
Institut Euŕecom
Department of Corporate Communications

2229, route des Crètes
B.P. 193

06904 Sophia-Antipolis
FRANCE

Research Report RR-06-184
Modeling and Analysis of Seed Scheduling Strategies in a

BitTorrent Network

Pietro Michiardi, Krishna Ramachandran and Biplab Sikdar

Tel : (+33) 4 93 00 26 26
Fax : (+33) 4 93 00 26 27

Email : {Pietro.Michiardi}@eurecom.fr,{ramak,sikdab}@rpi.edu

1Institut Euŕecom’s research is partially supported by its industrial members: Bouygues T́eécom,
France T́eécom, Hitachi Europe, SFR, Sharp, ST Microelectronics, Swisscom, Texas Instruments,
Thales.

1



Abstract

BitTorrent has gained momentum in recent years as an effective means ofdis-
tributing digital content in the Internet. Despite the remarkable scalability and
efficiency properties that characterize BitTorrent in the long haul, several studies
identify the source of the content as the main culprit for the poor performance of the
system in a transient regime where user requests for a popular content swamp the
source and in case of high node churn. Our work models the scheduling decisions
made at the source (called theseed) for selecting which pieces of the content to
inject in the system through a stochastic optimization process and provides anana-
lytical framework to compare different strategies. We define a new piece selection
algorithm (called proportional fair scheduling, PFS) that incorporates the seed’s
limited vision of the system dynamics in terms of user requests so as to ensure
a better content distribution among the users. We prove convergence of PFS and
compare its short and long term performance against the mainline BitTorrentim-
plementation and the “smart seed” technique recently introduced in [9]. Ourresults
show that PFS induces substantial improvements on both system performance, by
decreasing the download time at the users, and system robustness against peer dy-
namics, by quickly reacting to sudden changes in the request patterns of the users.

2



1 Introduction

Peer-to-peer (P2P) networks provide a paradigm shift from the traditional client
server model of most networking applications by allowing all users to act asboth
clients and servers. The primary use of such networks so far has beento swap
media files within a local network or over the Internet as a whole. Among current
solutions deployed in the Internet, BitTorrent (BT) has received a lot ofattention
from the research community because of its scalability properties and its ability
to handle the so calledflash crowdscenario, a transient phase characterized by
a sudden burst of concurrent requests for a popular content. However, recent re-
sults [1–3, 9, 11] have revealed some inefficiencies of BT that translate into a pro-
longed transient phase, indicating the source of the content (called theseed) as the
main cause of a disproportionate distribution of the content among the download-
ers. In this paper, we motivate the need to incorporate intelligence into scheduling
file pieces at theseedand develop an analytic framework wherein the impact of
the chosen strategies can be studied for a BT-like P2P network. We propose a
novel scheduling policy called Proportional Fair Scheduling (PFS) that improves
the content distribution process based both on past scheduling decisionsand on
the actual distribution of content requests as seen by the seed. Using the proposed
analytical framework we compare our scheduling policy with the one used in the
mainline BT implementation and with the best known scheduling improvement
called “smart seed” [9]. Through numerical evaluation we show that PFSoutper-
forms previous policies in the short term. For the long term analysis we built a BT
simulator and show that our scheduling algorithm achieves a fair content distribu-
tion, and reduces the time needed for the seed to inject the content in the system.
To summarize, our contributions in the current work can be stated as follows:

• Present an analytic framework wherein different scheduling policies can be
modeled and their behavior analyzed.

• Propose a new algorithm, called Proportional Fair Scheduling (PFS) for
piece distribution that performs better than the current proposed scheduling
modification for the seed.

1.1 BitTorrent overview

Before proceeding further, we provide a brief system overview. BT isa P2P
application that replicates the content by leveraging the upload bandwidth ofthe
peers involved in the download process. Each unique content in the system is as-
sociated with a.torrent file, and is independent of the remaining torrents in the
system. What this implies is that a peer’s view of the BT system is confined to
a subset, termed thepeer set, of all the hosts associated with a specific torrent.
Peers wishing to download a particular content obtain the corresponding.torrent
file from a web server and use a centralized entity called the tracker to collect a
random subset of hosts currently active in the torrent. Peers involved ina torrent

3



cooperate to replicate the file among each other using swarming techniques. Bit-
Torrent achieves scalable and efficient content replication by employingthe choke
and rarest first algorithms. The former is used for peer selection, i.e. which peer
to upload to, while the latter for selecting the file part scheduled to be transfered.
Finally, a peer in BitTorrent exists in two states:seedstate wherein it has the entire
content orleecherstate wherein it is in the process of downloading the file. Note
that we have limited our description to details relevant to the current work andhave
glossed over several technicalities of the BT protocol, which may be foundin [7].

The rest of the paper is organized as follows: in Section 2 we survey related
literature, while in Section 3 we discuss on the rationale and motivations of our
work. In Section 4 we present our analytical model that emulates the various con-
tent scheduling strategies for a seed, Section 4.1 provides an analytical dissection
and addresses issues such as stability and convergence of the scheduling strategies.
We present our results in Section IV and draw relevant inferences from them and
finally summarize the work in Section 7.

2 Related Work

In recent times BitTorrent has received substantial interest from the research
community, with several modeling as well as simulation studies aiming at improv-
ing its performance. Mathematical models for BT are presented in [3–5]. In[4] a
fluid model is used to characterize the performance of BitTorrent like networks in
terms of the average number of downloads and download times. The authorsin [5]
propose to improve upon the aforementioned modeling work using a stochasticdif-
ferential equation approach, by incorporating more realistic BT network behavior
in their study. A Markovian model of a BT network was studied in [3], wherein the
authors propose a novel peer selection strategy to improve download times.Along
similar lines is another modeling work, [10], wherein a branching process based
Markovian model was formulated to study BitTorrent like networks.

Simulation based studies are the focus of the works presented in [1, 2, 6, 8, 9].
In [1], the authors investigate the efficacy of the rarest first and the choke algorithms
while [2] documents the impact of various system parameters on the networksper-
formance. Along similar lines, [8] presents the dissection of the performance of
the mechanisms and algorithms used by BT over a five month period. In [6], the
authors make the case for a network coding scheme to improve content replication,
while in [9], the authors study the performance of BT by employing metrics such
as file download time, link utilization and fairness.

A common feature shared by the literature surveyed thus far is the attempt at
modeling the BT system in its entirety. As a result, not all facets pertaining to
efficient content distribution are explored. For instance, the first step inthis direc-
tion is to ensure that the initial seed is able to inject theentire content among the
leechers at the earliest and this calls for specialized scheduling algorithms.Unfor-

4



tunately, with a wholistic approach, this is difficult to accomplish. In this current
work we restrict our attention to theseeds, and study the impact of scheduling de-
cisions at their end on the effectiveness of content distribution in the system. This
is elaborated further in the following section.

3 Rationale and motivation

Typically when content first appears in a BT network, it is stored at a single
host, i.e. there is a single seed. From here on, the lifetime of a torrent can be
broadly classified into three stages: the initial flash crowd or transient phase where
the seed experiences a huge volume of concurrent requests for the content followed
by the steady state phase where the system dynamics (especially the arrival of
requests for content) are regular and finally the “dying” out phase which marks the
point where a substantial portion of the leechers complete downloading the content
and leave the system. Note that, it is not binding for one stage to necessarily
succeed the other. For, instance a torrent could witness multiple iterations ofthe
flash crowd and steady state phases before eventually dying out.

The motivation for the current work stems from the findings of various simu-
lation studies [2,9,11] revealing an inefficiency in the performance of theprotocol
during the flash crowd phase of a torrent arising from a disproportionate distribu-
tion of content among the leechers. It was found that in the flash crowd scenario,
often the distribution from the seed becomes a bottleneck in the replication pro-
cess. In such a scenario, a lack of intelligence during the upload process at the seed
could result in some of the pieces not being replicated at all. This phenomenon is
termedstarvationand can adversely impact the torrent’s performance in the fol-
lowing manner: consider the scenario where after a certain time (sayt), the seed
decides to go offline. At such time, if there are certain parts of the file that have not
yet been replicated among any of the leechers, then the torrent would eventually
die out since none of the leechers would be able to complete the download. Even
otherwise, a disproportionate distribution of the parts would result in a prolonged
flash crowd scenario since the leechers have nowhere else to requestthe parts from.
In other words the seed and the leechers hosting the rarer parts would beswamped
with a huge volume of upload requests. This problem if further magnified if the
seed is bandwidth constrained. Thus, an improved distribution of content at the
seed’s end would serve to improve the performance of the torrent by decreasing
the download time of the leechers, since there is a bigger pool of leechers with the
same piece.

A relevant doubt at this stage would be to question the rationale behind distin-
guishing between scheduling decisions at a seed and those at a leecher.In other
words,why would not a common scheduling algorithm work for both ?The answer
to this lies in the difference between the view of the torrent as seen by a leecher and
a seed. While the leecher has complete information on the part distribution among
the peers in it’s peer set, this knowledge is hidden from the seeds. This is primarily

5



due to a mechanism used to reduce the control message overhead named theHAVE
suppression technique.HAVE messages are used to disseminate information on
the piece distribution among leechers: each time a leecher finishes to downloada
piece, she will inform all peers in her peer set about the new piece availability. The
HAVE suppression technique inhibits the transmission ofHAVE messages to those
peers that currently have a replica of the announced piece. The consequence is that
seeds will have no information on the piece distribution in her peer set. In fact,
in the currentmainline implementation of the BT protocol, a seed simply replies
to piece request originated at the leechers without any scheduling decision (hence
the name random scheduling (RS) used hereafter). Thus, lack of a global snapshot
constrains a seed to base scheduling decisions on it’s own past history in order to
improve content distribution and hence the motivation behind the current work.

The endeavor in the current work is arrive at a mathematical framework generic
in nature so as to facilitate the performance quantification of various scheduling
strategies that could be implemented at the seed. In this paper we try and address
the following problem:How best can a seed incorporate the limited view of the
BT system into its scheduling decisions so as to ensure better content distribution
among the downloaders?

To this end, as a part of their simulation study of BT, the authors in [9] propose
the local rarest first (LRF) policy, termed “smart seed” scheduling policy, as an
improvement over the current scheduling scheme. However, the proposed scheme
is not receptive to the system dynamics, i.e. leechers entering and leaving the tor-
rent, and further, the optimality of such a strategy is not guaranteed. In thispaper,
we provide a theoretical grounding for the problem through a frameworkbased on
stochastic approximation algorithms. In particular, we compare the performance
of our scheduling strategy, the proportional fairness scheme (PFS), with the current
proposed modification, local rarest first (LRF), and theexisting policy, random
scheduling (RS), currently used in themainlineBT client.

4 Analytical Framework

In this section, we present our analytic framework based on stochastic approx-
imation to study the performance of piece scheduling decisions made at the seed.
While the framework is generic in nature and applicable to study a large class of
scheduling policies, for illustrative purposes we focus our discussion on character-
izing the proportional fairness (PFS) and the LRF schemes. In the current section
we present a detailed overview of incorporating the PFS scheme into the frame-
work while in Section 4.2 we outline the modeling of the LRF scheme. The gist of
the two schemes is presented below:

• LRF: In this policy users are served on a first come first serve basis. Leechers
request the seed for asetof parts (RB) and the seed uploads the least served
piece amongstRB.

6



• Proportional Fairness Scheme (PFS): In this scheme, the seed takes into
account the requests coming in for each part and the corresponding past
throughput and uploads the piece with the maximum ratio of the two.

Note that theexistingscheduling algorithm (RS) is purely random in nature
hence we do not model it in the current work.

Before proceeding with the description of the model, we outline our assump-
tions: The content to be replicated is divided intop equal parts and is stored at a
single seed. The seed is modeled by a single server queue with no buffer space.
Time is slotted in intervals with the granularity of each round chosen to accommo-
date the transfer of a single file part. For the sake of simplicity, in the currentwork
we allow peers to upload to 1 other randomly selected peer, as opposed to thefully
fledged implementation wherein 4 peers are selected using the choke algorithm.In
particular, the seed serves only one part in a round, with the decision on the piece
to be uploaded in the next round made based on the requests that arrive during the
current time slot. The peer satisfying the scheduling criteria is served in the next
slot while the rest of the requests are dropped. The above assumptions are a rea-
sonable mapping to a bandwidth constrained seed where it makes sense to dedicate
the entire bandwidth to serve a particular request instead of increasing thelatency
by dividing it.

Let the request vector at the end of slotn (start of slotn + 1) be represented
asR(n + 1) = [r1,n+1, r2,n+1, · · · , rp,n+1], whereri,n+1 denotes the number of
times parti was requested for in roundn. In other words, each entry inR(n + 1)
represents the number of leechers requesting for that particular part during the
previous round, i.e. roundn. Let the throughput vector be denoted asT (n) =
[t1,n, t2,n, · · · , tp,n], whereti,n represents the number of times parti was served
in n rounds. Similarly, letθ(n) = [θ1,n, θ2,n, · · · , θp,n] denote the vector of sum
of requests for the different parts, each time it was served, averagedover the past
n rounds. The average throughput and request rate for parti after n rounds are
defined as follows:

Ti,n =

∑n
k=1 Ii,k

n
θi,n =

∑n
k=1 ri,kIi,k

n

whereIi,k is an indicator variable equal to 1 if parti is scheduled in roundk
and 0 otherwise. Thus, at the end of each round, each entry in vectorsθ andT can
be updated as follows:

θi,n+1 = θi,n + ǫn[Ii,n+1ri,n+1 − θi,n] (1)

Ti,n+1 = Ti,n + ǫn[Ii,n+1 − Ti,n] (2)

with Ii,n+1 as explained above andǫn = 1
n+1 . Given the above system pa-

rameters, the seed scheduling algorithm we propose (PFS) can be summarized as
follows:

7



• Among the non-zero request entries that arrive in a round, select thatpart
maximizing the following ratio:

arg max
i

{

ri,n+1

θi,n + d

}

(3)

If there are multiple parts satisfying the above criterion, break ties arbitrarily.
Here,d is a constant arbitrarily close to zero and is chosen to avoid the divide
by zero error in the initial stages of the torrent when the throughputs for
nearly all the parts are close to or equal to zero.

• Upload the chosen part from the previous step to the requesting peer. Again,
break ties arbitrarily

It is quite natural to question the soundness, be it theoretical or practical,of a
formulation as in Equation (3). The proposed format can be justified if the content
replication process were to be viewed, from a seed’s perspective, asa variant of
the utility maximization problem. Note that in a BT system, the onus is primarily
on the seed to ensure the spread of content among the peers in the system. Thus, a
seed seeks to maximize the replicas of each piece among the leechers and therefore
it is reasonable to assume that the utility function chosen is concave in nature.In
this context consider the utility function to be the sum of the logarithm of average
number of requests of the individual pieces, i.e.

U(θ) =

p
∑

i=1

log(θi + d) (4)

Then it can be shown [13] that for this particular choice of utility maximiza-
tion, the policy outlined in Equation (3) yields optimal results. We further note
that the seed is not constrained to choose the policy of Equation (3). Any reason-
able representative concave function can be chosen as the utility functionand the
scheduling policy appropriately tailored to obtain optimal results.

4.1 Convergence Analysis

The formulation of Equations (1) and (2) is in the framework of stochastic ap-
proximation algorithms [12]. Notably, under certain assumptions, which can be
shown to be valid in a BitTorrent scenario, it can be shown that the stochastic ap-
proximation algorithm in Equation (2) can be described by adeterministic mean
field ordinary differential equation (ODE) system. This enables us to characterize
the behavior of the proposed algorithm and is also a useful tool to study theasymp-
totic properties such as the long term throughput of the respective file pieces. An
important consequence of the convergence proof is that concerning the stability of
the system. For example, a scheduling policy that converges asymptotically also

8



characterizes a stable system. We now outline the assumptions required for the
ODE convergence:

• Stationarity of the request distribution:{R(n), n < ∞}. Note that in a BT
system, the requests generated by leechers for the missing pieces depend
only on the current distribution of the parts among each other. For instance,
if a system snapshot at timet were to be translated to a different instant, say
t1, the pattern of requests generated would be similar. Define the stationary
expectation w.r.t. the request distribution for parti as

ĥi(θ) = E[I
{

ri
θi+di

≥
rj

θj+dj
},∀j 6=i

] (5)

• Lipschitz continuity of̂hi(.), 1 ≤ i ≤ p. We demonstrate this with the help
of a simple case where the file consists of two parts and the joint probability
density is given byp(r1, r2). Then, for part 1, Equation (5) can then be
simplified as

ĥ1(θ) =

∫

I{
r1
r2

≥w}p(r1, r2)dr1dr2 (6)

wherew = (θ1 + d)/(θ2 + d). Note that in the above equation we have used
a continuous density function for the request generation process, which is in
fact discrete. This is because, it has been shown in [14], that the requests
for the parts can be approximated by a Gaussian distribution which is con-
tinuous. In the current work, we employ the same approximation and hence
the formulation of Equation (6). Now, Eqn. (6) is Lipschitz continuous with
respect tow, since the area of the region where the indicator function is not
zero is a differentiable function ofw [13]. Similar is the case for̂h2(θ).
Further, the derivatives of̂h1(θ) andĥ2(θ) will be continuous ifp(r1, r2) is
bounded and continuous.

• Bounded density ofR(n). This is trivially satisfied since the number of users
in a BT system is finite thus ensuring that the requests generated during each
round of time remain bounded.

Under the above assumptions, the stochastic approximation algorithm of Equa-
tion (2) can be approximated by the ODE given by:

Ṫ PFS
i = E[I

{
ri

θi+di
≥

rj

θj+dj
}∀j 6=i

] − T PFS
i (7)

4.2 Modeling other policies

The analytic framework provides a generic setting wherein a wide class of
scheduling policies can be modeled and quantified. We illustrate the robustness of
the framework by modeling the LRF scheme in [9] as follows:

9



• For each piecei in the request block (RB) setri,n+1 = 1

• Choose piecei such that: arg maxi∈RB

{

1
θi,n+di

}

; break ties arbitrarily

• Upload the piece from the previous step

The corresponding throughput formulation for parti, T LRF
i , is then given by:

T LRF
i,n+1 = T LRF

i,n + ǫn[I{ 1

θi+di
≥ 1

θj+dj
}∀j 6=i − T LRF

i,n ] (8)

and the equivalent ODE by:

Ṫ LRF
i = E[I{ 1

θi+di
≥ 1

θj+dj
}∀j 6=i] − T LRF

i (9)

5 Implementation details

In this section we provide some more details on the BT protocol and discuss
on practical implementation issues that may arise when implementing the PFS al-
gorithm in a real BT client.

The protocol that governs the piece exchange between peers in BitTorrent can
be trivially described as follows:

• Any peer wishing to download a part of the file unicast a control message
calledINTERESTED message, to announce the willingness to download a
part from a remote peer;

• A remote peer schedules one or more upload opportunities (based on the
peer selection algorithm that we will not detail in this paper) and informs the
selected peer through a control message calledUNCHOKE;

• The unchoked peer selects a piece to download (based on the piece selection
algorithm) and unicasts aREQUEST message to the remote peer;

• Finally, the remote peer uploads the part to the requesting peer.

Peer scheduling decisions,i.e. UNCHOKE messages are sent, are made every 10
seconds with one exception, as described for example in [1].

The alternative scheduling policy for the seed proposed in this paper canbe in-
corporated into present BT clients with the minimal of changes and incurring mini-
mal overhead. Note that leechers in a BT system can distinguish between seeds and
non-seeds, i.e. a leecher knows the seeds in it’s peer set through the initial hand-
shake procedure wherein BT clients exchange a digest of their piece availability
the first time a connection is established. Thus, when anINTERESTED message
is sent to a seed, the leecher appends the piece identifier it is looking for, ina sim-
ilar way it is done for a regularREQUEST message. Once the seed has collected

10



a sufficient number of requests in a round, it executes the above algorithm and un-
chokes the leecher that satisfies both the piece scheduling and the peer scheduling
criterion. Note that the change is madeonly to theINTERESTED messages sent
to the seed, the format of otherINTERESTED messages (sent to leechers) remain-
ing unaltered. Thus, the size of eachINTERESTED message to a seed increases
by a byte and while the message complexity remains invariant, the byte overhead
increases, albeit minimally.

6 Results

In this section we present results comparing the efficiency of the PFS scheme
against LRF. To prove the robustness of the proposed framework, wequantify the
performance gains obtained in the short term as well as in the long run. Forthe
short term analysis we perform a numerical evaluation of the PFS scheduling us-
ing the stochastic approximation algorithm as described in Section 4. On the other
hand, we perform the long term evaluation using a custom simulator of the BT sys-
tem. The rationale behind this choice lies in the lack of arealistic characterization
of the piece request rateR(n) = [r1,n, r2,n, · · · , rp,n] to be used in the analytical
evaluation presented in Section 4.1. Our implementation, which is outlined in Sec-
tion 6.2, also provides a global perspective of the system, as opposed to the seed’s
perspective offered by the analytical model.

6.1 Short term behavior

Since the primary objective in the initial stages of a torrent is to minimize
starvation of pieces, a natural benchmark for comparing the policies wouldbe to
measure the number of starved pieces at a certain point of time under each policy.
Here, we choose to make the comparison afterp rounds, wherep denotes the num-
ber of pieces the content is divided into. The rationale behind this is as follows:
since we assume that the seed schedules one piece per round, in the idealcase it
would requirep rounds to ensure that the file in it’s entirety is present among the
leechers. Figure 1 graphs the performance of the various policies in the flash crowd
stage. In Figure 1(a), the number of starved parts of a 30 part file are plotted for
each policy over 100 runs of our algorithm while Figure 1(b) quantifies theimpact
of the file size on the number of starved parts. Each point on the graph of Fig. 1(b)
is an average of 100 runs. As seen from the plots, the proportional fairscheme
offers significant gains over the other two policies. Even with increasing file sizes,
the performance degradation is not very substantial. In fact, for a file consisting of
100 parts, the ratio of starved pieces in the “flash crowd” phase is about1:3 for PFS
and LRF, while it is around 1:18 when comparing PFS and the RS schemes. We
believe the better performance of the algorithm could be attributed to the following
factors:

• The seed makes a scheduling decision taking into accountall the requests

11



that are made in a particular round, unlike LRF and RS where users are
served in a first come first served manner. For instance, if a large number of
leechers request for a particular piece there is a higher probability of it being
a rare piece as compared the rarity of a piece requested by a single user.

• In an open BT system the local rarest piece need not reflect reality, from the
seed’s perspective, due to leechers entering and leaving the system. Thus,
when a seed bases its scheduling decisions only on its past history like in the
LRF case, due to peers’ dynamics a seed may have a stale vision of what
is rare and what is not in the system. The PFS scheme accounts for this by
using the number of requests for a piece as the system’s indicator of rarity
and makes the scheduling decision accordingly.

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15
Scheduling Efficiency of PFS, LRF and Random Scheduling Schemes

Simulation Run

Nu
mb

er
 of

 st
a
rv
e
d

 pa
rts

LRF
PFS
RSLRF

PFS

RS

30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40
Scheduling Efficiency of PFS, LRF and Random Scheduling Schemes

Number of parts (file size)

N
um

be
r 

of
 s
ta
rv
e
d

 p
ar

ts

LRF
PFS
RS

(a) (b)

Figure 1: Performance evaluation in the flash crowd phase

6.2 Long term behavior

As a final validation of our theoretical formulation presented in Eqn (3), we
present a simulation comparison of the proposed PFS algorithm against the LRF
scheme, especially the behavior over long time periods. Since we only modify the
seed scheduling algorithm, it only makes sense to quantify the impact within the
seed’s peer set and not globally. The main objective in the long term is to prevent
a high variance in the number of replicas of each part, i.e. prevent a disproportion-
ate piece replication in the peer set since it is the root cause of all problems.In
other words the scheduling process should be “fair” to the individual pieces. The
intuition behind this is that ensuring a balanced replication of the pieces can help
improve download times since there is a higher level of redundancy and alsodis-
tribute the load more evenly among the leechers. As a measure of the degree of

12



fairness, we employ the Max-Min Fairness Index [15] given bymin∀i(xi)
max∀i(xi)

, where
xi denotes the number of replicas of parti at the end of a roundin the seed’s peer
set. Before discussing the long term results, we provide a brief description of the
custom simulator we designed.

6.2.1 BitTorrent Simulator

We developed a synchronous simulator working in rounds wherein we im-
plemented both seed and leecher algorithms following the BT specification. We
then implemented two scheduling policies at the seed side, the PFS and the LRF.
The only limitation we imposed on the simulator follows the one of the analytical
model: only one peer is unchoked in each round. The peer set size for apeer is set
to the default value of the mainline BT client, that is 80 peers. To quantify the im-
pact of the scheduling decisions, we assume that leechers that finish downloading
leave the torrent, i.e. there is a single seed in the system at all times.

It is worthwhile noticing from the discussion in Section 5 that, as compared to
the LRF scheduling policy which requires modifying both the seed and the leecher
side of BT as well part of the protocol specification, PFS scheduling canbe seam-
lessly integrated with a simple modification at the seed side only.

6.2.2 Simulation results

We compare the LRF and the PFS scheduling algorithms assuming the content
to be split inp = 150 pieces. We simulate the presence of one seed only in the
system and study two representative and realistic scenarios: the first where the
torrent experiences a heavy flash crowd and the second indicative ofa torrent with
a high churn rate.

To simulate the flash crowd setting, 160 peers are injected into the system in
the first round, after which no further joins are allowed. The objective here is
to study the algorithm’s sensitivity toward achieving a balanced replication in the
wake of a huge volume of requests. Note that the Max-Min Fairness plots can
also be used to infer and compare the download times experienced by the leechers.
Since we assume that leechers with the entire content depart, the timeT when the
graph reaches one also denotes the instant whenall the leechers in the system have
finished downloading. Therefore, the faster the graph peaks to one, the better it is
in terms of fairness as well as download times. In Figure 2(a) we plot the Max-
Min Fairness index versus time (in simulation rounds) for the flash crowd scenario
described above. When using PFS scheduling,T = 159 while for the LRF case
T = 219. A similar trend was observed over multiple repetitions of the experiment,
showing an improvement of the total time to download the content in favor of PFS
whereas this improvement was even more pronounced in the case of smaller files.
Further, as shown in Figure (3), the time required forall the 160 nodes in the flash
crowd scenario to finish downloading the content grows linearly with the increase
in the file size for PFS, while for LRF the behavior was quite erratic with a high

13



variance in the download times.

120 140 160 180 200 220 240
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (simulation round)

M
a

x−
M

in
 F

a
ir
n

e
ss

 I
n

d
e

x

 

 

PFS

LRF

T=159 T=219

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (simulation round)

M
a

x−
M

in
 F

a
ir
n

e
ss

 I
n

d
e

x

 

 

PFS

LRF

(a) (b)

Figure 2: Simulation results for the long term analysis.

In the second simulation study, we focus on the responsiveness of scheduling
decisions at the seed when substantial variations in the population of peersdown-
loading the content arise, i.e. a system with high churn. In particular, we consider
80 peers joining the system at round 1, then 30 randomly chosen peers leaving the
system at round 150, and finally 80 new peers joining the system at round250. Al-
though both PFS and LRF scheduling reach the highest fairness index, Figure 2(b)
clearly shows that PFS reacts consistently faster to peer dynamics as compared to
LRF. Similar results (not reported due to lack of space) have been obtained for
different runs of the same scenario.

7 Conclusion and Future Work

In this work, we motivated the need for improved scheduling algorithms at the
seed in a BT system and quantified the performance gains obtained thus. A generic
analytical framework to model such algorithms was presented and a novel seed
scheduling strategy to achieve better content replication was proposed. Through
numerical evaluation of the model as well as simulations the improved performance
of the proposed PFS algorithm over existing strategies in the literature (LRF and
the existing mainline random scheduling schemes) was demonstrated. As a natu-
ral extension to this paper we will assess the impact of PFS on a real BitTorrent
network through measurements using modified clients deployed on Planet Lab.

14



40 60 80 100 120 140 160 180 200
50

100

150

200

250

File Size (number of parts)

D
o

w
n

lo
a

d
 T

im
e

 (
n

u
m

b
e

r 
o

f 
ro

u
n

d
s)

 

 

PFS

LRF

Figure 3: Impact of file size on performance of PFS and LRF.

References

[1] A. Legout, G. Urvoy-Keller and P. Michiardi,Rarest First and Choke Algo-
rithms Are Enough,ACM SIGCOMM/USENIX IMC 2006, Rio de Janeiro,
Brazil.

[2] G. Urvoy-Keller and P. Michiardi,Impact of Inner Parameters and Overlay
Structure on the Performance of BitTorrent,IEEE Global Internet Symposium
2006, Barcelona, Spain.

[3] Y. Tian, D. Wu and K. W. Ng,Modeling, Analysis and Improvement for
BitTorrent-Like File Sharing Networks,IEEE INFOCOM 2006, Barcelona,
Spain.

[4] D. Qiu and R. Srikant,Modeling and performance analysis of BitTorrentlike
peer-to-peer networks,ACM SIGCOMM 2004, Portland, OR, USA.

[5] B. Fan, D-M. Chiu and J. C. Sl Lui,Stochastic Differential Equation Approach
to Model BitTorrent-like P2P Systems,IEEE ICC 2006, Istanbul, Turkey.

[6] C. Gkantsidis and P. Rodriguez,Network Coding for Large Scale Content Dis-
tribution, IEEE INFOCOM 2005, Miami, USA.

[7] B. Cohen,Incentives Build Robustness in BitTorrent,Workshop on Economics
of Peer-to-Peer Systems 2003, Berkeley, USA.

[8] M. Izal, G. Urvoy-Keller, E. W. Biersack, P. Felber, A. A. Hamra and L.
Garces-Erise,Dissecting BitTorrent: Five Months in a Torrent’s Lifetime,PAM
2004, Antibes, France.

15



[9] A. Bharambe, C. Herley and V. N. Padmanabhan,Analyzing and Improving
a BitTorrent Network’s Performance Mechanisms,IEEE INFOCOM 2006,
Barcelona, Spain.

[10] X. Yang and G. de Veciana,Service capacity in peer-to-peer networks,IEEE
INFOCOM 2004, Hong Kong, China.

[11] F. Mathieu and J. Reynier,Missing Piece Issue and Upload Strategies in
Flashcrowds and P2P-assisted Filesharing,Technical Report, ENS, France.

[12] H. J Kushner and G. Yin,Stochastic Approximation Algorithms and Applica-
tions,2nd ed. Berlin, Germany: Springer-Verlag, 2003.

[13] H. J Kushner and P. A Whiting,Convergence of Proportional-Fair Sharing
Algorithms Under General Conditions,IEEE Transactions on Wireless Com-
munications, Vol. 3, No. 4, July 2004

[14] D. Erman, D. Ilie and A. Popescu,BitTorrent Session and Message Models,
ICCGI 2006, Bucharest, Romania.

[15] B. Radunovíc and J.Y. Le Boudec,A Unified Framework for Max-Min and
Min-Max Fairness with Applications,Technical Report, EPFL, July 2002

16


