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Abstract

A number of papers have been dealing with the problem of estimating the di�erential delay of an unknown
signal impinging on two sensors. Here, the case of L sensors and L sources is considered with L(L � 1) delays
to be estimated. The solution resorts to blind multichannel MA identi�cation in the time domain. All delays
are estimated independently of each other using a relation between MA coe�cients.

R�esum�e

De nombreux articles traitent le probl�eme de l'estimation de temps de retards di��erentiels avec un seul signal
arrivant sur deux capteurs. Ici, L sources et L capteurs sont consid�er�es, avec L(L � 1) retards �a estimer. Les
retards sont obtenus en identi�ant un mod�ele MA multi-variable dans le domaine temporel. Chaque retard est
estim�e ind�ependamment grâce aux relations entre les coe�cients du mod�ele MA.

Keywords: Time Delay estimation, Blind identi�cation, MA model, Independent Component Analysis,
Cumulants.
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1 Introduction

The estimation of time delays between several source signals is an important problem in signal processing:
seismics, biomedecine, sonar, radar, and communications. In passive sonar (our main concern) for example, the
delays are used to estimate the velocity and the location of an acoustic source.

It is assumed that L signals, sj(n), (n denoting the discrete time) are received on K sensors, ri(n), satisfying
the model below:

ri(n) =
LX
j=1

sj(n+ �i;j) + vi(n); (1)

where �i;j denotes the relative delay of arrival of the jth signal on the ith sensor. The �rst sensor is taken as
time origin (�1;j = 1). Delays are supposed to be non integer multiples of the sampling period, and vi(n) is an
unknown noise independent of the signals.

The problem is the following: from a �nite extent observation, delays �i;j and, if possible, source signals
si, have to be identi�ed. It is assumed that nothing is known about the statistics of the sources but their non
Gaussian character and their statistical independence.

The identi�cation of a di�erential delay between two signals is an old problem in signal processing; see for
instance the June 1981 special issue of IEEE Transaction on ASSP. New methods have been proposed in [2],
[9], [12]. See also the approaches based on MUSIC-like algorithms [13] [10], or based on the cyclostationarity
of the source signals [7]. All these works are either dealing with the case of a single signal, i.e. , sj = 0; j � 2,
or with signals exhibiting speci�c properties, e.g. , cyclostationarity. Therefore, none of the above mentioned
method can be used to address the problem we have stated, in particular in the passive sonar context.

The only works that have tackled simultaneous blind identi�cation of more than one delay for general
signals (i.e. neither signals si(t) nor their spectra are known) are to our knowledge [3], [1], [6]. In [3], [1], a
spectral approach is assumed, and adaptations are mandatory in order to take fully advantage of the wide-band
character of the sources. In [6], the case of K = 2 sensors is considered. In this paper, a time domain approach
is considered with L � 2 wide-band unknown sources.

The paper is organized as follows: we �rst write the problem as an MA identi�cation (section 2) and show
how to �nd the delays from the estimated MA coe�cients (section 3). Finally, a blind MA identi�cation method
is considered (section 4), coupled with the Independent Component Analysis (ICA) method (section 5).

2 Problem formulation

Suppose we are givenK sensors. The algorithm that will be subsequently described needs the number of sources,
L, to be at most equal to the number of sensors. So the least restrictive condition consists of assuming that
L = K, since the number of sources cannot be controlled, being understood that it is always possible to reduce
the dimension of the sensor space, for instance by projection onto the dominant principal components.

Suppose from now that L = K. The �rst goal is to estimate the time delays by fully exploiting the wide-band
character of the sources; this task will be carried out in the time domain. Source signals are supposed to be MA
processes driven by zero-mean, non-Gaussian, independent signals, �j(t), each of them being an independent
and identically distributed (i.i.d.) sequence:

sj(t) =

qX
k=0

aj;k�j(t � k); (2)

where the coe�cients aj;l are unknowm. The noise vi is assumed to be Gaussian. Because of the use of fourth
order cumulants, its e�ect asymptotically vanishes. Considering for the moment the noiseless case, the system
is now as follows:

r1(t) =
PL

j=1

Pq

k=0 aj;k�j(t� k);

r2(t) =
PL

j=1

Pq

k=0 aj;k�j(t+ �2;j � k);

� � �

rL(t) =
PL

j=1

Pq

k=0 aj;k�j(t+ �L;j � k):

(3)
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The delays are not necessarily integer multiples of the sampling period. So, delayed source signals, �i, must be
interpolated, e.g. using the sampling theorem, assuming all signals are band-limited:

�j(n+ �i;j � k) =
+1X

r=�1

�j(n� k � r)sinc(r + �i;j):

sinc represents the cardinal sine function. Since the summation has to be truncated, denote �m and m its
limits:

�j(n+ �i;j � k) =
+mX

r=�m

�j(n � k � r)sinc(r + �i;j): (4)

Inserting the previous relation (4) in equation (3), and performing the variable change l = r + k, yields:

ri(n) =
LX
j=1

mX
r=�m

q+rX
l=r

aj;l�r�j(n� l)sinc(r + �i;j): (5)

Since for l < 0 and l > q, aj;l = 0, one can get rid of index r by extending the summation on l:

ri(n) =
LX
j=1

mX
r=�m

q+mX
l=�m

aj;l�r�j(n� l)sinc(r + �i;j): (6)

A non-causal multichannel MA model is then obtained:

ri(n) =
LX
j=1

q+mX
l=�m

[ci;j;l�j(n � l)] i 2 f1; :::;Kg; (7)

whose MA coe�cients ci;j;l are linked to each other by the relations:

ci;j;l =
mX

r=�m

aj;l�rsinc(r + �i;j); i > 1 (8)

c1;j;l = aj;l: (9)

Relations (8) are considered for �m � l � q +m knowing that for l < 0 and l > q, c1;j;l = 0.

3 Delays estimation

From equation (7), it is clear that the observations are following a multichannel non causal and non monic
MA model. The �rst step of the algorithm is to estimate its matrix coe�cients. The proposed procedure is
described in section 4. Assume now the model coe�cients are known, and concentrate on the estimation of the
di�erential delays.

3.1 Interpolation solution

Once the coe�cients ci;j;l, and also aj;k from equation (9), have been estimated (see section 4), relations (8)
and (9) are utilized to estimate �i;j;p = sinc(p+ �i;j) by solving the following overdeterminated system for one
delay (�i;j ; i > 1): 0

B@
ci;j;�m

...
ci;j;q+m

1
CA =

0
B@

aj;0 � � � aj;�2m
...

aj;q+2m � � � aj;q

1
CA

0
B@

�i;j;�m
...

�i;j;m

1
CA (10)

with, aj;l = 0 for l < 0 et l > q.
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In compact notation, the relation (10) becomes: C�m;q+m = A��m;m, that has as least squares solution:

��m;m = (ATA)�1ATC�m;q+m:

The location of the maximum of the function below provides an estimate of the delay:

f(t) =
mX

l=�m

�i;j;lsinc(t � l) =
mX

l=�m

sinc(l + �i;j)sinc(t � l):

Indeed, for m = 1, f(t) = sinc(t + �i;j). This function reaches its maximum for t = ��i;j ; see also [2]. The
same procedure can be repeated independently for every delay �i;j.

Remark: if the delayed path is attenuated, this method can also be used to estimate attenuations, the
amplitude of f at ��i;j accounting for the attenuation. See also [6].

3.2 Direct solution

Another solution based on a direct estimation of delays without optimisation could be introduced (see [2]):

�i;j = �n +
�i;j;n�1

�i;j;n + �i;j;n�1
(11)

where n = maxr(�i;j;r). This solution is obtained by writing �i;j;l as:

�i;j;k =
(�1)k+esinc(�f)

�(k + �i;j)
(12)

where �i;j = e+ f with 0 < f < 1.

3.3 Fourier transform solution

Denote �aj(!) and �ci;j(!) the Fourier transform of the samples aj;l and ci;j;l. Because of the equation (8), the
ratio �ci;j

�aj
gives a complex exponential which contains the delay, ei!�i;j , since �ci;j = �ajei!�i;j . The inverse Fourier

transform of �ci;j=�aj exhibits a maximum at the value [9]. The location of the maximum is used afterwards to
estimate �i;j via interpolation. Indeed, if delays are interger multiples of the sampling period, this maximum is
a Dirac delta function.

4 MA identi�cation

The identi�cation of the coe�cients ci;j;k is now addressed. The equation to be solved is (7), or in compact
form:

r(t) =

q+mX
k=�m

Bk�(t� k) (13)

where: Bk =
�
ci;j;k

�
i;j
; r(t) =

�
ri(t)

�
i
; �(t) =

�
�i(t)

�
i
; i; j 2 f1; :::; Lg: As already pointed out, this

is a non causal multichannel MA model. Its solution is based on the results found in [4], extended to the non
causal case. Non-causal MA models have also been studied in [11]. The only known terms in the model are the
signals received on the sensors, ri(t). Thus, this is a blind multichannel MA identi�cation problem.

Standard MA identi�cation methods assume the model is monic, viz B0 = I. In order to cope with this
di�culty, the auxiliary model below is identi�ed in a �rst stage:

r(t) =

q+mX
k=�m

Akw(t � k); w(t) = B0�(t); (14)
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where A0 = IL, the L � L identity matrix. For this approach to be valid, it is necessary that B0 be invertible,
which is satis�ed with probability one. Note that this assumption is weaker than assuming that the matrix
polynomial B(z) =

P
kBkz

�k is full rank for all values of z, as in most papers dealing with multivariate blind
deconvolution (e.g. see [8] and references therein). In addition, since causality is not mandatory in our approach,
it is actually su�cient that one matrix Bk be invertible for our approach to be valid, not necessarily the �rst
one, B0.

In a second stage, an ICA can be performed on the residual w(t) in order to identify coe�cient B0 [3],
as explained in section 5. The process w(t) is still temporally white, but is spatially correlated, because
w(t) = B0�(t). So, only its cumulant at zero lag is non-zero, and is denoted Cw = cum(w(t)
w(t)
w(t)
w(t)),
where 
 denotes the Kronecker product.

By analogy with the work made in [3] [4], we can de�ne the cumulants of sensors processes as:

Cu;v;q;m = cum

0
BB@

0
BB@

r1(t + u)
r2(t + u)
� � �

rp(t+ u)

1
CCA 


0
BB@

r1(t+ v)
r2(t+ v)
� � �

rp(t + v)

1
CCA


0
BB@

r1(t+ q)
r2(t + q +m)

� � �
rp(t+ q +m)

1
CCA


0
BB@

r1(t)
r2(t �m)

� � �
rp(t�m)

1
CCA

1
CCA :

The process w(t) is temporally white and if we denote c0i;j;k the entries of matrices Ak, the previous equation
becomes:

Cu;v;q;m =

2
664Au 
 Av 


0
BB@

c01;1;q ::: c01;N;q
c02;1;q+m ::: c02;N;q+m
� � �

c0N;1;q+m ::: c0N;N;q+m

1
CCA


0
BB@

c01;1;0 ::: c01;N;0
c02;1;�m ::: c02;N;�m
� � �

c0N;1;�m ::: c0N;N;�m

1
CCA

3
775Cw: (15)

The operator vec is a linear operator mapping any matrix of size p � q to a vector of dimension pq by stacking
its columns one after the other. Conversely unvecp de�nes the inverse operator, p indicating the number of
columns. Denoting �C = unvecp(C), and using the property [FT 
 G]vec(X) = vec(GXF ) with:

FT = Au;

G = Av 


0
BB@

c01;1;q ::: c0
1;N;q

c02;1;q+m ::: c02;N;q+m
� � �

c0N;1;q+m ::: c0N;N;q+m

1
CCA


0
BB@

c01;1;0 ::: c0
1;N;0

c02;1;�m ::: c02;N;�m
� � �

c0N;1;�m ::: c0N;N;�m

1
CCA ;

vecfXg = Cw;

the previous equation becomes:

�Cu;v;q;m =

2
664Av 


0
BB@

c01;1;q ::: c0
1;N;q

c02;1;q+m ::: c0
2;N;q+m

� � �
c0N;1;q+m ::: c0N;N;q+m

1
CCA 


0
BB@

c01;1;0 ::: c0
1;N;0

c02;1;�m ::: c0
2;N;�m

� � �
c0N;1;�m ::: c0N;N;�m

1
CCA

3
775 �CwA

T
u :

The same relation exists if u = 0. The matrices Au can be obtained in a Least Squares (LS) sense. To see this
more clearly, eliminating �Cw and the terms inside the brackets for u 6= 0 and u = 0 yields:

�Cu;v;q;m = �C0;v;q;mA
�T
0 AT

u ; (16)

where �m � u; v � q and u 6= 0. Note that the relation (16) could be used to estimate coe�cient Au, but a LS
solution is preferred.

A linear system can be built by gathering all the values of v, in the range �m � v � q:
0
B@

�Cu;�m;q;m

...
�Cu;q;q;m

1
CAA�Tu =

0
B@

�C0;�m;q;m

...
�C0;q;q;m

1
CAA�T0 ; (17)
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or in compact notation:
CuA

�T
u = C0A

�T
0 : (18)

Using the property that if GX = C then [Ip 
G]vec(X) = vec(C), a linear system is constructed:

[Ip 
 (C0A
�T
0 )]vec(AT

u ) = vec(Cu) (19)

Relation (19) gives an estimation of the MA coe�cients of the model (14).

Remark

If the �lter length m is unknown, or very di�erent for each source, a new notation for cumulants is assumed:
Cu;v;q = cumfr(t+ u)
 r(t+ v)
 r1(t+ q)
 r1(t)g instead of Cu;v;q;m. The solution is obtained with the same
procedure than before with fewer equations because r1(t) and r1(t + q) are now scalars:

Cu;v;q = [Au 
 Av] c
0

1;1;0 c
0

1;1;q Cw:

Using the same notation than before, the previous equation becomes:

�Cu;v;q = Av c
0

1;1;0 c
0

1;1;q
�Cw Au:

Eliminating the term Avc
0

1;1;0c
0

1;1;q
�Cw between the equations obtained for u 6= 0 and u = 0 yields:

�Cu;v;q = �C0;v;qA
�T
0 AT

u :

This relation has the same form as equation (16), so that Au can be obtained by using the same procedure than
the one described in section 4.

5 Independent Component Analysis (ICA)

As shown in section 4, because w(t) = B0�(t); the relation Bk = AkB0 follows. So, once every Ak has been
identi�ed, only B0 is needed to obtain every Bk. The identi�cation of B0 is based on

w(t) = B0�(t)

where �(t) is white and spatially uncorrelated, and on the estimation of the cumulants of w(t). The ICA
algorithm presented in [5] is utilised in this paper for this purpose.

It is irrelevant to reproduce here a complete theory of the ICA method, already described in details in [5].
But it is useful to briey recall the basic steps of the algorithm. Because of an undetermination inherent in
the problem, we can only pretend to estimate z = P�, where P is a permutation. So the system to identify
is actually the following: w(t) = H z(t). The �rst step according to [5] is to decorrelate the observations
by �ltering them with L�1, where L is any square root of the covariance of w(t); denote �w = L�1w. In a
second step, the orthogonal component of the mixture is identi�ed and yields the variables s = QH �w, that
are ideally independent of each other (in the noiseless case). Finally a normalisation can be performed by
post-multiplication by a diagonal matrix, �. As a summary, we end up with: w = LQ��1z.

The main problem consists of estimating Q. When L = 2, the matrix Q is a plane rotation, and the solution
is given directly by rooting a fourth degree polynomial. When L > 2, the fact that matrix Q can be decomposed
into the product of L(L � 1)=2 plane rotations is exploited.

6 Computer simulations

We �rst consider the case of two sensors. The two sources (s1 and s2) are two MA processes of order two:

si(t) = vi(t) + a1;i�i(t� 1) + a2;i�i(t � 2);
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where �i(t) are uniformly distributed independent i.i.d. sequences, with zero-mean and unit variance; parameters
are a1;1 = �:86; a2;1 = :74, a1;2 = �:77; a2;2 = :59. The two delays are �1 = 0:8 and �2 = 0:2 so that m = 2 can
be a good choice. All results are obtained over 100 independent trials, each of sample size 5000.

Every Ai is estimated for 0 < i � q with the method presented in section 4, but all equations containing m
are dropped; so the value of m in not needed. Matrix B0 is estimated with the ICA method, then matrices Bi

can be estimated (see section 5). We come to the delays by using the interpolation method (section 3.1); we
maximize the two cardinal sine functions (�gure 1 and table 1).

�1 �2
mean std mean std
0.76 0.14 0.24 0.096

Table 1 Mean and standard deviation for 100 independent trials. True delays are: �1 = 0:8 et �2 = 0:2.

The same approach (table 1) is presented with v1 and v2 being two independent and uniformly distributed
noises. The signal to noise ratio (SNR) is de�ned as follows: SNR = 20log(std(s1 + s2)=std(v1)). Results are
presented in table 2. Even the highest SNR value is realistic in an interception environment.

�1 �2
SNR mean std mean std
27 dB 0.85 0.15 0.13 0.32
13 dB 0.93 0.23 0.09 0.35
0 dB 1.2 0.48 0.33 0.28
-13 dB 1.47 0.55 0.6 0.53

Table 2 Mean and standard deviation for 100 independent trial in a noisy context. True delays are: �1 = 0:8
et �2 = 0:2.

On the other hand with three sources: a1;1 = �:86; a2;1 = :74, a1;2 = �:77; a2;2 = :59, a3;1 = �0:68; a3;2 = 0:67,
we have 6 functions to maximize. (�gure 2 and table 3).

�ij j 1 2 3
i mean std mean std mean std
2 0.78 0.24 0.28 0.18 0.17 0.09
3 0.84 0.32 0.61 0.15 0.23 0.16

Table 3 Mean and standard deviation of six delays. True delays are: �21 = 0:8; �22 = 0:4; �23 = 0:2; �31 =
0:9; �32 = 0:6; �33 = 0:3.

7 Conclusion

The algorithm described in this paper allows to identify delays of arrival of sources, that are as numerous as
the sensors. Sources are assumed to be wide-band, and the identi�cation is carried out in the time domain,
in order to avoid the di�culties encountered when trying to perform a fusion between successive bands, if a
spectral appraoch had been used.

The solution resorts to the identi�cation of a non-monic and non-causal multichannel MA model. A relation
between the MA coe�cients is then used to estimate the delays. All delays are estimated in two steps, namely
computing an analytical expression followed either by an iterative optimisation or by a Fourier transform, in
order to estimate their exact values (that are a priori fractions of the sampling period).
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Figure 1: Functions whose maximum corresponds to the delay to be estimated (0.2 and 0.8).
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Figure 2: Functions whose maximum corresponds to the delay to be estimated (0.8, 0.4, 0.2, 0.9, 0.6, and 0.3)
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