW applications that are tailorable by extension, the

hot spots must be discovered in the design phase and then implemented.

To ease the implementation we will introduce a design pattern which

can be used to insert those hooks into the application. The pattern

focuses on the ability to insert new code at run-time that conforms to

an interface. By applying this pattern, one thus designs a black-box

framework for a speci�c CSCW problem.

2.5. Virtual Organizations

This work is also inuenced by recent publications about virtual organi-

zation (Mowshowitz, 1997; Turo�, 1997). The idea of virtual organiza-

tion stems from virtual constructs, such as virtual memory and circuit

routing, and generalizes their concepts toward an integrating theory.

One common concept in the virtual constructs is that the mapping

between an abstract requirement and a possible concrete satis�er is

dynamic. The mapping has to adapt as well to evolving requirements

as to changing satis�ers.

JCSCW.tex; 15/12/1998; 15:56; p.7

8

The ability of virtual organized systems to dynamically adapt to

environmental changes led us to think about how the dynamic exchange

of software components could enhance CSCW systems.

In this context, this paper provides a technical basis to insert new

satis�ers into a running groupware application when a new requirement

arises. Changes to requirements for CSCW applications can be a result

of evolving cooperative work patterns, for example when users become

more familiar with a CSCW product or the context and goal of a work

group changes (Mark et al., 1997).

3. Enabling Technologies for Extending CSCW Applications

This section introduces a design pattern, which is used to insert hot

spots in the design of applications. Since CSCW applications are in-

herently distributed, the pattern is accompanied with components that

allow the distribution of arbitrary events to a group. By using the

event mechanism and encapsulating code within an event, we place an

event receiver in the pattern to allow the simultaneous extension of

synchronous CSCW applications at run-time. Finally, we investigate

the applicability of inserting code at run-time.

3.1. Design Pattern for Extensibility

In a component model, applications are developed by interconnecting

and customizing components. The components themselves are com-

posed of other, smaller components. The design pattern for extensi-

bility, which will be introduced here, can be encapsulated into one

component.

The Extensibility pattern1 is intended to be used to provide a default

behavior, which can be changed at run-time. To change the behavior a

new class can be inserted at a hook, which can either add new function-

ality or replace an existing class. The application sees only the speci�ed

behavior of a Proxy class.

The structural representation of a pattern is given by the relation-

ship between the used classes. Figure 2 shows the structure of the

Extensibility pattern in the UML notation2. This pattern consists of a

Proxy, which extends the interface of a Subject that may be inserted

at run-time.3 Inside the Proxy exists a Creator, which is responsible

1 We follow the convention to use an initial upper-case letter to name patterns,

to use bold names for classes and to use italic names for beans and events.
2 Fowler (1997) provides a good overview on the UML notation.
3 In this pattern, the Proxy extends the Subject interface to be conform with

the Proxy pattern. However, for the framework developer it is only important that

JCSCW.tex; 15/12/1998; 15:56; p.8

9

Figure 2. Structure of the Extensibility pattern.

to create a new object of an arbitrary class Real Subject conforming

with the interface Subject. Actually this pattern is a combination of

the Proxy and the Factory Method patterns from Gamma et al. (1994).

Figure 3 shows the interaction between the objects. At initialization

time, the Creator object passes a reference to a default Real Subject

to the Proxy. Any event that the Proxy receives is delegated to the

default Real Subject. When the Creator receives an event (how that

happens will be discussed soon) to create a new Real Subject it

instantiates the respective class and sets the reference in the Proxy

to the newly created object. The Proxy now forwards all subsequent

events to this object, unless the Creator changes the reference to a

Real Subject again.

A slight variation of the pattern allows to add instances of new

classes instead of replacing the old objects. This can be easily ac-

complished by letting the Proxy store a set of all Real Subjects.

All incoming events are then forwarded to all instantiated Real Sub-

jects. This variation is useful if new functionality is added, which is

independent in the application logic from the already existing objects.

3.2. Remote Events

In an event based component model, events are the means to com-

municate state changes between components. The event mechanism

the de�nition of the Proxy remains stable, while the developer of the pluggable
components (the Real Subjects) relies on a stable de�nition of Subject. The

Proxy class does not need to extend the same interface and may act as Adapter or
Bridge. Proxy, Adapter, and Bridge are described in Gamma et al. (1994).

JCSCW.tex; 15/12/1998; 15:56; p.9

10

Proxy

Default Subjec t

C rea tor

in it in it

instantiate defau lt Subject

handleEvent
handleEvent

New Subject
instantiate new Subject

handleEvent
handleEvent

c reate
new Sub ject

Figure 3. Interaction diagram for the Extensibility pattern.

follows the publisher-subscriber pattern (Buschmann et al., 1996). The

Java Beans component model uses such an event mechanism. We will

concentrate here on Java Beans, because it is the component model

we have chosen for our implementation. The design of group communi-

cation components does not rely on this particular component model,

since event mechanisms are a common property of component models.

Since the Java Beans component model de�nes only the interac-
tion between beans in the same virtual machine, we developed group

communication beans, which act as access points for the distribution of

events over process barriers (�gure 4). The group communication beans

follow the publisher-subscriber pattern for a distributed platform. The

group communication beans expose the event model to the developer

for remote event communication. Two types of beans are necessary: The

GroupSender forwards events to all GroupReceivers , which are con�g-

ured with the same group name. The group name is a property of the

beans and can be easily set within visual builder tools for beans, and the

events can be visually connected to and from these beans. Both beans

can be specialized for any event by simple object-oriented subclassing

and implementing the register and handler methods for that event type.

Thus the group communication beans form a white-box framework for

distributed event communication. Although the de�nition of new events

is considered as a programming activity, which goes beyond the usual

JCSCW.tex; 15/12/1998; 15:56; p.10

11

GS

group
communication

GR

GR

GR
group name

group name

event

event

event

eventcomponents

backbone

Figure 4. Group communication beans: The GroupSender (GS) distributes an event

to all subscribed GroupReceivers (GR).

capabilities of an end-user, the implementation is automated within

most IDEs, thus nearly no source coding is required by the developer.

3.3. Distributing and Inserting Components

Readers who ask themselves how the Creator in the Extensibility

pattern is triggered, will get their answers here. The Creator encapsu-

lates a GroupReceiver that subscribes to a group on which events may

arrive that carry the classes to be instantiated. Since Java provides a

platform-independent byte-code, we can directly associate the classes

with the events. In other implementations, objects would have to be
called remotely (by using CORBA for instance). We decided to actually

distribute code, since it is a more general solution than calling remote

objects. For example, a remote object would have di�culties to access

system dependent resources to show a new graphical user interface.

New Class Event
insert
new class

choose
new class GS GR

New Class Event

Chooser Loader

Figure 5. Distribution of a NewClass event.

JCSCW.tex; 15/12/1998; 15:56; p.11

12

The distribution of a new component is handled by our design as the

distribution of a NewClass event by the beans for group communication

(�gure 5). The bean, which acts as a Chooser , selects the class, which

should be inserted in the distributed application. Often a Chooser is

embedded in the user-interface to let the user decide, which class should

be inserted. Eventually, the Chooser �res a NewClass event. The event

is simply passed by the Chooser to a bean that is derived from a

GroupSender , which publishes it to the con�gured group. The event is

then received by all beans that extend a GroupReceiver for this event

type and are subscribed on that group. The GroupReceiver passes the

event to a Loader , which instantiates the class. The resulting object can

then be used by the Creator to replace or add a new Real Subject.

The combination of the Extensibility pattern with the group com-

munication beans can be used to extend well speci�ed hot spots in

distributed applications; the speci�cation is the interface Subject. If
a hot spot de�nes a lot of methods, each component has to implement

these methods, before it could be used to extend the hot spot. Some-

times, however, it is not feasible to be constrained by an interface.

In the case of truly independent components, such as applications, it

would be needed to write an adapter (Gamma et al., 1994) to insert

them. On the other side, even such components may use some of the

available information by the loading component. Instead of using the

static information provided by the interface, a variation of our pattern

uses the reection mechanisms of Java and Java Beans to connect to

the available hooks.

Figure 6 illustrates this concept. A NewClass event arrives at the

loader (a). Upon arriving, the loader loads the class and instantiates

it (b). Since the loader does not know at this time the features of

the arrived bean, it uses introspection to discover the events, which

can be �red by the new bean. For the events it is interested in, the

new class event

(a)(a) (b)(b) (c)(c)
event listener

event source

loader loader loader

Figure 6. A loader receives a new class (a) and instantiates it (b); then the loader

and the new object can register mutually (c).

JCSCW.tex; 15/12/1998; 15:56; p.12

13

loading bean adds its interest by calling the discovered registration

methods (c). Now, the loading bean can receive events from the new

bean. If the loading bean provides itself events and has discovered by

introspection that the new bean implements the appropriate method

to connect itself, it invokes that method. Then the loaded bean uses

the same mechanism to subscribe itself to the events it is interested in.

The NewClass event may additionally carry the name of a start

method. If the new class is not a bean, no events are connected, but the

start method will still be called. Thus it is possible to pass arbitrary

Java programs and start them remotely. The newly loaded code can

interact with the loading application by means of two mechanisms: by

mutual registration for the provided events that are discovered during

initialization and by the presented group communication beans. The

latter are also used to communicate with other remote applications.

3.4. Applicability

Extensibility of CSCW applications can be introduced on various levels

of granularity, varying from the one extreme, where only new applica-

tions can be started, to the other extreme, where every component may

be extended. The place and number of hot spots in the design determine

the extensibility of the application framework. But, the number of hot

spots does not only worsen the performance of the application, but it

increases also the necessary e�ort of maintenance.

Figure 7 shows how the level of extensibility relates with the gran-

ularity of components that can be inserted and the understandability

and maintainability for the end-user. The MBone tools (Eriksson, 1994)

may serve as an example for very small but successful extensibility:

the user can click in the session directory (sdr) on a session, which

starts the needed tools to join the audio and video session. The tools

are stand-alone applications, which are started in a di�erent process.

Medium extensibility is granted by domain speci�c frameworks with

Figure 7. Trade-o� between application extensibility, component granularity, and

understandability for the end-user.

JCSCW.tex; 15/12/1998; 15:56; p.13

14

some hot spots; TeamWave (Roseman and Greenberg, 1997) is a group-

ware application, which uses a custom made component model on top

of GroupKit (Roseman and Greenberg, 1996) to o�er extensibility and

tailoring support. The highest level of extensibility would be the usage

of the Extensibility pattern for every component in a system.

If extensibility is only provided by means of starting applications in

new processes, the original and the new application must use a protocol

to exchange data, which is normally di�erent from local interaction.

Therefore, inserting components into a running application has the

advantage that they can be integrated seamlessly; the new components

become part of the application. The components can interact locally

and use same the interaction protocol of the component model.

Our experiments with our pattern and component based CSCW

applications suggest that most extensions of groupware applications

happen at anticipated places. If the application uses design patterns,
some hot spots can be found during the design phase (Schmid, 1997).

However, it remains an art rather than pure engineering to design

extensible applications. We will give some examples in the next sec-

tion, how extensibility can be designed and implemented in CSCW

applications.

4. Examples

This section gives some examples, how the Extensibility pattern is used

to design extensible CSCW applications. The �rst example presents

a minimal CSCW component, which is used to distribute and start

other cooperative components. We use a chat component as example to

demonstrate the application of the Extensibility pattern. The insertion

of a voting component during a chat session highlights the use of the

Extensibility pattern to support unforeseen cooperation modes. Finally,

we summarize our experience of using the Extensibility pattern in tele-

teaching components.

4.1. Design of a minimally extensible CSCW application

An example for a minimally extensible CSCW application is a loader

that o�ers the functionality to distribute and insert coarse grained

components, which are actually CSCW applications themselves. When

the user selects a new component for insertion, the code is distributed

to all participants of the group and started within their instances of

the loader.

JCSCW.tex; 15/12/1998; 15:56; p.14

15

Figure 8. The loader application in a visual IDE.

Figure 8 shows the composition of the loader within a visual IDE4.

The user interface consists of two beans to enter the participant and

the group name and a button to insert a new component. When the

user presses the button, a �le dialog pops up, which lets the user select

a component. After choosing the component an event is passed to a

non-visual Controller bean, which generates a NewClass event and

passes it to a GroupSender , which is con�gured with the group name.

All loaders of the group members will eventually receive the NewClass

event and start the associated component by the Creator . The Creator

for the loader is con�gured to add every received component and to use

the reection capabilities to register for available events. The loaded

component can query the properties of the loader via reection { in

this case it �nds the participant and group name.

In the presented form, the loader supports the insertion of symmetric

CSCW applications, i.e. applications that are executed at each partic-

ipant. For example, the loader can be used to insert the components

of the next examples: a chat and a voting component. We have also

developed a loader component for asymmetric groupware, which sup-

ports the local insertion of a server component, and distributes clients

for this component to all other participants.

4.2. Design for functional extensions

A well-known example for a synchronous CSCW application is a chat.

A chat allows the exchange of textual messages between all members

4 This and all subsequent examples are built with IBM's Visual Age for Java.
A puzzle piece denotes a non-visual bean, a puzzle piece in brackets a variable, an

arrow a connection between an event and a method, and a dotted line a connection

between two properties.

JCSCW.tex; 15/12/1998; 15:56; p.15

16

Figure 9. The design of an extensible input component (right) for a chat tool (left).

The this variable gives access to the methods and variables of the de�ning bean
(here: the input component).

of a group. This example will focus on the design of an extensible chat

and present a component that can be inserted at run-time to support

a simple oor control policy.

Figure 9 shows a running chat application, and the component com-

position at design-time for the input part of the chat. A new message

is distributed by a Chat event to all participants; the output part

of the chat component eventually receives the event and shows it to

the user. The reaction on user input is performed within the bean

ChatInputControlProxy , which has access to the input �eld and some

environment properties. Whenever the proxy generates a new Chat

event, it is distributed by a GroupSender for this event (ChatGS) to

all participants. In this example, the user-interface additionally o�ers

a button to insert a new component into the running application.

Figure 10. The design of the ChatInputControlProxy.

JCSCW.tex; 15/12/1998; 15:56; p.16

17

Figure 11. User-interface for insertion of a new component and its implementation.

Figure 10 shows the internals of the proxy, which allows the replace-

ment of the default strategy. The BeanCreator can receive new beans

that implement the interface ChatInputControlI ; it takes as default the

component ChatInputControl . The input �eld and the current instance

of the input control are associated with a variable of the type ChatIn-

putControlI . Depending on the actual input control bean, a Chat event

is �red to the proxy, which forwards it to the GroupSender .

This example implements a very simple mechanism to plug a new
component into the running system (see �gure 11). When the user

clicks on the \Insert component" button of the chat application, a

dialog box pops up and the user selects the hot spot to extend. Then

the user chooses from a list of available components. The actual design

and implementation for the selection uses the same components as the

simple loader, which was previously described. As will be discussed

later, a more sophisticated mechanism should be used in real-world

applications.

To add a oor control mechanism, the default implementation of

ChatInputControl (�gure 12, left) can be replaced by ChatInputFloor-

Control (�gure 12, right) during run-time. The new component displays

an additional simple user-interface to request the token for input; the

input �eld of the chat bean is only enabled, if the user has the token.

It also uses GroupSenders to request and release5 a token. The newly

5 This implementation implicitly releases the token after a user has sent a

message. The server for the oor control is not shown here.

JCSCW.tex; 15/12/1998; 15:56; p.17

18

Figure 12. The ChatInputControlProxy is con�gured by default with the bean Chat-

InputControl (left); it can be replaced by ChatInputFloorControl (right) to support
a token based oor control policy.

inserted component interacts seamlessly with the existing components,

since it implements the same interface ChatInputControlI .

The design of the chat components follows a simpli�ed Model-View-

Controller pattern (Buschmann et al., 1996). To insert components,

which provides new behavior, we designed the controller of the chat

input component to be exchangeable; the design uses the presented

Extensibility pattern. The other chat components are designed in a

similar way. Another hot spot is designed in the chat output component;

a possible extension would be to add a component to write a log �le of

the discussion.

The chat example has shown the applicability of the Extensibility

pattern to change the component's behavior at specially de�ned hot

spots. It is thus classi�ed in the medium level of granularity.

4.3. Design of a second application for insertion

The loader can be used to start more than one cooperative tool for all

group members. For example, the chat tool is inserted for a discussion

in a meeting with remote participants. After a while, a decision must

be made about the discussed topics. The chair decides to create a list of

the topics, and each participant has to vote for one item on the list. So,

the chair uses an IDE to customize a voting component to be inserted

and distributed using the loader. The voting component is shown to

each participant; after a participant has submitted his vote, a separate

frame shows all arriving votes from the others.

The design-time customization of a vote component is a very easy

task: A question component is dropped on the vote panel within a visual

JCSCW.tex; 15/12/1998; 15:56; p.18

19

Figure 13. A voting component (left) and the associated customizer (right).

IDE (�gure 13). The vote panel has an associated customizer to add

new questions, to manipulate them, and to provide di�erent language

features. The customizer o�ers the user a graphical interface to hide

all details of programming. The end-user only performs drag-and-drop

operations and �lls in text �elds. The customizer constructs a new

voting component with this information, which can then be inserted

by the loader to be distributed to all participants.

This example has shown the applicability of the Extensibility pat-
tern for coarse grained components to support the insertion of new

cooperation forms. It also has validated the approach to use o�-the-

shelf visual builder tools to let the end user build a new component

by design-time customizing existing beans, which are then distributed

and inserted into the running CSCW system.

4.4. Other examples

We have redesigned some of our earlier developed remote education

components to o�er extensibility. As an example, we placed the Exten-

sibility pattern in remote tutoring components (Hummes et al., 1998b)

to allow the insertion of arbitrary components supporting cooperation

among the students and tutors. The tutoring components allow stu-

dents to contact a tutor, if they want assistance in a remote laboratory

course. The tutor gives peer-to-peer advice by using cooperation beans.

In the original implementation the components for cooperation could

be changed only at design-time; the new implementation can use several

cooperation forms by inserting them at run-time. The tutor can now

also distribute questionnaires (Hummes et al., 1998a) to all students

at the end of a laboratory course to monitor their learning progress.

The tutor has prepared the questionnaire during the laboratory course

based on the issues that have been discussed with the students. The

JCSCW.tex; 15/12/1998; 15:56; p.19

20

creation of such a questionnaire is highly supported by customizers

within a visual IDE. The presented customizer for the vote panel is

actually a reused component for multiple choice questions from this

tele-exam framework.

5. Discussion

The examples have shown the applicability of the Extensibility pattern

within component based CSCW applications. By using the pattern

one actually designs domain speci�c application frameworks. These

application frameworks can be extended at run-time by inserting new

components. The new components can be created by the end-user

outside the application within visual IDEs.

The examples have used the Extensibility pattern to insert coarse

and medium grained components. The placement of the hot spots with

the pattern in the examples is based on the anticipation of possible

extensions. This leads to the question whether a rule can be given

where the hot spots should be located.

The main problem is that a conict exists between the level of ex-

tensibility and the level of understandability (cfg. section 3.4). If each

component was made extensible, the design and implementation would

become unnecessary complex. Even, if the performance a�ected by the

added complexity could be improved (for example with the Flyweight

pattern (Gamma et al., 1994)), the maintainability criteria still limits

the amount of hot spots. On the other hand, too few hot spots limits

the extensibility of the application. So, a compromise must be found

depending on the domain of the application.
We found that the design of cooperation o�ers a good starting-

point to insert hot spots in CSCW applications. Components that are

triggered by user actions and perform operations depending on these

actions are candidates to be extended. If the design of an application

that uses design patterns, the location of potential hot spots can be

derived from the design (Schmid, 1997). In the case of CSCW appli-

cations, patterns used for cooperation must be examined. In the often

used Model-View-Controller pattern, a potential hot spot for extension

in each application is located in the Controller, while the View would

be a candidate for being extended only locally. Cooperations that can

use di�erent strategies, can change their strategies by placing the Ex-

tensibility pattern within the Strategy pattern (Gamma et al., 1994).

A good example for adding a new strategy component would be a

new algorithm for video encoding and decoding in conference systems.

The Mediator pattern (Gamma et al., 1994) can be used to design tai-

JCSCW.tex; 15/12/1998; 15:56; p.20

21

lorable CSCW systems by attaching cooperation enablers (Syri, 1997)

to cooperative artifacts. By placing the Extensibility pattern within

the Mediator new enablers could be introduced in the running system.

While we have presented here a non exhaustive list of potential loca-

tions, where hot spots could be useful, it is still up to the groupware

designer to decide, where hot spots will eventually be placed. Her or

his analysis will be oriented on the domain of the application.

New components can be inserted on the demand of other compo-

nents or on the demand of the end-user. In the latter case, the end-user

must be supported by a user-interface to select the appropriate hot-

spot and component to obtain a certain behavior by his extension.

We have used a simple �le chooser in our examples. A more sophisti-

cated approach would present the user the potential plug-points and

a list of available components that are available to extend each one.

By introspecting the selected component, such a list can be created
automatically. Additionally, the user should also get a description of

the intent, e�ects and possible side-e�ects for each component.

The presented implementation to insert components at run-time

uses code distribution. To inform remote applications to insert a new

component, we used group communication beans that can distribute

arbitrary events. The needed information about the new components

is encapsulated in an event. So, the implementation is coherent with

the Java Beans event model. Thus it is supported by visual builder

tools for Java Beans.

The distribution of code has the advantage that components have ac-

cess to the local system properties. Thus user-interface components can

also be distributed. Another advantage lays in increased performance

compared with remote object communication if the inserted component

is often used. The biggest advantage in a cooperative environment is

that the component which should be inserted in the running application

needs not be installed at the remote machines before the application is

started.

The operation of loading and instantiating classes via the network

opens severe security risks. Since Java is a network language, these

risks are well-known and methods for protection exist. Java code can

be signed. A signature authenticates the creator of the code. If code is

manipulated after signing, this can be detected. Although signed code

allows one to only accept code by trustworthy sources, the problem

of who to trust remains. In a cooperative environment, this question

is hard to answer. Even if all persons that are allowed to distribute

new code are trustworthy, failures in the distributed code can cause

damage (Zhang, 1997). The problem can be partly solved by giving

explicit rights for customizing code (Stiemerling and Cremers, 1998).

JCSCW.tex; 15/12/1998; 15:56; p.21

22

Another barrier can be inserted by granting new classes only the rights

they need to function. If, however, a class claims to need full rights and

is created by a person of full trust, the problem remains. This problem

can not be generally solved.

6. Conclusion

This article has focused on the insertion of new components into run-

ning synchronous CSCW applications to tailor their behavior. We have

proposed to split the act of tailoring into the steps of the design-time

customization of new components within visual IDEs and their inser-

tion into the running application. This decoupling leads to a shorter

development cycle of applications. Furthermore, the end-user needs

only to accustom to one IDE to tailor di�erent applications. When

IDEs will be delivered as components, our approach can be taken to

extend CSCW applications with those pluggable builder tools.

We have presented a design pattern which is focused on modeling

insertion points at hot spots in a general way. Since CSCW applications

are inherently distributed, we have developed components that are used

to distribute arbitrary events across process boundaries to a con�g-

urable group of receivers. These group communication components are

used by our examples for all remote event communication. Extensions

are implemented as Java beans and distributed through remote events.

They are then automatically inserted at the provisioned hot spots.

Once inserted, the new components are seamlessly integrated within the

running application. Independent coarse grained components that func-

tion also without information about their environment can be inserted
without conforming to a prede�ned interface. Nevertheless they can

query their environment via reection to register for events or to read

and write properties. Thus arbitrary applications can be distributed

and started remotely. The presented examples have shown the use of

the Extensibility pattern to create hot spots within component based

CSCW applications.

This article has discussed the tension between extensibility and un-

derstandability in the design. Increasing the extensibility increases also

the complexity of the design and thus decreases the understandability.

This leads to the conclusion that a design is not reasonable where all

components are extensible or exchangeable during run-time. So, we

have revisited the design patterns, which were used in the examples,

to �nd the locations where hot spots have been inserted. The located

places have been compared with some design patterns in the literature.

Thus we have shown, where the Extensibility pattern is most useful

JCSCW.tex; 15/12/1998; 15:56; p.22

23

in the design of CSCW applications. However, it remains still a task

for the application designers to identify the hot spots from their ex-

pertise. Once potential insertion points are recognized, the developer

can uniformly design the hot spots using the introduced Extensibility

pattern.

One problem, which should be addressed by further work, is how the

extensibility can be presented to the end-user. The presentation should

include the hot spots of an application and their possible extensions.

Such a presentation must �nd means for an intuitive graphical user-

interface to insert components at the right places.

7. Acknowledgments

We want to thank David Turner for proof-reading earlier versions of this

article. Arnd Kohrs has provided valuable Java hints in various discus-

sions and without his help most of our components for remote tutoring

would never have been implemented. Last, but not least, we want to

acknowledge the detailed comments by the anonymous reviewers.

The described work is part of the ACOST research project, which

is funded by the research institute CNET Lannion of France Telecom.

References

Bentley, R. and P. Dourish: 1995, `Medium versus mechanism: Supporting collabo-

ration through customization'. In: H. Marmolin, Y. Sundblad, and K. Schmidt
(eds.): Proceedings of the fourth European Conference on Computer{Supported

Cooperative Work. Stockholm, Sweden, pp. 133{148.
Buschmann, F., R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal: 1996, Pattern{

Oriented Software Architecture { A System of Patterns. John Wiley & Sons,

Inc.

Dourish, P.: 1995, `Developing a Reective Model of Collaborative Systems'. ACM

Transactions on Computer{Human Interaction 2(1), 40{63.
Dourish, P.: 1996, `Open Implementation and Flexibility in CSCW Toolkits'. Ph.D.

thesis, University College London.

D'Souza, D. F. and A. C. Wills: 1998, Objects, Components and Frameworks With

Uml: The Catalysis Approach, Object Technology Series. Addison-Wesley.
Eriksson, H.: 1994, `MBONE: The Multicast Backbone'. Communications of the

ACM 37(8), 54{60.
Fayad, M. E. and D. C. Schmidt: 1997, `Object{Oriented Application Frameworks'.

Communications of the ACM 40(10), 32{38.
Fowler, M.: 1997, UML distilled, Object Technology Series. Addison-Wesley.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides: 1994, Design Patterns { Elements

of Reusable Object{Oriented Software. Addison{Wesley.

JCSCW.tex; 15/12/1998; 15:56; p.23

24

Hughes, J. A., W. Prinz, T. Rodden, and K. Schmidt (eds.): 1997, `Proceedings
of the �fth European Conference on Computer{Supported Cooperative Work'.

Lancaster, UK:, Kluwer Academic Publishers.

Hummes, J., A. Kohrs, and B. Merialdo: 1998a, `Questionnaires: a Framework us-

ing Mobile Code for Component-Based Tele-Exams'. In: Proceedings of IEEE
7th Intl. Workshops on Enabling Technologies: Infrastructure for Collaborating

Enterprises (WET ICE). Stanford, CA, USA.
Hummes, J., A. Kohrs, and B. Merialdo: 1998b, `Software Components for Coopera-

tion: A Solution for the "Get Help" Problem'. In: COOP'98: Third International
Conference on the Design of Cooperative Systems. Cannes, France.

JavaSoft: 1996, `Java Beans 1.0 API speci�cation'. http://java.sun.com/beans.

Johnson, R. E.: 1997, `Frameworks = (Components + Patterns)'. Communications
of the ACM 40(10), 39{42.

Kiely, D.: 1998, `Are Components the Future of Software?'. IEEE Computer pp.

10{11.

Krieger, D. and R. M. Adler: 1998, `The Emergence of Distributed Component
Platforms'. IEEE Computer pp. 43{53.

Malone, T. W., K.-Y. Lai, and C. Fry: 1995, `Experiments with Oval: A Radi-
cally Tailorable Tool for Cooperative Work'. ACM Transactions on Information

Systems 13(2), 175{205.
Mark, G., L. Fuchs, and M. Sohlenkamp: 1997, `Supporting Groupware Conventions

through Contextual Awareness'. in (Hughes et al., 1997), pp. 253{268.
Mowshowitz, A.: 1997, `Virtual Organization'. Communications of the ACM 40(9),

30{37.

M�rch, A.: 1995, `Application Units: Basic Building Blocks of Tailorable Appli-

cations'. In: Proceeding Fifth International East-West Conference on Human-

Computer Interaction, Vol. 1015 of Lecture Notes in Computer Science. pp.

45{62.

M�rch, A.: 1997, `Three Levels of End-User Tailoring: Customization, Integration,
and Extension'. In: M. Kyng and L. Mathiassen (eds.): Computers and Design

in Context. Cambridge, MA: The MIT Press, Chapt. 3, pp. 51{76.
Pree, W.: 1994, `Meta Patterns|A Means for Capturing the Essentials of Reusable

Object{Oriented Design'. In: Proceedings of ECOOP'94. Bologna, Italy.
Roseman, M. and S. Greenberg: 1996, `Building Real Time

Groupware with GroupKit, A Groupware Toolkit'. ACM

Transactions on Computer Human Interaction 3(1), 66{106.

http://www.cpsc.ucalgary.ca/projects/grouplab/papers/papers.html.

Roseman, M. and S. Greenberg: 1997, `Simplifying Component Development in
an Integrated Groupware Environment'. In: Proceedings of ACM UIST'97

Symposium on User Interface Software and Technology. Ban�, Alberta, pp.
65{72.

Schmid, H. A.: 1995, `Creating the Architecture of a Manufactoring Framework by
Design Patterns'. In: Proceedings of OOPSLA'95. NY.

Schmid, H. A.: 1997, `Systematic Framework Design by Generalization'. Communi-
cations of the ACM 40(10), 48{51.

Solomon, C.: 1995, Developing applications with Microsoft O�ce: strategies for de-

signing, developing, and delivering custom business solutions using Microsoft
O�ce. Redmond, WA: Microsoft Press.

Stiemerling, O. and A. B. Cremers: 1998, `Tailorable Component Architectures for
CSCW-Systems'. In: Proceedings of the 6th Euromicro Workshop on Parallel

JCSCW.tex; 15/12/1998; 15:56; p.24

25

and Distributed Programming. Madrid, Spain, pp. 302{308. http://www.cs.uni-
bonn.de/~os/.

Syri, A.: 1997, `Tailoring Cooperation Support through Mediators'. in (Hughes et al.,

1997), pp. 157{172.

Trigg, R. H. and S. B�dker: 1994, `From Implementation to Design: Tailoring and
the Emergence of Systematization in CSCW'. In: R. Furuta and C. Neuwirth

(eds.): Proceedings of the Conference on Computer Supported Cooperative Work.
Chapel Hill, NC, USA, pp. 45{54.

Turo�, M.: 1997, `Virtuality'. Communications of the ACM 40(9), 38{43.
Weinreich, R.: 1997, `A Component Framework for Direct-Manipulation Editors'.

In: Proceedings of TOOLS-25. Melbourne, Australia.

Zhang, X. N.: 1997, `Secure Code Distribution'. IEEE Computer pp. 76{79.

JCSCW.tex; 15/12/1998; 15:56; p.25

JCSCW.tex; 15/12/1998; 15:56; p.26

